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Abstract: The emergence of a minimal length at the Planck scale is consistent with modern develop-
ments in quantum gravity. This is taken into account by transforming the Heisenberg uncertainty
principle into the generalized uncertainty principle. Here, the position-momentum commutator
is modified accordingly. In this paper, majorization uncertainty relations within the generalized
uncertainty principle are considered. Dealing with observables with continuous spectra, each of the
axes of interest is divided into a set of non-intersecting bins. Such formulation is consistent with real
experiments with a necessarily limited precision. On the other hand, the majorization approach is
mainly indicative for high-resolution measurements with sufficiently small bins. Indeed, the effects
of the uncertainty principle are brightly manifested just in this case. The current study aims to reveal
how the generalized uncertainty principle affects the leading terms of the majorization bound for
position and momentum measurements. Interrelations with entropic formulations of this principle
are briefly discussed.

Keywords: generalized uncertainty principle; minimal observable length; majorization uncertainty
relations

1. Introduction

One of the key problems of modern physics is to build a quantum theory of gravita-
tion [1]. The existence of a minimal observable length has long been suggested due to these
efforts. Let us refrain from listing them and refer to the papers [2,3]. There are proposals
to investigate the testable effects of the minimal length, including astronomical observa-
tions [4,5] and experimental schemes seemingly feasible within current technology [6–8].
Papers [9–12] discussed measurements in which one may be able to probe the effects of
quantum gravity. The implications of the deformed forms of the commutation relation
have attracted large attention [13–18]. In particular, researchers analyzed the consequences
for the harmonic oscillator [17,18], the free particle, and potentials with infinitely sharp
boundaries [14]. Going beyond the linear regime in graphene, in Ref. [19], a generalized
uncertainty framework compatible with quantum gravity scenarios with a minimal length
was obtained.

The Heisenberg uncertainty principle [20] emphasizes fundamental limitations on the
simultaneous knowledge of observables in the quantum world. Uncertainty relations in
terms of the product of standard deviations were formally derived by Kennard [21] for posi-
tion and momentum and later by Robertson [22] for any pair of observables. An alternative
to this traditional approach is provided by entropic characterization. For the position-
momentum pair, an entropic formulation was initiated by Hirschman [23] and later devel-
oped in Refs. [24,25]. With a primary focus on observables with discrete spectra, the use of
entropies to characterize quantum uncertainties was explored in Refs. [26,27]. Being the
subject of current research, entropic uncertainty relations are reviewed in Refs. [28–32]. The
majorization approach provides another flexible way to pose uncertainty relations [33–37]
with a natural transition to entropic characterization when required.
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Heisenberg’s uncertainty principle per se does not impose a restriction separately
on the spreads of position or momentum. Below the scale linked to the Planck length,
`Pl =

√
Gh̄/c3 ≈ 1.616× 10−35 m, the very structure of space-time is an open question [38].

Here, G is the Newtonian constant of gravitation, h̄ is the reduced Planck’s constant, and
c denotes the speed of light. The Heisenberg principle is replaced here with the gen-
eralized uncertainty principle, which declares a non-zero lower bound on the position
spread [39–41]. The generalized uncertainty principle can be reinterpreted as an effective
variation of the Planck constant [42], with a link to Dirac’s large numbers hypothesis [43].
Using the preparation scenario, entropic uncertainty relations in the presence of a min-
imal length were examined in Refs. [44–46]. At each stage of the scenario of successive
measurements, an actual pre-measurement state depends on the results of previous mea-
surements [47,48]. This viewpoint is closer to Heisenberg’s thought experiment with
microscope [49]. The generalized uncertainty principle with successive measurements of
position and momentum was analyzed in Ref. [50].

This paper is devoted to majorization uncertainty relations in the presence of a min-
imal length. To focus on changing the majorization bound for position and momentum
measurements, a consideration is restricted here to the preparation scenario. In addition,
the case of high-resolution measurements with small bins is most interesting from the
physical viewpoints. Hence, one naturally obtains a small dimensionless parameter, with
respect to which the quantities of interest can be expanded. For practical purposes, several
leading terms in expansion of the majorization bound should be taken into account. It
turns out that an effect of the generalized uncertainty relation is actually revealed in this
way. The paper is organized as follows. Section 2 reviews the preliminary findings and
fix the notation. The derivation of basic terms of the majorization bound is presented in
Section 3. Section 4 concludes the paper with a summary of the results. In Appendix A, a
perturbation theory is developed to solve an auxiliary eigenvalue problem.

2. Preliminaries

In this Section, the generalized uncertainty principle and related findings are recalled.
Further, basic points of the majorization approach to quantum uncertainties are discussed.

2.1. The Generalized Uncertainty Principle

The generalized uncertainty principle declares the deformed commutation relation
for the position and momentum operators [13]. Some different representations of the same
algebra exist. However, the physical content is determined by the physical observables.
Namely, these operators provide access to the explicit information on the position and
momentum measurements [51]. For convenience, the wavenumber operator, κ̂, is used
instead of the momentum operator, h̄κ̂. Let us consider the commutation relation,[

x̂, κ̂
]
= i
(
1 + βκ̂2) . (1)

Here, the positive parameter β is rescaled by factor h̄2 from its known sense, and 1
is the identity operator. In the limit β → 0, Equation (1) gives the known commutation
relation of ordinary quantum mechanics. This is a most straightforward modification
leading to the presence of a minimal length. Instead of Equation (1), more general forms of
the additional term can be placed in the right-hand side [17]. Due to the results of [14], the
used formulation allows us to study questions of interest with a more apparent analogy
with the ordinary case. It is suitable at the first step in probing potential effects of the
generalized uncertainty principle. In addition, the formulation (1) is asymmetric with
respect to the role of position and momentum. It seems to be natural in topics concerning
just the existence of a minimal length.
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A quantum state is represented by a positive self-adjoint operator ρ̂ with Tr(ρ̂) = 1
called the density matrix. Combining Equation (1) with the known Robertson formula-
tion [22] leads to the inequality,

(∆x̂)ρ̂ (∆κ̂)ρ̂ ≥
1
2
(
1 + β〈κ̂2〉ρ̂

)
≥ 1

2
(
1 + β(∆κ̂)2

ρ̂

)
. (2)

As in general, for any operator Q̂ one has:

〈Q̂〉ρ̂ = Tr(Q̂ρ̂) , (∆Q̂)2
ρ̂ =

〈
Q̂2〉

ρ̂
− 〈Q̂〉2ρ̂ .

It further follows from Equation (2) that (∆x̂)ρ̂ ≥
√

β for every state ρ̂. Thus, it is
impossible to localize a particle below the scale corresponding to the square root of β.

It is helpful to introduce the auxiliary wavenumber operator q̂ [14]. Let x̂ and q̂ be self-
adjoint operators that obey [x̂, q̂] = i 1. In the q-space, the action of q̂ results in multiplying
a wave function ϕ(q) by q, whereas x̂ ϕ(q) = i dϕ/dq. Following [14], let us define

κ̂ =
1√

β
tan
(√

β q̂
)

. (3)

So, the auxiliary wavenumber obeys the ordinary commutation relation but ranges
between ± qmax(β) = ±π/(2

√
β ). The function q 7→ κ = tan(

√
βq)
/√

β provides a
one-to-one correspondence between q ∈ (− qmax,+ qmax) and κ ∈ (−∞,+∞). So, the
eigenvalues of κ̂ fully cover the real axis. For a pure state, one actually has the three
wave functions φ(κ), ϕ(q), and ψ(x). The auxiliary wave function ϕ(q) is a convenient
mathematical tool as connected with ψ(x) via the Fourier transform. Let the eigenkets |q〉
of q̂ be normalized through Dirac’s delta function and satisfy the completeness relation,∫ +qmax

−qmax
dq |q〉〈q| = 1 . (4)

In the q-space, the eigenfunctions of x̂ are expressed as 〈q|x〉 = exp(−iqx)
/√

2π.
Combining this with Equation (4), any wave function in the coordinate space reads:

ψ(x) =
1√
2π

∫ +qmax

−qmax
exp(+iqx) ϕ(q)dq . (5)

Wave functions in the q- and x-spaces are connected by the Fourier transform [14],
namely,

ϕ(q) =
1√
2π

∫ +∞

−∞
exp(−iqx)ψ(x)dx . (6)

The only distinction from ordinary quantum mechanics is that each wave function
ϕ(q) in the q-space should be treated as 0 for all |q| > qmax(β). However, a distribution
of physical wavenumber values is determined by φ(κ). Let us consider the probability to
find the momentum between two prescribed values. Due to the one-to-one correspondence
between κ and q, there is a bijection between the intervals (κ1, κ2), and (q1, q2). Thus, the
probability of interest is expressed as∫ κ2

κ1

|φ(κ)|2 dκ =
∫ q2

q1

|ϕ(q)|2 dq , (7)

whence the probability density functions are related via |φ(κ)|2 dκ = |ϕ(q)|2 dq.

2.2. On Majorization Uncertainty Relations

Let us proceed to a general formulation of majorization uncertainty relations. Let
y = (y1, · · · , yn) and z = (z1, · · · , zn) be two n-dimensional vectors with real components.
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By adding zero components, one can always reach that the two vectors have the same
number of elements. One says that y is majorized by z, in symbols y ≺ z, if [52]

∑m
j=1 y↓j ≤∑m

j=1 z↓j (8)

for all m = 1, . . . , n and
∑n

j=1 y↓j = ∑n
j=1 z↓j . (9)

The arrows down mark that the components should be taken in non-increasing order.
To pose majorization uncertainty relations, the following notions will be used [33]. The

infimum of a set of vectors is defined as the vector that is majorized by every element of the
set and, in turn, majorizes any vector with that property [53]. The supremum is similarly
defined as the vector that majorizes every element of the set and is, in turn, majorized
by any vector with that property. The procedure to calculate the desired vectors are also
discussed in Refs. [33,53] with a reference to the MATHEMATICA codes prepared for these
purposes. Let us refrain from discussing some subtle points related to such calculations.
Even if continuous observables are dealt with, one can nevertheless restrict a consideration
to a finite set of large number of bins. This holds not only due to non-zero sizes of bins but
also in view of boundness of values available to be measured in practice.

To formulate majorization uncertainty relations, one should fix operators that describe
each measurement of interest. By xα1 < xα2, one denotes the least points of α-th bin in the
position measurement. The corresponding projection operator reads:

Π̂α =
∫ xα2

xα1

dx |x〉〈x| . (10)

To the momentum measurement, let us assign a set of projection operators of the form,

Λ̂γ =
∫ κγ2

κγ1

dκ |κ〉〈κ| , (11)

where κγ1 < κγ2 are the least points of γ-th bin. The above form of the operators cor-
responds to an orthogonal resolution of the identity in each case. Strictly speaking, the
finiteness of the detector resolution is typically addressed in terms of acceptance func-
tions [48]. Certainly, the projection operators are obtained with an acceptance function in
the form of boxcar one. A consideration is restricted to boxcar acceptance functions since
the aim here is to focus on the corollaries of the generalized uncertainty principle. At the
same time, the use of Gaussian acceptance functions is apparently closer to practice [48].
On the other hand, the case of high-resolution measurements with small bins is of primary
interest. Moreover, little changes of the form of acceptance functions have no actual bearing
on the principal possibility to observe the effects of a minimal length.

One of the advantages of the majorization approach is that uncertainty relations are
expressed directly in terms of probabilities. For the prepared pre-measurement state ρ̂, one
obtains the probabilities,

Tr(Π̂αρ̂) =
∫ xα2

xα1

〈x|ρ̂|x〉dx , Tr(Λ̂γρ̂) =
∫ κγ2

κγ1

〈κ|ρ̂|κ〉dκ ,

which respectively constitute the vectors px̂(ρ̂) and pκ̂(ρ̂). The majorization uncertainty
relation of the paper [33] is posed as follows. It was shown that

px̂(ρ̂)⊗ pκ̂(ρ̂) ≺ sup
{
px̂⊕κ̂($̂) : $̂ ≥ 0, $̂† = $̂, Tr($̂) = 1

}
. (12)

In the case of discrete observables, one a priori has a unitary matrix connecting two
orthonormal bases. Inspecting the norms of the submatices of this unitary matrix, the
majorization uncertainty relations follow straight away [34,36]. Moreover, such relations
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are straightforwardly converted into inequalities for Rényi and Tsallis entropies. An
application of these results to neutrino flavor and mass was studied in Ref. [54] since the
Pontecorvo–Maki–Nakagawa–Sakata matrix is dealt with here. In a general case, however,
finding the right-hand side of Equation (12) or some of its components can be more tractable
than building a suitable unitary matrix. In addition, one will not necessarily be dealing
with projective measurements.

In paper [33] it is described how to calculate the first term in the right-hand side of
Equation (12). Overall, one seeks for the maximum value of Tr(Π̂αρ̂)Tr(Λ̂γρ̂), where the
projectors are fixed and ρ̂ is varied. The desired extremal value is realized with a pure state,
for example, |ψ∗〉. As was shown in Ref. [33], the task is reduced to the eigenvalue problem,

Π̂α Λ̂γ Π̂α|η∗〉 = µ2 |η∗〉 (13)

with |η∗〉 = Π̂α|ψ∗〉. One should find the maximal eigenvalue of the problem (13). The first
component in the right-hand side of Equation (12) is then equal to (1 + µmax)2/4. Further
terms are more difficult to calculate. For high-resolution measurements with small bins,
however, many components differ little from the first, except for the tails of the distributions
and the intermediate zones. In effect, the bins should be such that many of them are lying
around distribution peaks. One can leave this assumption by replacing Equation (12) with
the uncertainty relation in terms of the min-entropies. For the given probability distribution
p = {pj}, its min-entropy is defined as

H∞(p) = − ln
(
max pj

)
. (14)

The latter is obtained when the order of Rényi’s entropy [55] tends to infinity. It follows
from Equations (12) and (14) that

H∞
(
px̂(ρ̂)

)
+ H∞

(
pκ̂(ρ̂)

)
≥ 2 ln 2− 2 ln(1 + µmax) . (15)

The next Section examines how the above relations are affected by the generalized
uncertainty principle.

3. Main Results

The previous Section provides a ground to study the question how the generalized
uncertainty principle affects the majorization bound for position and momentum measure-
ments. It is natural that the analysis here begins with the case β = 0.

3.1. The Case of Ordinary Commutation Relation

In Ref. [33], the problem (13) was reformulated as

1
π

+∆x/2∫
−∆x/2

sin
(
∆κ(x− x′)/2

)
x− x′

η∗(x′)dx′ = µ2 η∗(x) , (16)

where the variables x and x′ are both restricted to the range
[
−∆x/2,+∆x/2

]
and

η∗(x) = 〈x|η∗〉. One uses Equation (16) under the assumption that the origins of both the
x and κ axes are placed into centers of the two bins for which the optimality is reached.
Surely, this holds for the ordinary commutation relation. To analyze consequences of the
generalized uncertainty principle, one needs also to examine Equation (16) in more detail
than it was made in the paper [33].

Substituting x = ξ∆x, s = ∆x∆κ/(2π) and µ2 = sλ, one rewrites Equation (16) as

∫ +1/2

−1/2

sin[sπ(ξ − ξ ′)]

sπ(ξ − ξ ′)
u(ξ ′)dξ ′ = λ u(ξ) , (17)
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where u(ξ) = η∗(ξ∆x). Here, the kernel is expanded as

sin[sπ(ξ − ξ ′)]

sπ(ξ − ξ ′)
= 1− s2π2

3!
(ξ − ξ ′)2 +

s4π4

5!
(ξ − ξ ′)4 + · · · . (18)

It then follows from Equations (A16) and (A19) that

µ2
max

∣∣∣
β=0

= s
(

1− s2π2

36
+ O(s4)

)
, (19)

η∗(x)
∣∣
β=0 = 1− s2π2

6

(
x2

∆x2 −
1

12

)
+ O(s4) . (20)

In the limit s→ 0, the term (19) tends to s as mentioned in Ref. [33]. The result (19) is
useful also in the sense of characterizing a level of smallness for s. For example, for s < 1/2,
one has:

s2π2

36
< 0.069 , (21)

i.e., the eigenvalue correction turns out to be of several percents. Thus, the validity of
perturbation expansions up to the first order does not require exceptionally high resolution.
Within the given scheme, one can further derive second and higher-order perturbations,
though complexity of expressions grows quickly.

3.2. The Case of Modified Commutation Relation

For β 6= 0, one keeps kernels of the Fourier transform by means of the auxiliary
wavenumber. The eigenvalue problem (13) straightforwardly leads to

µ2〈x|η∗〉 =
∫ κγ2

κγ1

dκ
∫ xα2

xα1

dx′ 〈x|κ〉〈κ|x′〉 η∗(x′)

=
1

2π

∫ xα2

xα1

dx′
∫ qγ2

qγ1

2dq
1 + cos(2

√
βq)

exp[i(x− x′)q] η∗(x′) , (22)

where one used
dκ

dq
=

2
1 + cos(2

√
βq)

. (23)

Let us now seek a possibility to translate the wavenumber axis as it was made to obtain
Equation (16). Strictly speaking, this step can be used with the generalized uncertainty
principle only approximately. Indeed, the standard kernels of the Fourier transform stand
in Equations (5) and (6) due to the auxiliary wavenumber that ranges between ± qmax(β).
The latter indeed prevents translational invariance with respect to the q axis. On the
other hand, the value qmax(β) corresponds to extremely high energies that are completely
beyond the capabilities of modern experiments. Actually, reaching such high energies is
inevitably coupled with approaching the Planck scale per se. Therefore, one deals with
wavepackets supported in the momentum space far away from values of the mentioned
order. In addition, such bins are advisably inclined to use that are small in comparison
with characteristic spreading of typical wavepackets. Under these circumstances one is
able to use shifts along the q and κ axes.

The eigenvalue problem (16) is then replaced with

1
2π

+∆x/2∫
−∆x/2

η∗(x′)dx′
+∆q/2∫
−∆q/2

2 exp[i(x− x′)q]dq
1 + cos(2

√
βq)

= µ2 η∗(x) . (24)
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Separating explicitly the term assigned to β = 0, one obtains:

1
π

+∆x/2∫
−∆x/2

η∗(x′)dx′
{

sin
(
∆q(x− x′)/2

)
x− x′

+
1
2

+∆q/2∫
−∆q/2

(
2

1 + cos(2
√

βq)
− 1
)

exp[i(x− x′)q]dq

}
= µ2 η∗(x) . (25)

Let us take q = y∆q/2, s = ∆x∆q/(2π) and

κ = (x− x′)
∆q
2

= sπ(ξ − ξ ′) , (26)

then

1
2

+∆q/2∫
−∆q/2

(
2

1 + cos(2
√

βq)
− 1
)

exp[i(x− x′)q]dq =
β∆q3

8
I2(κ) + O(β2) , (27)

with In(κ) = (1/2)
∫ +1
−1 yn exp(iκy)dy for n = 1, 2, . . . . One can see from Equations (25)

and (27) that

+∆x/2∫
−∆x/2

(
sinκ

π(x− x′)
+

β∆q3

8π
I2(κ) + O(β2)

)
η∗(x′)dx′ = µ2 η∗(x) .

By changing the variable to ξ ′ = x′/∆x, one finally obtains:

∫ +1/2

−1/2

(
s sinκ
κ +

sβ∆q2

4
I2(κ) + O(β2)

)
u(ξ ′)dξ ′ = µ2 u(ξ) . (28)

Substituting µ2 = sλ again, Equation (28) is reduced to the form,(
K(0) + εK(1) + · · ·

)
u(ξ) = λ u(ξ) , (29)

with intent to use the formulas of Appendix A for ε = β∆q2/4,

K(0) f (ξ) =
∫ +1/2

−1/2

sinκ
κ f (ξ ′)dξ ′ ,

K(1) f (ξ) =
∫ +1/2

−1/2

κ2 sinκ + 2κ cosκ − 2 sinκ
κ3 f (ξ ′)dξ ′ .

It follows from Equation (A15) that the factor of β∆q2/4 in the first-order correction
reads as

〈
w̃0,K(1)w̃0

〉
=
∫ +1/2

−1/2
dξ
∫ +1/2

−1/2
dξ ′

κ2 sinκ + 2κ cosκ − 2 sinκ
κ3 w̃0(ξ) w̃0(ξ

′) , (30)

where

w̃0(ξ) = 1− s2π2

6

(
ξ2 − 1

12

)
+ O(s4)

due to Equation (A19). Again, a consideration is aimed to be restricted to the case of
sufficiently high resolution. The calculations show that

κ2 sinκ + 2κ cosκ − 2 sinκ
κ3 =

1
3
− s2π2

10
(ξ − ξ ′)2 + · · · , (31)
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and further,

〈
w̃0,K(1)w̃0

〉
=
∫ +1/2

−1/2
dξ
∫ +1/2

−1/2
dξ ′
{

1
3
− s2π2

10
(ξ − ξ ′)2 − s2π2

18

(
ξ2 − 1

12

)
− s2π2

18

(
ξ ′2 − 1

12

)
+ · · ·

}
=

1
3
− s2π2

60
+ O(s4) . (32)

Summing up, the result is obtained in the form,

µ2
max
s

= λ = 1 +
β∆q2

12
− s2π2

12

(
1
3
+

β∆q2

20

)
+ · · · . (33)

The latter allows us to probe how the generalized uncertainty principle affects ma-
jorization uncertainty relations for position and momentum.

3.3. Discussion

Thus, expressions have been obtained for the leading term in majorization uncer-
tainty relations in the presence of a minimal length. As is seen from the right-hand side
of Equation (33), for measurements with sufficiently high resolution the maximal eigen-
value grows with an increase in β. Hence, the lower bound of the uncertainty relation
(15) will decrease. This tendency is interesting in comparison with other uncertainty re-
lations. It also follows from Equation (33) that the effects of changing ∆x and ∆q on the
actual level of uncertainty differ. The position bin governs µmax only via s, whereas the
auxiliary-wavenumber bin ∆q does also through the terms involving β. At the fixed s,
changes of a typical size of momentum bins are more influential on the amount of un-
certainties. Certainly, these findings are stipulated by the initial choice of the deformed
commutation relation.

Substituting Equation (33) into Equation (15) leads straight to

H∞
(
px̂(ρ̂)

)
+ H∞

(
pκ̂(ρ̂)

)
≥ 2 ln 2− 2 ln

{
1 +
√

s
(

1 +
β∆q2

24
− s2π2

24

(
1
3
+

β∆q2

20

)
+ · · ·

)}
. (34)

It is instructive to compare Equation (34) with the uncertainty relation,

H1
(
px̂(ρ̂)

)
+ H1

(
pκ̂(ρ̂)

)
≥ ln

(
eπ

∆x∆κ

)
+
〈
ln(1 + βκ̂2)

〉
ρ̂

, (35)

proved in Ref. [45]. By H1(p), the Shannon entropy of the corresponding probability
distribution is meant. Since the left-hand side of Equation (34) includes the two min-
entropies, it differs from entropic uncertainty relations of Refs. [45,50]. Therein, the entropic
parameters are connected due to the use of inequalities between the corresponding norms
of a function and its Fourier transform. Hence, the obtained inequalities cannot involve
min-entropies for both the observables. In this regard, the discussion here completed
the consideration of the paper [45]. Another difference is that the right-hand side of
Equation (34) decreases with β, at least for high-resolution measurements. In contrast,
the correction term in the right-hand side of Equation (35) increases. This distinction
reflects that the min-entropies depend only on the maximal probabilities. Naturally, the
scope of Equation (34) is restricted to measurements with sufficiently high resolution. In
the meantime, only such measurements are recognized as capable to verify uncertainty
relations of various forms.

A natural question arises about the right-hand side of Equation (33). What are, in
order of magnitude, the terms depending on β? To answer the question, let us make
some plausible assumptions about the typical values of ∆x and ∆q. Surely, they are mainly
determined by the capabilities of modern experimental techniques. Any detailed discussion
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is beyond the scope of this paper. Instead, one can refer to the concrete experimental results
of the verification of the Heisenberg uncertainty principle [56]. On average, typical bins
can be estimated as ∆x ∼ 100 nm and ∆κ ∼ 107 1/m. The latter also holds for ∆q in view of
κ = tan(

√
βq)
/√

β and given that√
β ∼ `Pl = 1.616× 10−35 m .

The calculations then give s ∼ 1/(2π) ≈ 0.159 and

β∆q2

s2π2 ∼ 10−55 . (36)

This value characterizes a ratio of the second term to the third one in the right-hand
side of Equation (33). It is not surprising that the effects of the generalized uncertainty
principle are estimated as extremely small.

Direct observational evidence for a foamed structure of space-time at the Planck scale
seem to be currently unfeasible with an elementary particle as probe. In this way, the
theoretical results of the form of Equation (34) are also unable to assist the presence of a
minimal length in testing. Instead, paper [7] considered the use of a macroscopic probe for
exploring space-time “roughness” at the relevant scale. It was found that, within the given
level of ultrahigh vacuum and cryogenic technology, the proposed tabletop experiment
could already be sensitive sufficiently. A witness for space-time “roughness” is provided
the frequency of a certain event with a single photon turns out to be significantly less than
the expected level. Applications of uncertainty relations to experiments of such a kind
deserve to be studied in a separate investigation.

4. Conclusions

We have considered majorization uncertainty relations for position and momentum
measurements in the presence of a minimal length. In particular, the uncertainty relation in
terms of min-entropies was also formulated. In general, the proposed approach develops
the treatment of Ref. [33] in combination with the generalized uncertainty principle. It was
advisable from the physical viewpoint to focus on position and momentum measurements
with sufficiently high resolution. In this way, one has derived corrections to leading terms of
the majorization bound for the corresponding observables discretized into bins. Naturally,
the changes of interest are determined by the parameter β that controls the modified
commutation relation (1). The presented results allow us to reveal typical behavior and to
estimate an order of corrections induced by the presence of a minimal length.

The obtained expressions with β are closely related to the structure of the modified
commutation relation. These terms reveal some features that one could expect from the
physical viewpoint. It is natural enough that lower bounds on uncertainty quantifiers will
rather increase with the growth of β. The commutation relation (1) is indeed asymmetric in
handling with position and momentum. The correction terms reflect this property, and the
shortening of the momentum bins has a greater effect than the shortening of the position
ones. At the same time, all of the mentioned changes lie in a so narrow range that they
can hardly be probed within the capabilities of the modern experiment. A relative weight
of the correction terms was estimated at a level undetectable in practice. It is apparent
that a real successful experiment to show the presence a minimal length would be an
exceptional advance.
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Appendix A. Solution of the Eigenvalue Problem

It is useful to consider the eigenvalue problem in a form posed as

∫ +1/2

−1/2
k(ξ, ξ ′) u(ξ ′)dξ ′ = λ u(ξ) , (A1)

where the kernel is expanded as

k(ξ, ξ ′) = k(0)(ξ, ξ ′) + ε k(1)(ξ, ξ ′) + ε2k(2)(ξ, ξ ′) + · · · . (A2)

The case (18) is gained for ε = s2, k(0)(ξ, ξ ′) = 1, k(1)(ξ, ξ ′) = A(ξ − ξ ′)2 with
A = −π2/6, and so on. The operator in the left-hand side of Equation (A1) is a Hilbert–
Schmidt one, whenever ∫ +1/2

−1/2
dξ
∫ +1/2

−1/2
dξ ′

∣∣k(ξ, ξ ′)
∣∣2 < ∞ . (A3)

It is known that Hilbert–Schmidt integral operators are both continuous and com-
pact. The current study deals with symmetric real kernels, i.e., k(ξ, ξ ′) = k(ξ ′, ξ) and
k(ξ, ξ ′) = k(ξ, ξ ′)∗. Then, the integral operators of interest are self-adjoint.

For ε = 0, one obtains from Equation (17) the eigenvalue problem,

∫ +1/2

−1/2
w(ξ ′)dξ ′ = ν w(ξ) , (A4)

with the eigenvalues ν0 = 1 and ν1 = 0. The function w0(ξ) = 1 corresponding to ν0 = 1 is
normalized as ∫ +1/2

−1/2
w0(ξ)

2dξ = 1 . (A5)

The eigenvalue ν1 = 0 is degenerate, and there is a countably infinite set
{

wn(ξ)
}∞

n=1
of eigenfunctions such that

∫ +1/2

−1/2
wn(ξ)dξ = 0 ,

∫ +1/2

−1/2
wm(ξ)wn(ξ)dξ = δmn , (A6)

where δmn is the Kronecker delta. The first of these formulas implies 〈w0, wn〉 = 0 for
n = 1, 2, . . . as well. One can recall here the Legendre polynomials Pn(y) with the generat-
ing function,

1√
1− 2yt + t2

=
∞

∑
n=0

Pn(y) tn . (A7)

Taking y = 2ξ, one can herewith write

wn(ξ) =
√

2n + 1 Pn(2ξ) (n = 0, 1, 2, . . .) . (A8)

Apparently, the choice (A8) is not unique, but it is sufficient for the purposes here.
In general, the quantities of interest are represented by expansions,

λn = λ
(0)
n + ε λ

(1)
n + ε2λ

(2)
n + · · · , (A9)

un(ξ) = u(0)
n (ξ) + ε u(1)

n (ξ) + ε2u(2)
n (ξ) + · · · . (A10)
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For the problem (17), one has λ
(0)
n = δn0 and u(0)

n (ξ) = wn(ξ). One also deals with the
Hilbert–Schmidt operators of the form,

K(n) f (ξ) =
∫ +1/2

−1/2
k(n)(ξ, ξ ′) f (ξ ′)dξ ′ , (A11)

K = K(0) + εK(1) + ε2K(2) + · · · . (A12)

Let us write the total equation as(
K(0) + εK(1) + · · ·

)(
u(0)

n (ξ) + ε u(1)
n (ξ) + · · ·

)
=
(
λ
(0)
n + ε λ

(1)
n + · · ·

)(
u(0)

n (ξ) + ε u(1)
n (ξ) + · · ·

)
, (A13)

whence
K(1)u(0)

n (ξ) +K(0)u(1)
n (ξ) = λ

(1)
n u(0)

n (ξ) + λ
(0)
n u(1)

n (ξ) (A14)

in the first order. Due to self-adjointness, one finally obtains:

λ
(1)
n =

〈
u(0)

n ,K(1)u(0)
n
〉

. (A15)

For the problem (17), the first-order correction to the eigenvalue reads as

λ
(1)
n = (2n + 1)

∫ +1/2

−1/2
dξ
∫ +1/2

−1/2
dξ ′ k(1)(ξ, ξ ′) Pn(2ξ) Pn(2ξ ′) .

For n = 0, this formula gives

λ
(1)
0 =

∫ +1/2

−1/2
dξ
∫ +1/2

−1/2
dξ ′ k(1)(ξ, ξ ′) =

A
6

, (A16)

provided that k(1)(ξ, ξ ′) = A(ξ − ξ ′)2.
In order to examine Equation (29), one needs to know the corresponding eigenfunction

of the problem (17). For n = 0, the first-order correction to the eigenfunction is obtained
from 〈w0, u(1)

0 〉 = 0. The latter can be rewritten as

K(0)u(1)
0 (ξ) =

∫ +1/2

−1/2
u(1)

0 (ξ ′)dξ ′ = 0 , (A17)

since w0(ξ) = 1 and k(0)(ξ, ξ ′) = 1. Combining Equation (A14) with Equation (A17)
finally gives

u(1)
0 (ξ) = K(1)w0(ξ)− λ

(1)
0 w0(ξ) . (A18)

By k(1)(ξ, ξ ′) = A(ξ − ξ ′)2, one has:

u(1)
0 (ξ) = A

(
ξ2 +

1
12

)
− A

6
= A

(
ξ2 − 1

12

)
. (A19)
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