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Abstract: In this paper, we investigate the modified symmetric teleparallel gravity or f (Q) gravity,
where Q is the nonmetricity, to study the evolutionary history of the universe by considering the
functional form of f (Q) = αQn, where α and n are constants. Here, we consider the parametrization
form of the deceleration parameter as q = q0 + q1 z/(1 + z)2 (with the parameters q0 (q at z = 0),
q1, and the redshift, z), which provides the desired property for a sign flip from a decelerating to an
accelerating phase. We obtain the solution of the Hubble parameter by examining the mentioned
parametric form of q, and then we impose the solution in Friedmann equations. Employing the
Bayesian analysis for the Observational Hubble data (OHD), we estimated the constraints on the
associated free parameters (H0, q0, q1) with H0 the current Hubble parameter to determine if this
model may challenge the ΛCDM (Λ cold dark matter with the cosmological constant, Λ) limitations.
Furthermore, the constrained current value of the deceleration parameter q0 = −0.832+0.091

−0.091 shows
that the present universe is accelerating. We also investigate the evolutionary trajectory of the energy
density, pressure, and EoS (equation-of-state) parameters to conclude the accelerating behavior of
the universe. Finally, we try to demonstrate that the considered parametric form of the deceleration
parameter is compatible with f (Q) gravity.

Keywords: f (Q) gravity; accelerated expansion; deceleration parameter; EoS (equation-of-state)
parameter; cosmic chronometer dataset; observational constraint

1. Introduction

Recently, several cosmological observations [1–6] have supported the late-time cosmic
acceleration expansion of the universe. However, based on the same cosmological observa-
tion, it is estimated that dark energy (DE) and dark matter (DM) cover up 95–96% of the
universe’s composition, comprising mysterious dark components, the so-called dark matter
and dark energy, whereas baryonic matter covers up 4–5% of the content of the universe.
Presently, general relativity (GR) is believed to be the most successful theory of gravitation,
and its few gravitational tests have been discussed in Ref. [7]. However, it cannot provide a
satisfactory explanation for the dark energy and dark matter problem; hence, it may not be
regarded as the ultimate gravitational force theory for dealing with the current cosmological
problems. Several alternative approaches have been proposed in the literature over the last
several decades to overcome the current cosmological problems. Nowadays, the modified
theory of gravity is the most admirable candidate to solve the current difficulties (the DE
and DM problem) of the universe. One of the most prominent schemes to address the dark
content issue of the universe is the modification of GR called the f (R) theory of gravity,
where R is the Ricci scalar [8]. Some other modified theories are also developed to solve
this issue, such as the f (T ) theory, where T is the torsion [9,10]; the f (R, T) theory [11,12];
the f (R, Lm) theory, where Lm is the matter Lagrangian density [13,14]; the f (R, G) theory,
where G is the Gauss–Bonnet invariant [15,16]; and many more.

Jimenez et al. [17] recently proposed a novel proposal by considering a modification of
the symmetric teleparallel equivalent to GR called f (Q) gravity, where Q is a nonmetricity
scalar. The nonmetricity, Q, of the metric geometrically characterizes the variation in the
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length of a vector in parallel transport, and it represents the primary geometric variable ex-
plaining the features of a gravitational interaction. Recently, several studies were conducted
on f (Q) gravity. Mandal et al. studied cosmography [18] and the energy condition [19]
in nonmetric f (Q) gravity. For the purpose of examining an accelerated expansion of the
universe with the recent observations, Lazkoz et al. [20] examined several f (Q) gravity
models. Furthermore, Solanki et al. [21] studied the effect of bulk viscosity in the accelerat-
ing expansion of the universe in f (Q) gravity. Esposito et al. [22] examined exact isotropic
and anisotropic cosmological solutions using reconstruction techniques. Moreover, f (Q)
gravity easily overcomes the limits set by Big Bang Nucleosynthesis (BBN) [23]. Many
other studies have been completed within the context of the f (Q) gravity theory [24–29].
Although various theoretical approaches exist to explain the phenomenon of cosmic ac-
celeration, none are definitively known as the appropriate one. The current model of
late-time cosmic acceleration is known as reconstruction. This is the inverse method of
locating a suitable cosmological model. There are two kinds of reconstruction: parametric
reconstruction and non-parametric reconstruction. The parametric reconstruction relies
on estimating the model parameters from various observational data. It is also known
as the model-dependent approach. The main idea is to assume a specific evolution sce-
nario and then determine the nature of the matter sector or the exotic component that is
causing the alleged acceleration. Several authors have used this method to find a suitable
solution [30–32].

In this paper, we consider the parametrization form of the deceleration parameter
in terms of the redshift, z, as q(z) = q0 + q1z/(z + 1)2 (with the parameters q0 and q1),
which provides the desired property for the sign flip from a decelerating to an accelerating
phase and investigate the Friedmann–Lemaître–Robertson–Walker (FLRW) universe in the
framework of nonmetric f (Q) gravity by using the functional form of f (Q) as f (Q) = αQn,
where α and n are arbitrary constants. The present paper is arranged as follows. In Section 2,
we start with the basic f (Q) gravity formalism and develop the field equation for the FLRW
line element. In Section 3, we adopt the parametric form of a deceleration parameter and
then find the Hubble solution. In Section 4, we estimate the constraints on the associated
free parameters (H0, q0, q1) by employing the Bayesian analysis for the Observational
Hubble data (OHD). Then, we check the evolutionary trajectory of the energy density,
pressure, and the equation-of-state (EoS) parameters to conclude the accelerating behavior
of the universe in Section 5. Lastly, we conclude our result in Section 6.

2. f (Q) Gravity Formalism

The most generic action of nonmetric f (Q) gravity is given by [17]

S =
∫ [1

2
f (Q) + Lm

]√
−gd4x, (1)

where f is an arbitrary function of nonmetricity scalar Q, Lm is the matter Lagrangian
density, and g is a determinant of the metric tensor, gαβ, where four-dimensional tensor
indices are denoted by lower-case Greek letters and take the values 0 (time), 1, 2, 3 (space).

The definition of nonmetricity tensor in f (Q) gravity is

Qσαβ = ∇σ gαβ (2)

and the corresponding traces are

Qσ = Q α
σ α , Q̃σ = Qα

σα . (3)

Moreover, the superpotential tensor Pλ
µν is given by

4Pσ
αβ = −Qσ

αβ + 2Q σ
(α β) −Qσgαβ − Q̃σgαβ − δσ

(α Q β), (4)



Physics 2022, 4 1405

Hence, the nonmetricity scalar can be obtained as

Q = −QσαβPσαβ. (5)

The gravitational field equation derived by varying the action (1) with regard to the
metric tensor is presented below:

2√−g
∇σ

(
fQ
√
−g Pσ

αβ

)
+

1
2

f gαβ + fQ

(
PασλQ σλ

β − 2QσλαPσλ
β

)
= −Tαβ, (6)

where Tαβ ≡ − 2√−g
δ(
√−g)Lm

δgαβ and fQ = d f /dQ.
Similarly, by varying the action (1) with regard to the connection, the following result

can be obtained:
∇α∇β

(
fQ
√
−g Pαβ

σ

)
= 0. (7)

We shall consider a spatially flat FLRW universe throughout the investigation, whose
metric is given by

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (8)

Here, a(t) is a cosmic scale factor. The nonmetricity scalar Q = 6H2 obtained for
the above FLRW metric, where H = ȧ/a is the Hubble parameter, and the dot denotes
the time derivative. In this case, the energy-momentum tensor of a perfect fluid, Tαβ =
(p + ρ)uαuβ + pgαβ, where p and ρ are pressure and energy density, respectively, and uα

denotes the four-velocity vector of the fluid.
For the metric (8), the corresponding Friedmann equations are [17]:

3H2 =
1

2 fQ

(
−ρ +

1
2

f
)

, (9)

Ḣ + 3H2 +
ḟQ

fQ
H =

1
2 fQ

(
p +

1
2

f
)

. (10)

Using the preceding Friedmann equations in the context of f (Q) gravity, one may
now study possible cosmological applications.

3. Parametrization of the Deceleration Parameter

The parametrization of the deceleration parameter q plays a significant role in deter-
mining the nature of the universe’s expanding rate. In this regard, some research employed
various parametric forms of deceleration parameters, while other research investigated
non-parametric forms. These methods have been widely discussed in the literature to
characterize the concerns with cosmological investigations, such as the initial singularity
problem, the problem of all-time decelerating expansion, the horizon problem, Hubble
tension, and so on [33–35]. Motivated by this fact, in this paper, we consider the simplest
parametric form of the deceleration parameter q in terms of redshift z as [36]

q(z) = q0 +
q1 z

(z + 1)2 , (11)

where q0 = q(z = 0) indicates the present value of deceleration parameter, and q1 depicts
the variation in the deceleration parameter as a function of z. Certainly, one of the most
well-liked parametrizations of the dark energy equation of state served as inspiration for
this parametric form for q(z) [37], and it seems to be versatile enough to fit the q(z) behavior
of a broad class of accelerating models.
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The derivative of the Hubble parameter with respect to time t is Ḣ = −(1 + q)H2.
Then, there exists a relation between the Hubble parameter and the deceleration parameter
in virtue of an integration:

H(z) = H0 exp
[∫ z

0
(1 + q(x))d ln(1 + x)

]
, (12)

where x is a changing variable. By using Equation (11) in Equation (12), we obtained the
Hubble parameter in terms of redshift z as

H(z) = H0(z + 1)q0+1e
q1z2

2(z+1)2 , (13)

where H0 is the current Hubble constant (at z = 0). Furthermore, utilizing the relation-
ship between redshift and the universe’s scale factor a(t) = 1

1+z , we may describe the
relationship between cosmic time and redshift as

d
dt

=
dz
dt

d
dz

= −(1 + z)H(z)
d
dz

. (14)

Using Equations (13) and (14) in Fridemann equations, we obtained the energy density
ρ, pressure p, and equation of state parameter ω in terms of redshift z as

ρ = α
(
−2n−1

)
3n(2n− 1)

(
H2

0 (z + 1)2q0+2 e
q1z2

(z+1)2

)n

, (15)

p = α6n−1

(
H2

0(z + 1)2q0+2e
q1z2

(z+1)2

)n(
−

2n
(
q0(z + 1)2 + z(q1 + z + 2) + 1

)
(z + 1)2

−
4(n− 1)n(z + 1)−q0−3 e

− q1z2

2(z+1)2
(
q0(z + 1)2 + z(q1 + z + 2) + 1

)
H0

+ 6n− 3

, (16)

w = −
− 4 n (n−1)(z+1)(−q0−3) e

− q1z2

2(z+1)2 (q0(z+1)2+z(q1+z+2)+1)
H0

− 2n(q0(z+1)2+z(q1+z+2)+1)
(z+1)2 + 6n− 3

3(2n− 1)
, (17)

respectively. The behavior and essential cosmological properties of the model described in
Equation (11) are wholly dependent on the model parameters (q0, q1). In the next section,
we constraint the model parameter (H0, q0, q1) by using the recent observational datasets
to investigate the behavior of the cosmological parameters.

4. Observational Constraints and Cosmological Applications

Now, one can deal with the various observational datasets to constraint the parameters
H0, q0, q1. In order to study the observational data, we use the standard Bayesian
technique, and to obtain the posterior distributions of the parameters, we employ a Markov
Chain Monte Carlo (MCMC) method. Moreover, we use the emcee package to perform the
MCMC analysis. Here, in this study, we used the Hubble measurements (i.e., Hubble data)
to complete the stimulation. The following likelyhood function is used to find the best fits of
the parameters;

L ∝ exp(−χ2/2), (18)

where χ2 is the pseudo chi-squared function [38]. The χ2 functions for various datasets are
discussed below.
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Cosmic Chronometer (CC) Sample

Recently, a list of Hubble measurements in the redshift range 0.07 ≤ z ≤ 1.965
were compiled by Singirikonda and Desai [39]. This H(z) dataset was measured from
the differential ages ∆t of galaxies [40–43]. The complete list of datasets is presented in
Ref. [39]. To estimate the model parameters, we use the chi-squerd function which is
given by

χ2
CC(ps) =

31

∑
i=1

[Hth(ps, zi)− Hobs]
2

σ2
H(zi)

, (19)

where Hth(ps, zi), Hobs(zi) represents the Hubble parameter with the model parameters,
observed Hubble parameter values, respectively. σ2

H(zi)
is the standard deviation obtained

from observations. The marginalized constraining results are displayed in Figure 1. In
Figure 2, the profile of our model against Hubble data is shown.

66 67 68 69 70
H0

3

4

5

q 1

1.0

0.8

0.6

q 0

H0 = 67.69 ± 0.68

1.0 0.8 0.6
q0

q0 = 0.832 ± 0.091

3 4 5
q1

q1 = 4.02 ± 0.45

Hubble

Figure 1. The marginalized constraints on the coefficients in the expression of Hubble parameter,
H(z), in Equation (13) are shown by using the Hubble sample [39].
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Figure 2. The evolution of Hubble parameter, H(z), with respect to redshift z. The red line represents
our model and dashed line indicates the ΛCDM model with the pressureless matter parameter,
Ωm0 = 0.3 [44] and the dark energy density parameter, ΩΛ0 = 0.7 [44]. The dots show the Hubble
dataset with error bars [39].

5. Cosmological Parameters

One of the cosmological parameters that is significant in explaining the state of the
expansion of our universe is the deceleration parameter q. When the value of the decelera-
tion parameter is strictly less than zero, it shows the accelerating behavior of the universe,
and when it is non-negative, the universe decelerates. Furthermore, the observational data
employed in this study revealed that our current universe is in an accelerating phase, with
the present value of the deceleration parameter becoming q0 = −0.832+0.091

−0.091. This type of
result is seen in the existing literature [45,46].

Figure 3 indicates that the energy density of the universe increases with a redshift
and still seems to as the universe expands, but Figure 4 demonstrates that the pressure
decreases with the redshift and has large negative values throughout the cosmic evolution.
The present cosmic acceleration induces this isotropic pressure behavior.

The EoS parameter w is also helpful in categorizing the decelerating and accelerating
behavior of the universe, and it is defined as w = p/ρ. The EoS categorizes three possible
states for the accelerating universe which are the quintessence (−1 < w < − 1

3 ) era, phan-
tom (w < −1) era, and cosmological constant (w = −1). Figure 5 shows the evolutionary
trajectory of the EoS parameter, and it can be seen that the whole trajectory lies in the
quintessence era. From Figure 5, One can see that w < 0 and the current value of the EoS
parameter is w0 = −0.9+0.08

−0.12. Our result aligned with some of the studies [32,47], which
indicates an accelerating phase.
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Figure 3. Evolution trajectory of the energy density, ρ (15), versus z with constraint values from the
Hubble datasets [39] and α = −0.01, n = 1.2.
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Figure 4. Evolution trajectory of the pressure, p (16), versus z with constraint values from the Hubble
datasets [39] and α = −0.01, n = 1.2.
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Figure 5. Evolution trajectory of the equstion-of-state parameter, w (17), versus z with constraint values
from the Hubble datasets [39] and α = −0.01, n = 1.2.

6. Conclusions

The current scenario of the accelerated expansion of the universe has grown increas-
ingly fascinating over time. Numerous dynamical DE models and modified gravity theories
have been employed in various ways to find a suitable description of the accelerating uni-
verse. In this paper, we explored the accelerated expansion of the universe by adopting the
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parametric form of the deceleration parameter in the framework of f (Q) gravity, where Q
is the nonmetricity scalar depicted in the gravitational interaction.

We have examined the functional form of f (Q) as f (Q) = αQn, where α and n are the
arbitrary constants, and the parametrization form of the deceleration parameter as q = q0 +
q1 z/(1 + z)2, where (q0, q1) are the model parameters. By utilizing the above parametric

form, we find out the solution of the Hubble parameter as H(z) = H0(z + 1)q0+1e
q1z2

2(z+1)2 .
Furthermore, we used the Hubble datasets containing 31 data points to determine the
best-fit values for the model parameters (H0, q0, q1) as H0 = 67.69± 0.68, q0 = −0.832±
0.091, and q1 = 4.02 ± 0.45. Here, the q0 shows the current value of the deceleration
parameter, which depicts that the present expansion of the universe is accelerating. We
analyzed the evolution of the various cosmological parameters corresponding to these
best-fit values of the model parameters. The EoS parameter exhibits negative behavior and
lies in the quintessence era, which depicts that the present universe is in an accelerating
phase. Figure 3 indicates that the energy density of the universe increases with a redshift
and still seems to as the universe expands, but Figure 4 demonstrates that the pressure
decreases with the redshift and has large negative values throughout the cosmic evolution.
Lastly, we conclude that the considered parametric form of the deceleration parameter in
the framework of f (Q) gravity theory plays an important role in driving the universe’s
accelerated expansion.
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