
����������
�������

Citation: Lu, J.-A. Cosmology

of a Polynomial Model for de Sitter

Gauge Theory Sourced by a Fluid.

Physics 2022, 4, 1168–1179.

https://doi.org/10.3390/

physics4040076

Received: 9 July 2022

Accepted: 15 September 2022

Published: 2 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Cosmology of a Polynomial Model for de Sitter Gauge Theory
Sourced by a Fluid
Jia-An Lu 1,2

1 School of Data and Computer Science, Guangdong Peizheng College, Guangzhou 510830, China;
ljagdgz@163.com

2 School of Physics, Sun Yat-sen University, Guangzhou 510275, China

Abstract: In the de Sitter gauge theory (DGT), the fundamental variables are the de Sitter (dS)
connection and the gravitational Higgs/Goldstone field ξA, where A is a 5 dimensional index.
Previously, a model for DGT was analyzed, which generalizes the MacDowell–Mansouri gravity
to have a variable cosmological constant, Λ = 3/l2, where l is related to ξ A by ξAξA = l2. It was
shown that the model sourced by a perfect fluid does not support a radiation epoch and the accelerated
expansion of the parity invariant universe. In this paper, I consider a similar model, namely, the Stelle–
West gravity, and couple it to a modified perfect fluid, such that the total Lagrangian 4-form is
polynomial in the gravitational variables. The Lagrangian of the modified fluid has a nontrivial
variational derivative with respect to l, and as a result, the problems encountered in the previous
study no longer appear. Moreover, to explore the elegance of the general theory, as well as to write
down the basic framework, I perform the Lagrange–Noether analysis for DGT sourced by a matter
field, yielding the field equations and the identities with respect to the symmetries of the system.
The resulted formula are dS covariant and do not rely on the existence of the metric field.

Keywords: Stelle–West gravity; gauge theory of gravity; cosmic acceleration

1. Introduction

The gauge theories of gravity (GTG) aims at treating gravity as a gauge field, in partic-
ular, constructing a Yang–Mills-type Lagrangian, which reduces to general relativity (GR)
in some limiting cases, while providing some novel falsifiable predictions. A well-founded
subclass of GTG is the Poincaré gauge theory (PGT) [1–5], in which the gravitational field
consists of the Lorentz connection and the co-tetrad field. Moreover, the PGT can be reformu-
lated as de Sitter gauge theory (DGT), in which the Lorentz connection and the co-tetrad field
are united into a de Sitter (dS) connection [6,7]. In fact, before the idea of DGT is realized, a
related Yang–Mills-type Lagrangian for gravity was proposed by MacDowell and Mansouri
(MM) [8], and reformulated into a dS-invariant form by West [9], which reads:

LMM = εABCDE ξEFAB ∧ FCD

= εαβγδ (lRαβ ∧ Rγδ − 2l−1Rαβ ∧ eγ ∧ eδ + l−3eα ∧ eβ ∧ eγ ∧ eδ), (1)

where εABCDE and εαβγδ are the 5-dimensional (5d) and 4d Levi–Civita symbols, ξA is a dS
vector constrained by ξAξA = l2, l is a positive constant, FAB is the dS curvature, Rαβ

is the Lorentz curvature, and eα is the orthonormal co-tetrad field. The 5d indexes are
denoted by capital Latin letters and take on the values 0, 1, 2, 3, 4, and the 4d indexes are
denoted by Greek letters and take on teh values 0 (time), 1, 2, 3 (space). This theory is
equivalent to the Einstein–Cartan (EC) theory with a cosmological constant Λ = 3/l2 and
a Gauss–Bonnet (GB) topological term, as seen in Equation (1).

Note that some special gauges with the residual Lorentz symmetry can be defined
by ξA = δA

4l , where δA
B is the Kronecker delta. Henceforth, ξA is akin to an unphysical
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Goldstone field. To make ξ A physical, and become the gravitational Higgs field, one
may replace the constant l by a dynamical l, resulting in the Stelle–West (SW) theory [7].
The theory is further explored in Refs. [10,11] (see also the review [12]), in which the
constraint ξAξA = l2 is completely removed, in other words, ξAξA needs not to be positive.
Suppose that ξAξA = σl2, where σ = ±1. When l 6= 0, the metric field can be defined
by gµν = (D̃µξ A)(D̃νξA), where D̃µξA = δ̃A

BDµξB, δ̃A
B = δA

B − ξ AξB/σl2, DµξA =
dµξA +ΩA

BµξB, and ΩA
Bµ is the dS connection. It was shown [11] that σ = ±1 corresponds

to the Lorentz/Euclidean signature of the metric field, and the signature changes when
ξAξA changes its sign.

On the other hand, it remains to check whether the SW gravity is viable.
Although the SW Lagrangian reduces to the MM Lagrangian when l is a constant, the field
equations do not. In the SW theory, there is an additional field equation coming from
the variation with respect to l, which is nontrivial even when l is a constant.
Actually, a recent study [13] presents some negative results for a related model, whose
Lagrangian is equal to the SW one times (−l/2). For a homogeneous and isotropic universe
with parity-invariant torsion, it is found that l being a constant implies the energy density
of the material fluid being a constant, and so l should not be a constant in the general
case. Moreover, in the radiation epoch, the l equation forces the energy density to be equal
to zero; while in the matter epoch, a dynamical l only works to renormalize the gravitational
constant by some constant factor, and hence, the cosmic expansion decelerates as in GR.

In this paper, it is shown that the SW gravity suffers from similar problems encountered
in the model considered in Ref. [13]. Furthermore, I solve these problems by using a new
fluid with the Lagrangian being a polynomial in the gravitational variables. The merits
of a Lagrangian polynomial in some variables are that it is simple and nonsingular with
respect to those variables. In Refs. [14,15], the polynomial Lagrangian for gravitation and
other fundamental fields were proposed, while in this paper, the polynomial Lagrangian
for a perfect fluid is proposed, which reduces to the Lagrangian of a usual perfect fluid
when l is a constant. It turns out that, in contrast to the case with an ordinary fluid, the SW
gravity coupled with the new fluid supports the radiation epoch and naturally drives
the cosmic acceleration. In addition, when writing down the basic framework of DGT,
a Lagrangian–Noether analysis is performed, which generalizes the results of Ref. [16]
to the cases with arbitrary matter field and arbitrary ξA.

The article is organized as follows. In Section 2.1, a Lagrangian–Noether analysis is
conducted for the general DGT sourced by a matter field. In Section 2.2, I reduce the analysis
of Section 2.1 in the Lorentz gauges, and show how the two Noether identities in PGT
can be elegantly unified into one identity in DGT. In Section 3.1, the SW model of DGT is
introduced, with the field equations derived both in the general gauge and the Lorentz
gauges. Further, the matter source is discussed in Section 3.2, where a modified perfect
fluid with the Lagrangian polynomial in the gravitational variables is constructed, and
a general class of perfect fluids is defined, which contains both the usual and modified
perfect fluids. Then, I couple the SW gravity with the class of fluids and study the coupling
system in the homogeneous, isotropic, and parity-invariant universe. The field equations
are deduced in Section 4.1, solved in Section 4.2 for the vacuum case, and, in Section 4.3, for
the material case. In Section 4.4, the above results are compared with observations, which
determines the value of the coupling constant. In the last section, I give some conclusions,
and discuss the remaining problems, possible solutions, and extensions.

2. De Sitter Gauge Theory
2.1. Lagrangian–Noether Machinery

The DGT sourced by a matter field is described by the Lagrangian 4-form:

L = L(ψ, Dψ, ξA, DξA,FAB), (2)

where ψ is a p-form valued at some representation space of the dS group SO(1, 4), Dψ =
dψ + ΩABTAB ∧ ψ is the covariant exterior derivative, TA

B are representations of the dS
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generators, ξA is a dS vector, DξA = dξA + ΩA
BξB, ΩA

B is the dS connection 1-form, and
FA

B = dΩA
B + ΩA

C ∧ΩC
B is the dS curvature 2-form. The variation of L resulted from

the variations of the explicit variables reads:

δL = δψ ∧ ∂L/∂ψ + δDψ ∧ ∂L/∂Dψ + δξA × ∂L/∂ξ A + δDξ A ∧ ∂L/∂Dξ A

+δFAB ∧ ∂L/∂FAB, (3)

where (∂L/∂ψ)µp+1···µ4 ≡ ∂Lµ1···µpµp+1···µ4 /∂ψµ1···µp , and the other partial derivatives are
similarly defined. The variations of Dψ, DξA, and FAB can be transformed into the
variations of the fundamental variables ψ, ξA, and ΩAB, leading to:

δL = δψ ∧Vψ + δξA ×VA + δΩAB ∧VAB

+d(δψ ∧ ∂L/∂Dψ + δξA × ∂L/∂Dξ A + δΩAB ∧ ∂L/∂FAB), (4)

where,
Vψ ≡ δL/δψ = ∂L/∂ψ− (−1)pD∂L/∂Dψ, (5)

VA ≡ δL/δξA = ∂L/∂ξ A − D∂L/∂DξA, (6)

VAB ≡ δL/δΩAB = TABψ ∧ ∂L/∂Dψ + ∂L/∂Dξ [A × ξB] + D∂L/∂FAB. (7)

The symmetry transformations in DGT consist of the diffeomorphism transformations
and the dS transformations. For the diffeomorphism transformations, they can be promoted
to a gauge-invariant version [16,17], namely, the parallel transports in the fiber bundle with
the gauge group as the structure group. The action of an infinitesimal parallel transport
on a variable is a gauge-covariant Lie derivative (the gauge-covariant Lie derivative has
been used in the metric-affine gauge theory of gravity [18]) Lv ≡ vcD + Dvc, where v
is the vector field, which generates the infinitesimal parallel transport, and c denotes
a contraction, for example, (vcψ)µ2···µp = vµ1 ψµ1µ2···µp . Put δ = Lv in Equation (3), utilize
the arbitrariness of v, then one obtains the chain rule:

vcL = (vcψ) ∧ ∂L/∂ψ + (vcDψ) ∧ ∂L/∂Dψ + (vcDξA)× ∂L/∂DξA

+(vcFAB) ∧ ∂L/∂FAB, (8)

and the first Noether identity:

(vcDψ) ∧Vψ + (−1)p(vcψ) ∧ DVψ + (vcDξA)×VA + (vcFAB) ∧VAB = 0. (9)

On the other hand, the dS transformations are defined as vertical isomorphisms
on the fiber bundle. The actions of an infinitesimal dS transformation on the fundamental
variables are as follows:

δψ = BABTABψ, δξA = BABξB, δΩAB = −DBAB, (10)

where BA
B is a dS algebra-valued function, which generates the infinitesimal dS transforma-

tion. Substitute Equation (10) and δL = 0 into Equation (4), and make use of Equation (7)
and the arbitrariness of BAB, one arrives at the second Noether identity:

DVAB = −TABψ ∧Vψ −V[A × ξB]. (11)

The above analyses are so general that they do not require the existence of a metric
field. In the special case with a metric field being defined, ξAξA equating to a positive
constant, and p = 0, the above analyses coincide with those in Ref. [16].

2.2. Reduction in the Lorentz Gauges

Consider the case with ξ AξA = l2, where l is a positive function. Then, one may
define the projector δ̃A

B = δA
B − ξAξB/l2, the generalized tetrad D̃ξA = δ̃A

BDξB, and
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a symmetric rank-2 tensor (this formula has been given in Refs. [11,19], and is different from
that originally proposed by Stelle and West [7] by a factor (l0/l)2, where l0 is the vacuum
expectation value of l),

gµν = ηAB(D̃µξA)(D̃νξB), (12)

which is a localization of the dS metric, g̊µν = ηAB(dµ ξ̊A)(dν ξ̊B), where ηAB is the 5d
Minkowski metric, and ξ̊ A are the 5d Minkowski coordinates on the 4d dS space.

Though Equation (12) seems less natural than the choice g∗µν = ηAB(DνξA)(DνξB),
it coincides with another natural identification (15) (the relation between Equations (12)
and (15) is discussed below in this Section). If gµν is non-degenerate, it is a metric field with
Lorentz signature, and one may define D̃µξA ≡ gµνD̃νξA. Put vµ = D̃µξA in Equation (9)
and utilize (D̃µξA)(D̃µξB) = δ̃A

B, one obtains:

ṼA = −(D̃ξAcDψ) ∧Vψ − (−1)p(D̃ξAcψ) ∧ DVψ − (D̃ξAcd ln l)×VCξC

−(D̃ξAcFCD) ∧VCD, (13)

where ṼA = δ̃B
AVB. When l is a constant, Equation (13) implies that the ξA equation

(ṼA = 0 for this case) can be deduced from the other field equations (Vψ = 0 and VCD = 0),
as pointed out in Ref. [19]. Substitute Equation (13) into Equation (11), and make use
of Ṽ[A × ξB] = V[A × ξB] and D̃ξ[A × ξB] = Dξ[A × ξB], one attains

DVAB = −TABψ ∧Vψ + (Dξ[A × ξB]cDψ) ∧Vψ + (−1)p(Dξ[A × ξB]cψ) ∧ DVψ

+(Dξ[A × ξB]cd ln l)×VCξC + (Dξ[A × ξB]cFCD) ∧VCD. (14)

When l is a constant, Equation (14) coincides with the corresponding result in Ref. [16].
As shown later in this Section, Equation (14) unifies the two Noether identities in PGT.

To see this, let us define the Lorentz gauges by the condition ξA = δA
4l [7].

If hA
B ∈ SO(1, 4) preserves these gauges, then hA

B = diag(hα
β, 1), where hα

β belongs
to the Lorentz group SO(1, 3). In the Lorentz gauges, Ωα

β transforms as a Lorentz connec-
tion, and Ωα

4 transforms as a co-tetrad field. Therefore, one may identify Ωα
β as the space-

time connection Γα
β, and Ωα

4 as the co-tetrad field eα divided by some quantity with
the dimension of length, a natural choice for which is l. Resultantly, ΩAB is identified with
a combination of geometric quantities as follows:

ΩAB =

(
Γαβ l−1eα

−l−1eβ 0

)
. (15)

In the case with constant l, this formula is given in Refs. [7,20], and, in the case with
varying l, it is given in Refs. [10,19]. In the Lorentz gauges, D̃ξ4 = 0, D̃ξα = Ωα

4l =
eα (where Equation (15) is used), and so gµν defined by Equation (12) satisfies gµν =

ηαβeα
µeβ

ν, implying that Equation (12) coincides with Equation (15). Moreover, according
to Equation (15), one finds the expression for FAB in the Lorentz gauges as follows [19]:

FAB =

(
Rαβ − l−2eα ∧ eβ l−1[Sα − d ln l ∧ eα]

−l−1[Sβ − d ln l ∧ eβ] 0

)
, (16)

where Rα
β = dΓα

β + Γα
γ ∧ Γγ

β is the spacetime curvature, and Sα = deα + Γα
β ∧ eβ is

the spacetime torsion.
Now one can interpret the results in Section 2.1 in the Lorentz gauges. In those gauges,

Dψ = DΓψ + 2l−1eαTα4 ∧ ψ, Dξα = eα, Dξ4 = dl, and so Equation (2) becomes:

L = LL(ψ, DΓψ, l, dl, eα, Rαβ, Sα), (17)

where DΓψ = dψ + ΓαβTαβ ∧ ψ. It is the same as a Lagrangian 4-form in PGT [21], with
the fundamental variables being ψ, l, Γαβ, and eα. The relations between the variational
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derivatives with respect to the PGT variables and those with respect to the DGT variables
can be deduced from the following equality:

δξ A ×VA + 2δΩα4 ∧Vα4 = δl × Σl + δeα ∧ Σα, (18)

where Σl ≡ δLL/δl and Σα ≡ δLL/δeα. Explicitly, the relations are:

Σψ ≡ δLL/δψ = Vψ, (19)

Σl = V4 − 2l−2eα ∧Vα4, (20)

Σαβ ≡ δLL/δΓαβ = Vαβ, (21)

Σα = 2l−1Vα4. (22)

It is remarkable that the DGT variational derivative VAB unifies the two PGT varia-
tional derivatives Σαβ and Σα. With the help of Equations (19)–(22), the αβ components and
α4 components of Equation (14) are found to be:

DΓΣαβ = −Tαβψ ∧ Σψ + e[α ∧ Σβ], (23)

DΓΣα = DΓ
α ψ ∧ Σψ + (−1)p(eαcψ) ∧ DΓΣψ + ∂αl × Σl

+(eαcRβγ) ∧ Σβγ + (eαcSβ) ∧ Σβ, (24)

which are just the two Noether identities in PGT [21], with both ψ and l as the matter fields;
∂αl = eαcdl This completes our proof for the earlier statement that the DGT identity (14)
unifies the two Noether identities in PGT.

3. Polynomial Models for DGT
3.1. Stelle–West Gravity

It is natural to require that the Lagrangian for DGT is regular with respect to the fun-
damental variables. The simplest regular Lagrangians are polynomial in the variables,
and, in order to recover the EC theory, the polynomial Lagrangian should be at least linear
in the gauge curvature. Moreover, to ensure FAB = 0 is naturally a vacuum solution,
the polynomial Lagrangian should be at least quadratic in FAB (when the Lagrangian is
linear in FAB, one may add some ‘constant term’ (independent of FAB) to ensure FAB = 0
is a vacuum solution, but this way is not so natural). The general Lagrangian quadratic
in FAB reads:

LG = (κ1 εABCDE ξE + κ2 ηACξBξD + κ3 ηACηBD)FAB ∧ FCD

= κ1LSW + κ2(Sα ∧ Sα − 2Sα ∧ d ln l ∧ eα)

+κ3[Rαβ ∧ Rαβ + d(2l−2Sα ∧ eα)], (25)

where the κ1 term is the SW Lagrangian, the κ2 and κ3 terms are parity odd, and the κ3
term is a sum of the Pontryagin and modified Nieh–Yan topological terms. This quadratic
Lagrangian is a special case of the, at most, quadratic Lagrangian proposed in Refs. [10,22],
and one should note that the quadratic Lagrangian satisfies the requirement mentioned
above about the vacuum solution, while the, at most, quadratic Lagrangian does not always
satisfy that requirement.

Among the three terms in Equation (25), the SW term is the only one that can be
reduced to the EC Lagrangian in the case with positive and constant ξAξA. Thus, the SW
Lagrangian is the simplest choice for the gravitational Lagrangian, which (i) is regular with
respect to the fundamental variables; (ii) can be reduced to the EC Lagrangian; (iii) ensures
FAB = 0 is naturally a vacuum solution.
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For the above reason, the gravitational Lagrangian is taken to be LSW, i.e., put κ1 = 1
and κ2 = κ3 = 0 in Equation (25). The SW Lagrangian 4-form LSW takes the same form
as LMM in the first line of Equation (1), while ξA is not constrained by any condition.
Substitute Equation (1) into Equations (6)–(7), make use of ∂LSW/∂FAB = εABCDE ξEFCD

and the Bianchi identity DFAB = 0, one obtains the gravitational field equations:

− κ εABCDE FAB ∧ FCD = δLm/δξE, (26)

− κ εABCDE DξE ∧ FCD = δLm/δΩAB, (27)

where Lm is the Lagrangian of the matter field coupled to the SW gravity, with κ as the cou-
pling constant. In the vacuum case, Equation (27) is given in Ref. [22] by direct computation,
while here, Equation (27) is obtained from the general Equation (7).

In the Lorentz gauges, LSW takes the same form as LMM in the second line of
Equation (1), while l becomes a dynamical field. The gravitational field equations read:

− (κ/4)εαβγδ εµνσρe−1Rαβ
µνRγδ

σρ − 4κ l−2R + 72κ l−4 = δSm/δl, (28)

− κ εαβγδ εµνσρe−1∂νl × Rγδ
σρ + 8κ e[α

µeβ]
ν∂νl−1 + 4κ l−1Tµ

αβ = δSm/δΓαβ
µ, (29)

− 8κ l−1(Gµ
α + Λeα

µ) = δSm/δeα
µ, (30)

where e = det(eα
µ), R is the scalar curvature, Gµ

α is the Einstein tensor, Tµ
αβ = Sµ

αβ +

2e[αµSν
β]ν, and Sm is the action of the matter field. Although when l is a constant LSW

reduces to the EC Lagrangian with a cosmological constant and a GB topological term,
the field equations do not reduce to those of EC with a cosmological constant. The rea-
son lies in the existence of Equation (28), which is nontrivial, even when l is a constant.
As a result, the coupling constant κ cannot be fixed by simply comparing Equations (29)
and (30) with the EC equations. As shown below in Section 4.4, κ could be determined by
a comparison between the theory and cosmological observations.

3.2. Polynomial dS Fluid

For the same reason of choosing a polynomial Lagrangian for DGT, I intend to use
those matter sources with polynomial Lagrangian. It has been shown that the Lagrangian
of fundamental fields can be reformulated into polynomial forms [14,15]. However, when
describing the universe, it is more adequate to use a fluid as the matter source. The La-
grangian of an ordinary perfect fluid (PF) [23] can be written in a Lorentz-invariant form:

LPF
µνρσ = −εαβγδeα

µeβ
νeγ

ρeδ
σρ + εαβγδ Jαeβ

νeγ
ρeδ

σ ∧ ∂µφ, (31)

where φ is a scalar field, Jα is the particle number current which is Lorentz covariant
and satisfies Jα Jα < 0, ρ = ρ(n) is the energy density, and n ≡

√
−Jα Jα is the particle

number density. The Lagrangian (31) is polynomial in the PGT variable eα
µ, but it is not

polynomial in the DGT variables when it is reformulated into a dS-invariant form, in which
case the Lagrangian reads:

LPF
µνρσ = −εABCDE(DµξA)(DνξB)(DρξC)(DσξD)(ξE/l) ρ

+εABCDE JA(DνξB)(DρξC)(DσξD) ∧ (ξE/l) ∂µφ, (32)

where JA is a dS-covariant particle number current, which satisfies JA JA < 0 and JAξA = 0,
ρ = ρ(n) and n ≡

√
−JA JA. Because l−1 appears in Equation (32), the Lagrangian is not

polynomial in ξA.
A straightforward way to modify Equation (32) into a polynomial Lagrangian is

to multiply it by l. In the Lorentz gauges, J4 = 0, and one may define the invariant
Jµ ≡ Jαeα

µ. Then, the modified Lagrangian L′PF
µνρσ = −eεµνρσρl + eεµ′νρσ Jµ′ ∧ l × ∂µφ.

It can be verified that this Lagrangian violates the particle number conservation law
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∇µ Jµ = 0, where∇µ is the linearly covariant, metric-compatible and torsion-free derivative.
To preserve the particle number conservation, we may replace l × ∂µφ by ∂µ(lφ), and
the corresponding dS-invariant Lagrangian is:

LDF
µνρσ = −εABCDE(Dµξ A)(DνξB)(DρξC)(DσξD) ξEρ(n)

+εABCDE JA(DνξB)(DρξC)(DσξD) ∧
(

1
4

DµξE × φ + ξE∂µφ

)
. (33)

The perfect fluid depicted by the above Lagrangian is called the polynomial dS fluid,
or dS fluid (DF) for short. In the Lorentz gauges,

LDF
µνρσ = −eεµνρσρl + εαβγδ Jαeβ

νeγ
ρeδ

σ ∧ (∂µl × φ + l ∂µφ)

= −eεµνρσρl + eεµ′νρσ Jµ′ ∧ ∂µ(lφ), (34)

which is equivalent to Equation (31) when l is a constant.
Define the Lagrangian function LDF by LDF

µνρσ = LDF eεµνρσ, then LDF = −ρl +
Jµ∂µ(lφ). To compare the polynomial dS fluid with the ordinary perfect fluid, let us
consider a general model with the Lagrangian function:

Lm = −ρlk + Jµ∂µ(lkφ), (35)

where k ∈ R. When k = 0, it describes the ordinary perfect fluid; when k = 1, it de-
scribes the polynomial dS fluid. The variation of Sm ≡

∫
dx4eLm with respect to φ gives

the particle number conservation law ∇µ Jµ = 0. The variation with respect to Jα yields
∂µ(lkφ) = −µUµlk, where µ ≡ dρ/dn = (ρ + p)/n is the chemical potential, p = p(n) is
the pressure, and Uµ ≡ Jµ/n is the 4-velocity of the fluid particle. Making use of these
results, one may check that the on-shell Lagrangian function is equal to plk, and the varia-
tional derivatives:

δSm/δl = −kρlk−1, (36)

δSm/δΓαβ
µ = 0, (37)

δSm/δeα
µ = (ρ + p)lkUµUα + plkeα

µ. (38)

One can see that δSm/δl = 0 for the ordinary perfect fluid, while δSm/δl = −ρ for
the polynomial dS fluid.

Finally, it should be noted that the polynomial dS fluid does not support a signature
change corresponding to ξ AξA varying from negative to positive. The reason is that when
ξAξA < 0, there exists no JA. which satisfies JA JA < 0 and JAξA = 0.

4. Cosmological Solutions
4.1. Field Equations for the Universe

In this Section, the coupling system of the SW gravity and the fluid model (35) is
analyzed in the homogenous, isotropic, parity-invariant and spatially flat universe charac-
terized by the following ansatz [13]:

e0
µ = dµt, ei

µ = a dµxi, (39)

S0
µν = 0, Si

µν = b e0
µ ∧ ei

ν, (40)

where a and b are functions of the cosmic time t, and i = 1, 2, 3. On account of
Equations (39) and (40), the Lorentz connection Γαβ

µ and curvature Rαβ
µν can be calcu-

lated [13]. Further, assume that Uµ = e0
µ, then Uµ = −e0

µ, and so Uα = −δ0
α. Now,

the reduced form of each term of Equations (28)–(30) can be attained. In particular,

εαβγδ εµνσρe−1Rαβ
µνRγδ

σρ = 96(ha).a−1h2, (41)
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R = 6[(ha).a−1 + h2], (42)

ε0iγδ εµνσρe−1∂νl × Rγδ
σρ = −4h2 l̇ ei

µ, (43)

εijγδ εµνσρe−1∂νl × Rγδ
σρ = 0, (44)

Tµ
0i = −2b ei

µ, Tµ
ij = 0, (45)

Gµ
0 = −3h2e0

µ, (46)

Gµ
i = −[2(ha).a−1 + h2]ei

µ, (47)

δSm/δe0
µ = −ρlke0

µ, (48)

δSm/δei
µ = plkei

µ, (49)

where dot on top of a quantity or being a superscript denotes the differentiation with
respect to t, and h = ȧ/a− b. Substitution of the above equations into Equations (28)–(30)
leads to:

(ha).a−1(h2 + l−2) + l−2(h2 −Λ) = kρlk−1/24κ, (50)

(h2 + l−2)l̇ − 2b l−1 = 0, (51)

8κl−1(−3h2 + Λ) = ρlk, (52)

8κl−1[−2(ha).a−1 − h2 + Λ] = −plk, (53)

which constitute the field equations for the universe.
Generally, if the requirement of parity invariance is removed, then the ansatz (40)

should be replaced by [24]:

S0
µν = 0, Si

µν = b(t)e0
µ ∧ ei

ν + c(t)εi
jkej

µ ∧ ek
ν. (54)

Correspondingly, Equations (50)–(53) are generalized to be:

(ha).a−1(h2 − c2 + l−2)− 2hc(ca).a−1 + (h2 − c2 − 3l−2)l−2 =
k

24κ
ρlk−1, (55)

(
h2 − c2 + l−2

)
l̇ − 2bl−1 = 0, (56)

c
(

hl̇ + l−1
)
= 0, (57)

−3(h2 − c2) + Λ =
lk+1

8κ
ρ, (58)

−
[
2(ha).a−1 + h2 − c2

]
+ Λ = − lk+1

8κ
p. (59)

When c = 0, the above equations reduce to Equations (50)–(53). In virtue of
Equation (57), there are two branches of solutions—one is parity even (c = 0) and the other
is parity odd (c 6= 0), which satisfies hl̇ + l−1 = 0. In this paper, only the parity-even case is
considered.

4.2. The Vacuum Solution

In the vacuum, ρ = p = 0, then Equations (50)–(53) read:

(ha).a−1(h2 + l−2) + l−2(h2 −Λ) = 0, (60)

(h2 + l−2)l̇ − 2bl−1 = 0, (61)

−3h2 + Λ = 0, (62)

−2(ha).a−1 − h2 + Λ = 0. (63)
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It can be shown that Equations (60) and (63) can be deduced from Equations (61) and (62),
and the solution for the latter reads:

a/a0 = (l/l0)e
∫ t

t0
(±l−1)dt, (64)

b = l−1 l̇, (65)

where l is an arbitrary positive function, and a0 and l0 are the values of a and l at some
moment t0. In particular, if l is a constant, then:

a = a0eH(t−t0), b = 0, (66)

where H = ȧ/a = ±l−1 is a constant. This solution is just the dS space, which describes
an inflationary universe.

4.3. The Material Solution

In the general case with matter, let us first derive the continuity equation from the field
Equations (50)–(53). Rewrite Equation (52) as:

h2 = l−2 − ρlk+1/24κ. (67)

Substituting Equation (67) into Equation (53) yields:

(ha).a−1 = l−2 + (ρ + 3p)lk+1/48κ. (68)

Multiply Equation (68) by 2h, making use of Equation (67) and h = ȧ/a− b, one gets:

2hḣ = (ρ + p)lk+1 ȧa−1/8κ − 2b(ha).a−1, (69)

in which, according to Equations (50), (51), and (67),

2b(ha).a−1 = l̇[(k + 1)ρlk/24κ + 2l−3]. (70)

Differentiate Equation (67) with respect to t, and compare it with Equations (69) and (70),
one arrives at the continuity equation:

ρ̇ + 3(ρ + p)ȧa−1 = 0, (71)

which is, unexpectedly, the same as the usual one. Suppose that p = wρ, where w is
a constant. Then, Equation (71) has the solution:

ρ = ρ0(a/a0)
−3(1+w), (72)

where a0 and ρ0 are the values of a and ρ at some moment t0.
Now, one can solve Equations (50)–(52), while Equation (53) is replaced by Equation (71)

with the solution (72). First, substitute Equations (67) and (68) into Equation (50), one finds:

ρlk+3 = 48κ(3w− k− 1)/(3w + 1). (73)

Assume that κ < 0, then according to the above relation, ρlk+3 > 0 implies (3w− k−
1)/(3w + 1) < 0. The only concern are the cases with k = 0, 1, and assume that k + 1 > −1,
then ρlk+3 > 0 constrains w by:

− 1
3
< w <

k + 1
3

. (74)

For the ordinary fluid (k = 0), the pure radiation (w = 1/3) cannot exist. In fact,
on account of Equation (73), ρl3 = 0 in this case, which is unreasonable. This problem
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is similar to that appeared in Ref. [13]. On the other hand, for the dS fluid (k = 1),
Equation (74) becomes −1/3 < w < 2/3, which contains both the cases with pure matter
(w = 0) and pure radiation (w = 1/3). Generally, the combination of Equations (72) and (73)
yields:

l = l0(a/a0)
3(w+1)

k+3 , (75)

where l0 is the value of l when t = t0, and is related to ρ0 by Equation (73).
Second, substituting Equation (67) into Equation (51), and utilizing Equations (73) and (75),

one obtains:

b =
3(w + 1)(k + 2)
(3w + 1)(k + 3)

ȧ a−1, (76)

and hence,

h =
3w− 2k− 3

(3w + 1)(k + 3)
ȧ a−1. (77)

Third, substitution of Equations (73) and (77) into Equation (52) leads to:

ȧa−1 = H0(l0/l), (78)

where H0 ≡ (ȧ a−1)t0 is the Hubble constant, being related to l0 by:

H0 =

√
3w + 1

−3w + 2k + 3
× (k + 3)l−1

0 . (79)

Here, note that Equation (74) implies that 3w + 1 > 0, −3w + k + 1 > 0, k + 1 > −1,
and so −3w + 2k + 3 > 0. In virtue of Equations (75), (76), and (78), one has:

b = b0(a0/a)
3(w+1)

k+3 , (80)

where b0 is related to H0 by Equation (76). Moreover, substitute Equation (75) into Equa-
tion (78) and solve the resulting equation, one attains:

(a/a0)
3(w+1)

k+3 − 1 =
3(w + 1)

k + 3
× H0(t− t0). (81)

In conclusion, the solutions for the field Equations (50)–(53) are given by
Equations (72), (75), (80), and (81), with the independent constants a0, H0, and t0.

4.4. Comparison with Observations

If k is specified, one can determine the value of the coupling constant κ from the ob-
served values of H0 = 67.4 km × s−1 ×Mpc−1 and Ω0 ≡ 8πρ0/3H2

0 = 0.315 [25].
For example, put k = 1, then according to Equation (79) (with w = 0), one has:

l0 = 4/
√

5H0 = 8.19× 1017 s. (82)

Substitution of Equation (82) and ρ0 = 3H2
0 Ω0/8π = 1.79 × 10−37 s−2 into

Equation (73) yields:
κ = −ρ0l4

0/96 = −8.41× 1032 s2. (83)

This value is an important reference for the future work, which will explore the viability
of the model in the solar system scale.

Furthermore, the deceleration parameter q ≡ −aä/ȧ2 derived from the above models
can be compared with the observed one. With the help of Equations (78) and (75), one finds
ȧ ∼ a(k−3w)/(k+3), then ä = k−3w

k+3 × ȧ2a−1, and so:

q =
3w− k
k + 3

. (84)
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Putting w = 0, one can find that the universe accelerates (q < 0) if k > 0, linearly
expands (q = 0) if k = 0, and decelerates (q > 0) if k < 0. In particular, for the model
with an ordinary fluid (k = 0), the universe expands linearly (this result is different
from that of Ref. [13], where the cosmological solution describes a decelerating universe;
as stated before, the gravitational Lagrangian in Ref. [13] is equal to (−l/2)LSW, which is
not equivalent to LSW); while for the model with a dS fluid (k = 1), the universe accelerates
with q = −1/4, which is consistent with the observational result −1 ≤ q0 < 0 [26–28],
where q0 is the present-day value of q. It should be noted that Equation (84) implies that q
is a constant when w is a constant, and so the models cannot describe the transition from
deceleration to acceleration when w is a constant.

5. Remarks

It is shown that the requirement of regular Lagrangian may be crucial for DGT,
as it is shown that the SW gravity coupled with an ordinary perfect fluid (whose La-
grangian is not regular with respect to ξ A when ξAξA = 0) does not permit a radiation
epoch and the acceleration of the universe, while the SW gravity coupled with a polyno-
mial dS fluid (whose Lagrangian is regular with respect to ξA) is out of these problems.
Yet, in the latter model, there exists the problem that it cannot describe the transition from
deceleration to acceleration in the matter epoch. Actually, only the parity-even branch
of the model is analyzed here. One may further analyze the parity-odd branch and check
whether the transition problem exists in that case.

Moreover, there are two possible ways to refine the present model. The first is to modify
the gravitational part to be the general quadratic model (25), which is a special case
of the, at most, quadratic model proposed in Refs. [10,22], but the coupling of which with
the polynomial dS fluid is unexplored. It is unknown whether the effect of the κ2 term
could solve the problem encountered in the SW gravity.

The second way is to modify the matter part. Although the Lagrangian of the polynomial dS
fluid is regular with respect to ξA, it is not regular with respect to JA when ξAξA = 0, in which
case there should be JA JA ≥ 0, and so the number density n ≡

√
−JA JA is not regular. One

could find a new fluid model whose Lagrangian is regular with respect to all variables, based
on the polynomial models for fundamental fields proposed in Refs. [14,15].

Moreover, the present study may be extended to the inflationary epoch. As was
shown in Section 4.2, in the vacuum, the theory contains the dS solution, which describes
an inflationary universe. Then there should be a transition from the inflationary epoch
to the radiation epoch. As usual, this might be achieved by introducing a particle production
rate Γ given by some quantum theory. In GR, with the help of energy conservation,
the contribution of Γ to the effective pressure peff can be derived [29,30]. As indicated
in Section 4.3, energy conservation in the present theory takes the same form as that in GR,
and so it could be believed that the derivation of peff also applies to the present theory.
Replacing p by peff in the dS fluid, one could further explore the corresponding dynamics.
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24. Magueijo, J.; Złośnik, T. Parity violating Friedmann Universes. Phys. Rev. D. 2019, 100, 84036. [CrossRef]
25. Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [CrossRef]
26. Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliard, R.L.; Hogan, C.J.; Jsa, S.; Kirshner,

R.P. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116,
1009–1038. [CrossRef]

27. Schmidt, B.; Suntzeff, N.B.; Phillips, M.M.; Schommer, R.A.; Clocchiatti, A.; Kirshner, R.P.; Garnavich, P.; Challis, P.; Leibundgut,
B.; Spyromilio, J.; et al. The high-Z supernova search: Measuring cosmic deceleration and global curvature of the universe using
type IA supernovae. Astrophys. J. 1998, 507, 46–63. [CrossRef]

28. Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Hook, I.M.;
et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [CrossRef]

29. Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P. Thermodynamics and cosmology. Gen. Relativ. Gravit. 1989, 21, 767–776.
[CrossRef]

30. Calvão, M.O.; Lima, J.A.S.; Wagal, I. On the thermodynamics of matter creation in cosmology. Phys. Lett. A 1992, 162, 223–226.
[CrossRef]

http://en.ibrae.ac.ru/pubtext/259/
http://dx.doi.org/10.1007/978-3-319-29734-7
http://dx.doi.org/10.1088/0305-4470/12/8/003
http://dx.doi.org/10.1103/PhysRevD.21.1466
http://dx.doi.org/10.1103/PhysRevLett.38.739
http://dx.doi.org/10.1016/0370-2693(78)90856-0
http://dx.doi.org/10.1088/0264-9381/31/9/095004
http://dx.doi.org/10.1103/PhysRevD.89.063542
http://dx.doi.org/10.1016/j.aop.2015.06.013
http://dx.doi.org/10.1103/PhysRevD.100.083507
http://dx.doi.org/10.1103/PhysRevD.29.1690
http://dx.doi.org/10.1016/j.aop.2013.03.012
http://dx.doi.org/10.1088/0264-9381/33/15/155009
http://dx.doi.org/10.1103/RevModPhys.48.393
http://dx.doi.org/10.1016/0370-1573(94)00111-F
http://dx.doi.org/10.1088/0264-9381/30/14/145004
http://dx.doi.org/10.1142/S021988780600103X
https://doi.org/10.48550/arXiv.1203.5709
http://dx.doi.org/10.1088/0264-9381/10/8/017
http://dx.doi.org/10.1103/PhysRevD.100.084036
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/306308
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1007/BF00758981
http://dx.doi.org/10.1016/0375-9601(92)90437-Q

	Introduction
	De Sitter Gauge Theory
	Lagrangian–Noether Machinery
	Reduction in the Lorentz Gauges

	Polynomial Models for DGT
	Stelle–West Gravity
	Polynomial dS Fluid

	Cosmological Solutions
	Field Equations for the Universe
	The Vacuum Solution
	The Material Solution
	Comparison with Observations

	Remarks
	References

