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Abstract: Nonuniform plasma across an imposed magnetic field, such as those present in the so-
lar atmosphere, can support collective Alfvénic oscillations with a characteristic damping time.
The damped transverse oscillations of coronal loops are an example of this process. In ideal magneto-
hydrodynamics (MHD), these transient collective motions are associated with quasi-modes resonant
in the Alfvén continuum. Quasi-modes live in a non-principal Riemann sheet of the dispersion
relation, and so they are not true ideal MHD eigenmodes. The present study considers the illustrative
case of incompressible surface MHD waves propagating on a nonuniform interface between two
uniform plasmas with a straight magnetic field parallel to the interface. It is explored how the ideal
quasi-modes of this configuration change when the width of the nonuniform transition increases. It is
found that interfaces with wide enough transitions are not able to support truly collective oscillations.
A quasi-mode that can be related with a resonantly damped surface MHD wave can only be found in
interfaces with sufficiently thin transitions.
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1. Introduction

The solar atmosphere is a highly structured plasma because of the magnetic field.
In the atmospheric plasma, magnetic flux tubes and discontinuities appear naturally [1],
which act as waveguides for the ubiquitous magnetohydrodynamic (MHD) waves that are
reported by observations [2].

The simplest model for a waveguide in the solar atmosphere is an interface between
two plasmas of different densities with a straight and constant magnetic field parallel to
the interface. Surface MHD waves appear in such a configuration as perturbations that
propagate on the interface and simultaneously disturb the two plasmas on both sides of
the interface. The properties of such waves have been studied in detail [3–5]. When the
interface is represented by an abrupt density jump, surface MHD waves are undamped
in ideal MHD. However, if the abrupt jump is replaced by a continuous nonuniform
transition, surface MHD waves can become resonantly absorbed in the Alfvén continuum.
In ideal MHD, resonant waves are damped quasi-modes, i.e., solutions with complex
frequencies that are found in a non-principal Riemann sheet of the dispersion relation [6,7].
This collision-less damping is physically caused by the transfer of energy from the global
oscillation to localized Alfvén waves, which oscillate at their own spatially dependent
Alfvén frequency. As a result, plasma motions in the nonuniform interface lose coherence
as time passes, a process also known as phase mixing [8,9]. Resonant absorption and phase
mixing are two intimately linked processes that represent two aspects of an underlying
physical mechanism: the cascade of wave energy from macroscopic scales to the dissipative
scales in nonuniform plasmas [9,10].

The oscillation frequency and resonant damping rate of surface MHD waves has
analytically been derived under the assumption of a thin nonuniform transition [7,11–13].
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It is shown that the frequency is approximately the same as in the abrupt interface, while
the damping rate is proportional to the thickness of the nonuniform transition. However,
little is known of the modifications suffered by the surface MHD waves when the width
of the transition is not small compared with the wavelength [14–16]. The goal of this
paper is to explore how the ideal quasi-modes of the nonuniform interface, which can be
interpreted as the descendants of the surface waves, change when the thickness of the
transition increases. For simplicity and to ease the mathematical analysis, the study is
restricted to the case of incompressible waves.

2. Method

The equilibrium configuration used here is composed of two uniform, infinite, and
static plasmas separated by a continuous transition or interface of arbitrary thickness l.
In what follows, Cartesian coordinates are used and the x-direction is set normal to the
interface, so that the centre of the transition coincides with the plane x = 0. Accordingly,
the density, ρ, is prescribed as

ρ(x) =


ρi, if x ≤ −l/2,
ρtr(x), if −l/2 < x < l/2,
ρe, if x ≥ l/2,

(1)

where ρi and ρe represent the uniform densities on both sides of the interface and ρtr(x)
represents a continuous profile that connects the two uniform plasmas. At the present stage,
we leave ρtr(x) unspecified. On the other hand, a straight and uniform magnetic field is
assumed along the z-direction, namely B = Bêz, with B the same constant everywhere.

The incompressible MHD equations are linearized and linear MHD waves superim-
posed on the equilibrium state are studied here. Since the equilibrium is invariant in both
the y- and z-directions, one can restrict to studying the individual Fourier components of
the linear perturbations in these directions. Hence, the perturbations are put proportional
to exp(ikyy + ikzz), where ky and kz are the wavenumber components along the y- and
z-directions, respectively. Then, the incompressible MHD waves are governed by a single
partial differential equation for the component of the Lagrangian displacement normal to
the interface, ξx, namely

∂

∂x

(
LA

∂ξx

∂x

)
− k2LAξx = 0, (2)

where k2 = k2
y + k2

z and LA is the Alfvén operator, defined here as

LA = ρ(x)
∂2

∂t2 +
k2

zB2

µ0
. (3)

Equation (2) is the main equation of this investigation. It governs the spatial and
temporal behaviour of the interface’s incompressible perturbations and was already derived
in the past in, e.g., Refs. [4,9,17], among many others. Alternatively, Equation (2) can be
recast in the form,

LALSξx +
∂ρ(x)

∂x
∂2

∂t2
∂ξx

∂x
= 0, (4)

where LS is here defined as the surface wave operator:

LS ≡
∂2

∂x2 − k2. (5)

Equation (4) is the Cartesian version of the governing equation derived in Ref. [10]
for the case of incompressible MHD waves in a nonuniform cylindrical flux tube. When
the density is nonuniform so that ∂ρ(x)/∂x 6= 0, Equation (4) plainly evidences that the
eigenfunctions of the Alfvén operator LA, i.e., Alfvén modes, are unavoidably coupled
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with those of the surface wave operator LS, i.e., surface modes. Thus, the resulting waves
have necessarily mixed properties [18].

3. Results
3.1. Finding the Dispersion Relation

Let us seek solutions to Equation (2) in the form of global, collective modes of the
plasma. In addition, let us assume that the whole plasma oscillates with a common
frequency, ω. Hence, the temporal dependence is put proportional to exp(−iωt). With this
condition, the Alfvén operator becomes

LA = −ρ(x)
(

ω2 −ω2
A(x)

)
, (6)

where ω2
A(x) is the position-dependent Alfvén frequency squared, namely

ω2
A(x) = k2

z
B2

µ0ρ(x)
= k2

zv2
A(x), (7)

with vA(x) the Alfvén velocity. After some algebra, Equation (2) becomes

∂2ξx

∂x2 +
∂

∂x
[
ρ(x)

(
ω2 −ω2

A(x)
)]

ρ(x)
(
ω2 −ω2

A(x)
) ∂ξx

∂x
− k2ξx = 0. (8)

We note that the second term on the left-hand side of Equation (8) diverges at the
specific position where ω2 = ω2

A(xA). This is the Alfvén resonance and x = xA is the
resonance position. Mathematically, the presence of the Alfvén resonance introduces an
imaginary part to the quasi-mode frequency, ω. Physically, the presence of the Alfvén
resonance causes the damping of the collective oscillation of the plasma.

Outside the nonuniform region, i.e., for |x| > l/2, the density is uniform and
Equation (8) simplifies to

∂2ξx

∂x2 − k2ξx = 0, (9)

whose solutions for perturbations vanishing at x → ±∞, as consistent with a surface mode,
are in the form of exponentials that decay away from the interface, namely

ξx =

{
Ai exp(kx), if x < −l/2,
Ae exp(−kx), if x > l/2,

(10)

where Ai and Ae are constants. The perturbations in the left plasma, x < −l/2, and those
in the right plasma, x > l/2, need to be connected through the nonuniform interface,
−l/2 < x < l/2. To do so, the solution to the full Equation (8) needs to be found in the
nonuniform transition.

There are a number of possible ways to connect the perturbations through the nonuni-
form layer. A usual approach relies on the so-called thin boundary approximation, i.e.,
assuming kl � 1. In the thin boundary approximation, the jumps of the perturbations
at the resonance position are used as connection formulae across the entire nonuniform
transition (see, e.g., Refs. [19,20]). Actually, this convenient method avoids finding solutions
of Equation (8) in the nonuniform transition, since only the jumps of the perturbations are
required. Another method, valid for arbitrary thickness of the nonuniform layer, consists in
expressing the solution of Equation (8) as a Frobenius series around the resonance position
and considering enough terms in the series for their convergence radius to cover the whole
nonuniform region (see, e.g., Refs. [14,21]). A third alternative is trying to find the exact
analytic solution of Equation (8), which is only possible for specific density profiles (see,
e.g., Refs. [15,17,22]). Here, this last approach is followed. Although the obtained solution
will only be valid for the chosen density profile, it will suffice to perform a rather general
discussion of the underlying physics.
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Let us consider hereafter a linear variation for the density in the transitional layer,

ρtr(x) =
ρi + ρe

2
− ρi − ρe

l
x, (11)

which allows us to rewrite Equation (8) as

∂2ξx

∂x2 +
1

x− xA

∂ξx

∂x
− k2ξx = 0, (12)

where the Alfvén resonance position, xA, is given by

xA =
l
2

ρi + ρe

ρi − ρe

ω2 −ω2
k

ω2 . (13)

Here, ωk is the so-called kink frequency given by

ω2
k ≡

ρiω
2
A,i + ρeω2

A,e

ρi + ρe
= k2

z
2B2

µ0(ρi + ρe)
, (14)

where ωA,i and ωA,e denote the Alfvén frequencies in the left and right uniform
plasmas, respectively.

Equation (12) is a modified Bessel equation of order 0. The general analytic solution,
which is applicable when −l/2 < x < l/2, is

ξx = AKK0[k(x− xA)] + AI I0[k(x− xA)], (15)

where K0 and I0 are the modified Bessel functions of order 0 (see [23]), and AK and AI are
constants. As noted before, the solution should diverge in the nonuniform region where
x = xA because of the Alfvén resonance. Indeed, the singularity in ξx is present due to the
K0 function. A series expansion of ξx in the vicinity of x = xA reveals that the dominant
term is given by a logarithmic singularity, namely

ξx ∼ ln(x− xA), at x ≈ xA. (16)

If a different density profile was adopted, the solution would no longer be in the form
of modified Bessel functions, but the logarithmic singularity would necessarily remain
enclosed somehow in the solution. This logarithmic singularity would explicitly appear if
the solution was expressed with the method of Frobenius [21]. The presence of a logarithmic
singularity in ξx is the key ingredient to describe the resonant absorption of the plasma
collective motions into the Alfvén continuous spectrum [24].

Now, let us consider together the solutions in the uniform plasmas (Equation (10))
and in the nonuniform transition (Equation (15)). Then, the continuity of ξx and ∂ξx/∂x at
x = ±l/2 are imposed. This gives us a system of four algebraic equations for the constants
Ai, AK, AI, and Ae. The dispersion relation is obtained from the condition that there is a
nontrivial solution of the system. The intermediate steps are omitted. The final expression
of the dispersion relation is

K1(ζi) + K0(ζi)

I1(ζi)− I0(ζi)
=

K1(ζe)− K0(ζe)

I1(ζe) + I0(ζe)
, (17)

where K1 and I1 are the modified Bessel functions of order 1, and ζi and ζe are defined as

ζi = −k
(

l
2
+ xA

)
= −kl

ρi

ρi − ρe

ω2 −ω2
A,i

ω2 , (18)

ζe = k
(

l
2
− xA

)
= −kl

ρe

ρi − ρe

ω2 −ω2
A,e

ω2 . (19)
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No restrictions are imposed on the thickness of the nonuniform transition, so that
Equation (17) is valid for arbitrary values of l. We also note that Equation (17) is an equation
for the quasi-mode frequency, ω, which is hidden within the definitions of ζi and ζe (see
Equations (18) and (19)).

3.2. Thin Transition: Analytic Approximations

Equation (17) can be solved numerically for arbitrary values of l. However, analytical
approximations can be obtained by considering the case of a sharp, but still continuous,
transition in density, so that the nonuniform interface is thin. The transitional layer is
assumed to be thin when kl � 1, which means that the width of the interface is a small
fraction of the wavelength. By performing a first-order expansion of the modified Bessel
functions in Equation (17) with respect to the small parameter kl, we obtain the dispersion
relation in the thin boundary (TB) limit, namely

ρi

(
ω2 −ω2

A,i

)
+ ρe

(
ω2 −ω2

A,e

)
− kl

ρiρe

ρi − ρe

(
ω2 −ω2

A,i

)(
ω2 −ω2

A,e

)
ω2 ln

 ρi

(
ω2 −ω2

A,i

)
ρe

(
ω2 −ω2

A,e

)
 = 0. (20)

In the case of an abrupt jump in density, l = 0, and Equation (20) simplifies to

ρi

(
ω2 −ω2

A,i

)
+ ρe

(
ω2 −ω2

A,e

)
= 0, (21)

which can be solved exactly, namely

ω2 =
ρiω

2
A,i + ρeω2

A,e

ρi + ρe
= ω2

k . (22)

The resulting frequency for the incompressible surface MHD wave is a sort of weighted
average of the Alfvén frequencies at both sides of the interface, where the respective
densities are the weights of the average. This is also the frequency of the compressible
surface MHD waves propagating nearly perpendicularly to the magnetic field (see, e.g.,
Ref. [4]) and the frequency of transverse kink and fluting waves in thin magnetic cylinders
(see, e.g., Refs. [25,26]).

Returning to Equation (20), let us note the presence of a logarithmic function in the
term proportional to kl. This logarithmic term is the remnant of the K0 and K1 functions of
the general dispersion relation (Equation (17)). Due to the presence of the logarithmic term,
the dispersion relation is a multivalued function with branch points at ω = ±ωA,i and
ω = ±ωA,e. To make the dispersion relation univalued, the branch points can be connected
in the complex ω-plane with branch cuts, as explained in, e.g., Refs. [7,17,22].

One expects quasi-modes to have complex frequencies, namely ω = ωR + iωI, where
ωR and ωI are the real and imaginary parts of ω, respectively. When l = 0, the frequency
is real and so the surface waves are undamped (Equation (22)). Hence, if the nonuniform
transition is thin, one may assume that the damping is weak, i.e., |ωI| � |ωR|, and use
Equation (10.87) from [22] to express the logarithm in Equation (20) as

ln

 ρi

(
ω2 −ω2

A,i

)
ρe

(
ω2 −ω2

A,e

)
 ≈ ln

∣∣∣∣∣∣
ρi

(
ω2 −ω2

A,i

)
ρe

(
ω2 −ω2

A,e

)
∣∣∣∣∣∣+ sign(ωR)sign(ωI)πi + 2nπi, (23)

where n denotes the order of the Riemann sheet. Due to resonant damping, ωI < 0, and one
shall take ωR > 0. The first term on the right-hand side of Equation (23) complicates matters
if we aim to find an analytic expression for ω. To approximate this term, the following
reasonable assumption is made. The term proportional to l in Equation (20) is assumed to
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be small when the transitional layer is thin. Hence, the result for l = 0 (Equation (21)) is
used to approximate

ρi

(
ω2 −ω2

A,i

)
≈ −ρe

(
ω2 −ω2

A,e

)
, (24)

in the first term on the right-hand side of Equation (23), and therefore,

ln

∣∣∣∣∣∣
ρi

(
ω2 −ω2

A,i

)
ρe

(
ω2 −ω2

A,e

)
∣∣∣∣∣∣ ≈ ln(1) = 0. (25)

Using this last result in Equation (20), one obtains:

ρi

(
ω2 −ω2

A,i

)
+ ρe

(
ω2 −ω2

A,e

)
−i(2n− 1)πkl

ρiρe

ρi − ρe

(
ω2 −ω2

A,i

)(
ω2 −ω2

A,e

)
ω2 = 0, (26)

As anticipated, Equation (26) has no physically acceptable solutions on the principal
Riemann sheet, i.e., when n = 0, because complex eigenvalues do not exist in ideal MHD
(see, e.g., Refs. [6,7,22]). To find the damped quasi-mode, we take n = 1. According to [6],
where the Laplace transform is used. to analytically solve the initial-value problem, the
zero of the dispersion relation found on the n = 1 sheet is the one that has the dominant
contribution at intermediate times after the initial stages dominated by the excitation but
before the collective oscillation has already decayed. On the other hand, the isolated
eigenmode found in the dissipative MHD spectrum in the limit of small dissipation [27],
which corresponds to the global mode, has the same real and imaginary parts of the
frequency as the ideal quasi-mode found on the n = 1 sheet. Additionally, the results from
full numerical, time-dependent simulations [28] show that the period and decay rate of the
global oscillation obtained from the simulations match those predicted by the quasi-mode
on the n = 1 sheet. Equation (26) becomes

ρi

(
ω2 −ω2

A,i

)
+ ρe

(
ω2 −ω2

A,e

)
−iπkl

ρiρe

ρi − ρe

(
ω2 −ω2

A,i

)(
ω2 −ω2

A,e

)
ω2 = 0. (27)

Now, let us write the frequency as ω = ωR + iωI. This expression is used in
Equation (27). Since weak damping is assumed, terms with ω2

I and higher powers are
neglected. After some algebraic manipulations, one finally obtains the approximate expres-
sions for ωR and ωI, namely

ωR ≈ ωk, (28)

ωI ≈ −π

8
kl

ρi − ρe

ρi + ρe
ωk. (29)

The real part of the frequency, ωR, is the same as in the l = 0 case (Equation (22)). In
turn, Equation (29) gives the same damping term found previously by, e.g., Refs. [6,11,13].
Remarkably, this is also the same expression as Equation (79b) of [20] for surface waves in
a cylinder if in their expression a = l/2 and m/R is replaced by k. Equation (29) predicts a
linear dependence of ωI with kl, so that ωI monotonically decreases when kl increases. So,
the results already obtained in the past with different methods are consistently recovered.
One must keep in mind that Equations (28) and (29) are only strictly valid when kl � 1. The
generalization of these approximations to the case of thick transitions may be misleading,
as shown later.
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3.3. Transition of Arbitrary Thickness: Numerical Results

For arbitrary kl, one has to solve the general dispersion relation (Equation (17)).
This must be carried out numerically. As in the case with kl � 1, no solutions exist
on the principal Riemann sheet, so the n = 1 Riemann sheet is considered to find the
quasi-mode complex frequency. Specifically, this is accomplished by considering how the
logarithmic terms enclosed in the series expansions of K0 and K1 jump when crossing the
resonance position.

Figure 1a shows the real part of the frequency as a function of kl. When kl � 1, one
finds a solution with ωR ≈ ωk, as expected according to the analytic approximations and
to be called the ‘q-mode’ after the ‘quasi-mode’. Unexpectedly, there is another solution
that appears only when l 6= 0. The presence of this other solution was not predicted by the
analytic approximations. The real part of the frequency of this additional solution grows
from zero as l increases and, for this reason, it is labelled as the ‘l-mode’. Certainly, the
l-mode owes its existence to the presence of the nonuniform transition. As kl increases,
the q-mode and the l-mode eventually converge, and two different solutions or branches
emerge afterwards. For the set of parameters used in Figure 1a, this happens around
kl ≈ 0.45. The behaviour of ωR of the two new branches is strikingly different. In the case
of the lower branch, its ωR tends to ωA,i when kl � 1. For this reason, the lower branch
is labelled as the ‘i-mode’. Conversely, the real part of the frequency of the upper branch
tends to ωA,e when kl � 1, so the upper branch is labelled as the ‘e-mode’. The q-mode,
which is the descendent of the surface wave of the abrupt interface, ceases to exist as such
when it collides with the l-mode and the i- and e-branches subsequently emerge. This
suggests that an interface with a sufficiently thick transitional layer is not able to support a
global collective mode. Below, more arguments in support of this idea are given.

To shed more light on the behaviour of the solutions, let us turn now to ωI. Figure 1b
displays ωI as a function of kl. For the q-mode, the behaviour of ωI when kl � 1 is again
correctly described by the analytical formula for a thin transitional layer. Before the q-mode
and the l-mode merge, it is found that the q-mode ωI increases (in absolute value) with kl.
The agreement between the approximate linear dependence with kl and the full result is
good enough when kl . 0.2.
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i-mode

e-mode

l-mode

q-mode

ωAi
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ωk
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(a)

i-mode
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k
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i-mode

e-mode

l-mode

q-mode

Q = 1/2
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1
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100

1000

k l

Q

(c)

Figure 1. Real part (a), imaginary part (b), and quality factor (c) of the solutions versus kl. The solid
lines are the numerical results of the dispersion relation (Equation (17)), and the dashed brown lines
are the analytic results for thin transitions (Equations (28) and (29)). The two horizontal dashed
red lines in panel (a) denote ωA,i and ωA,e. The horizontal dashed red line in panel (c) denotes
Q = 1/2. The blue circles in panels (a,c) mark the entering of the l-mode in the Alfvén continuum.
Frequencies are normalized to ωk. ρi/ρe = 2, kL = 1, and kzL = 0.1 are used here, where L is a
normalization length.

On the other hand, the nature of the l-mode becomes even more puzzling when
one realizes that it is a strongly attenuated solution. This fact can be better visualized in
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Figure 1c, which displays the quality factor, Q, of the solutions as a function of kl. The
quality factor measures the efficiency of the damping and is defined as

Q =
1
2

∣∣∣∣ωR

ωI

∣∣∣∣. (30)

Modes are overdamped when Q < 1/2. An overdamped mode decays in a shorter
timescale than its own period, which means that overdamped modes do not represent
actual oscillations in the plasma but very short-lived motions. If a single period cannot be
completed, the plasma motion can hardly be called an oscillation. Initially, the l-mode is
heavily overdamped, and so it does not represent an actual oscillation. As kl increases, the
l-mode quality factor increases until it crosses the critical value Q = 1/2. It turns out that
this happens, precisely, when the real part of the frequency of l-mode coincides with the
lowest Alfvén frequency, i.e., ωR = ωA,i, so that l-mode enters inside the Alfvén continuum
(see the blue circles in panels a and c of Figure 1). From there on, and until it merges with
the q-mode, the l-mode is another oscillatory solution that lives in the Alfvén continuum.

After q- and l-modes collide and the i- and e-modes subsequently emerge, the situation
is as follows. The imaginary part of the frequencies of both the i- and e-modes decreases
(in absolute value) and then tends to zero for kl → ∞. The quality factor of the e-mode is
always smaller than that of the i-mode. Essentially, this is a consequence of the e-mode
having a larger |ωI|.

Although the physical interpretation of the q-mode is straightforward, it is the quasi-
mode that descends from the undamped surface mode, and understanding the nature of
the l-, i- and e-modes is more challenging. To further explore the nature of the solutions,
Figure 2 displays the real part of their corresponding Lagrangian displacement, ξx, in two
cases, when kl = 0.2 and when kl = 1. These two values of kl are chosen as representatives
to the scenarios before and after the merging of the q- and l-modes. The solutions when
kl = 0.2 are the q- and l-modes, while the solutions when kl = 1 are the i- and e-modes.
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Figure 2. Real part of ξx (in arbitrary units) of the solutions: (a) q-mode for kl = 0.2, (b) l-mode for
kl = 0.2, (c) i-mode for kl = 1, and (d) e-mode for kl = 1. The two vertical dashed red lines denote
the boundaries of the nonuniform region. ρi/ρe = 2, kL = 1, and kzL = 0.1 are used here, where L is
a normalization length. See text for details.
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The perturbations of the q-mode when kl = 0.2 retain the shape expected from
a surface wave, with the additional presence of the jump in ξx due to the logarithmic
Alfvénic singularity. The q-mode is an even (symmetric) mode as the surface wave for
l = 0 should necessarily satisfy the physical requirement that ξx must be continuous at the
abrupt interface. However, when l 6= 0, the hard requirement that ξx must necessarily be
an even function no longer applies. The two uniform plasmas may equally be connected
through the nonuniform transition with either an even or an odd function. In principle,
the two symmetries should be possible. The q-mode, being the descendant of the surface
wave, retains the even symmetry. In turn, a new solution is introduced, the l-mode, whose
ξx is an odd (antisymmetric) function that jumps and changes sign at x ≈ 0. Let us recall
that l-mode is an overdamped solution for small kl and does not physically represent
an oscillation. Only the q-mode represents an actual oscillation supported by a thin
nonuniform interface.

Concerning the perturbations of the i- and e-modes when kl = 1, the jumps in ξx due
to the resonances of these two modes in the Alfvén continuum are evident in Figure 2. The
i-mode has a larger amplitude near the left boundary of the interface, while the e-mode
has a larger amplitude near the right boundary. This result supports the idea that the two
modes that split after the coalescence of the q- and l-modes are actually related with the
uniform plasmas at each side of the interface and do not represent true collective modes of
the whole interface. One can also see that the i-mode has inherited the even symmetry of
the q-mode in the sense that the sign of ξx is the same in the two plasmas at both sides of
the interface, while the e-mode retains the odd symmetry of the l-mode; i.e., the sign of ξx
is the opposite in the two uniform plasmas.

4. Discussion

Despite the simplicity of the background model, the research discussed in this paper
reveals interesting findings. While the ideal quasi-mode (q-mode) in a nonuniform interface
has been explored in many works, almost all previous investigations were invariably
restricted to the case of thin transitions. To the best of our knowledge, the results beyond
the TB limit are unique in the sense that the existence of an additional solution with odd
symmetry, the l-mode, has not been reported before in the literature. In the interface model,
the l-mode owes its existence to the presence of the nonuniform region. However, although
the l-mode is a solution of the dispersion relation, it should not be called a quasi-mode.

One can try to compare the results obtained here with those obtained in [15,29], that
investigated not an interface, but a uniform slab with two nonuniform transitions at its
sides. The results of [15] in the incompressible slab model can straightforwardly be related
to the present findings (see Figure 2 in Ref. [15]). Ref. [15] also finds that the slab supports
two different modes that have even (q-mode) and odd (l-mode) symmetries, respectively,
although there is an important difference between the results of this study and those
of [15]. In the case of the slab model of [15], modes with both even and odd symmetries
are already geometrically possible in the absence of nonuniform transitions, while in the
abrupt interface model, only a mode with even symmetry is possible. Hence, the peculiar
behaviour of the l-mode in the interface model is related with the fact that an odd mode
cannot exist for l = 0. In contrast, the results for thick transitions in both interface and
slab models agree remarkably well. The ‘first solution’ in Ref. [15] corresponds to the
i-mode, while their ‘second solution’ is equivalent to the e-mode. On the other hand,
Ref. [29] considered the compressible case, and their results also show the presence of
two surface-like solutions with even and odd symmetries. In addition, Ref. [29] found
a third body-like solution with odd symmetry that is absent in the incompressible limit
of [15]. Unfortunately, Ref. [29] did not explore the behaviour of their solutions with the
thickness of the nonuniform layers, and a direct comparison of the present results with
those of Ref. [29] is not possible.

In conclusion, it is found that when the width of the transition is thin, the ideal
collective oscillations of the interface can be described by a quasi-mode that descends from
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the undamped surface mode of the equivalent abrupt interface, i.e., the q-mode. This
solution lives on the n = 1 Riemann sheet of the dispersion relation. This was already well
known in the literature. In addition, there is another solution also present on the same
Riemann sheet, the l-mode, which does not physically represent an oscillation because
it is heavily overdamped. This other solution should not be called a quasi-mode. The
existence of the l-mode merely reflects the possibility that the two uniform plasmas can
be connected through the nonuniform transition with an odd function for ξx, whereas
the odd symmetry is forbidden when l = 0. If the transition is sufficiently thick, the
q- and l-modes interact and eventually merge. Then, two new oscillatory modes, the i-
and e-modes, appear. Although these new modes are not overdamped and have their
frequencies in the Alfvén continuum, they do not truly represent global oscillations of
the thick interface either. Instead, the shapes of their perturbations reveal that the i- and
e-modes are associated with the uniform plasmas at both sides of the interface. Therefore,
the coalescence of the q- and l-modes happens when the interface is not able to support a
collective oscillation any more. Why this happens can be understood with an argument
from [16]: if the nonuniform transition is so thick that the two uniform plasmas are far
from each other, the transition can no longer be called an interface or a surface; if there is
no surface, there can be no surface mode.

To conclude, let us note that the results obtained here pose a relevant theoretical
problem that applies not only to the interface model but more generally to the study of
ideal MHD oscillations in nonuniform plasmas: how to correctly interpret the zeros of the
dispersion function found on a non-principal Riemann sheet. Should all the zeros equally
be interpreted as quasi-modes that represent collective oscillations? In view of the present
findings, we argue that extreme caution is needed and additional information such as, e.g.,
the spatial shape of the perturbations is required to draw meaningful conclusions about
the nature of the solutions.
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