
Citation: Alhaidari, A.D.; Assi, I.A.

Finite-Series Approximation of the

Bound States for Two Novel

Potentials. Physics 2022, 4, 1067–1080.

https://doi.org/10.3390/

physics4030070

Received: 21 July 2022

Accepted: 26 August 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Finite-Series Approximation of the Bound States for Two
Novel Potentials
Abdulaziz D. Alhaidari 1 and Ibsal A. Assi 2,*

1 Saudi Center for Theoretical Physics, P.O. Box 32741, Jeddah 21438, Saudi Arabia
2 Department of Physics and Physical Oceanography, Memorial University of Newfoundland,

St. John’s, NL A1B 3X7, Canada
* Correspondence: iassi@mun.ca

Abstract: We obtain an analytic approximation of the bound states solution of the Schrödinger
equation on the semi-infinite real line for two potential models with a rich structure as shown by their
spectral phase diagrams. These potentials do not belong to the class of exactly solvable problems.
The solutions are finite series (with a small number of terms) of square integrable functions written in
terms of Romanovski–Jacobi polynomials.

Keywords: tridiagonal representation; orthogonal polynomials; recursion relation; energy spectrum;
Romanovski–Jacobi polynomials

1. Introduction

Fundamental interactions in nature are very few. In fact, of those interactions only
four known that may even be unified (merged) into fewer interactions as the energy scale
becomes very large. In quantum mechanics, these fundamental interactions are modelled
(in simple systems) by even fewer potential functions (e.g., r−1 for the Coulomb and Kepler
problems, r2 for quarks interaction, etc., where r is the radial coordinate). However, for com-
plex systems (e.g., those with a large number of constituents), the fundamental interactions
become intractable and modelling using simple potential functions becomes non-trivial to
almost impossible. However, potential models formed using various functions that satisfy
basic physical constraints can give a good description of certain aspects of the system. For
example, the binding of some molecules can be described extremely accurately by the
Morse potential with a proper choice of parameters. Consequently, the search for potential
functions that can model the structure and dynamics of various physical systems started at
the early conception of quantum mechanics and still continues. Of all these models, the
most interesting are those that can be solved exactly for the whole energy spectrum or for a
finite portion thereof. The latter solution is referred to as “quasi-exact”. Nonetheless, the
number of such potential functions is very small. Physicists continue to develop methods
to enlarge the class of exactly solvable potential models. Meanwhile, approximate solutions
of the wave equation (relativistic and non-relativistic) with interesting potential models
dominate the literature. Most of these approximations are numerical in nature. The most
important requirement of such models is that the corresponding potential functions must
have a rich structure with a sufficient (but not large) number of parameters that could be
tuned to fit experimental measurements of the target system being modelled. The two main
features of the study here are:

(1) The two potential models which are considered have rich structures, as evidenced by
their spectral phase diagrams and each having four tunable parameters.

(2) The approximate solutions obtained are analytic and written as finite series with a
small number of terms involving mathematically well-defined objects.
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In this study, we use the tridiagonal representation approach (TRA) [1] to obtain
approximations of bound state solutions of the Schrödinger equation for the following
four-parameter potential models:

VI(x) =
2

x2 + 2a2

[
a2 A
x2 −

a2B
x2 + 2a2 + C

]
=

A
x2 +

2C− A
x2 + 2a2 −

2a2B

(x2 + 2a2)
2 , (1a)

VII(x) =
1

x(x + 2a)

[
a2 A

x(x + 2a)
− a2B

(x + a)2 + C

]
=

A/4
x2 +

2C− 2B− A
2x(x + 2a)

+
A/4

(x + 2a)2 +
B

(x + a)2 , (1b)

where x ≥ 0 denotes the space coordinate and the scale parameter a is a positive dimen-
sion of length. The dimensionless real parameters {A, B, C} are positive. The solutions
are written as finite series of square integrable functions that carry a tridiagonal matrix
representation for the wave operator. The potential functions (1a) and (1b) do not belong
to the class of exactly solvable problems. Nonetheless, potential VI(x) was treated in
Section III.A.6 of Ref. [2] and in Section 2.4 of Ref. [3]. However, no exact TRA solutions
were obtained because the matrix representation of the wave operator chosen therein was
not tridiagonal, despite the fact that the Hamiltonian matrix is tridiagonal. Potential VI(x)
is an inverse square singular potential at the origin with a singularity strength, A. On the
other hand, VII(x) has an inverse square as well as an inverse linear singularity at the origin
with respective strengths of A/4 and (2C− 2B− A)/4a. Moreover, both potentials vanish
at infinity. The upper limit on the number of bound states is obtained by evaluating the
integral

∫ ∞
0 xV−(x)dx, where V−(x) = −V(x)θ[−V(x)] and θ(x) is the step function [4,5].

For C > 0, the limits of integration 0 and ∞ become x±, which are finite, and the value of
the integral is also finite. However, for C < 0, the upper limit x+ is infinite and the integral
diverges. Consequently, with C > 0, the two potentials could support a mix of a finite
number of bound states and resonances, whereas if C < 0, the potentials could support
an infinite number of bound states without resonances. The proper values of the potential
parameters for supporting such structures must produce one or two positive real roots for
the cubic equation that results from the condition (dV/dx)x0

= 0 with x0 > 0. A necessary
(but perhaps not sufficient) condition for the existence of bound states is V(x0) < 0. The
existence of two different real positive roots of the cubic equation implies the possibility of
resonances. The cubic equations associated with VI(x) and VII(x) are:

Cs3 + 2(C− B + A)s2 + 6As + 4A = 0, (2a)

Ct3 + 2(C− B + A)t2 + (C− B + 4A)t + 2A = 0, (2b)

respectively, where s = (x/a)2 and t = (x/a)2 + 2(x/a). Since A and C are positive,
Descartes’ rule of signs [6] for Equations (2a,b) dictates that B must be greater than A + C
resulting in two positive real roots. Thus, the spectrum will then consist of a mixture of
a finite number of bound states and resonances. On the other hand, if C were negative,
Descartes’ rule of signs would have implied a single positive real root for Equations (2a,b),
resulting in an infinite number of pure bound states (without resonances). Figure 1 shows
several plots of the two potential functions (in units of A/a2) for a fixed value of the
parameter ratio C/A and for different values of B/A. Figure 2 presents a spectral phase
diagram (SPD) of the two potentials, showing the distribution of their corresponding
energy spectrum (scattering states, bound states, and resonances) as a function of the
potential parameters. It should be noted that the observations made above about the sign
of the potential parameter C are consistent with the SPDs shown in the figure. A detailed
description of the SPD, its benefits, and how to construct it are found in Ref. [7].
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Figure 1. The two potential functions VI(x) (1a) and VII(x) (1b) (in units of A) for several values of
the associated parameters: (a) VI(x) with C = 5A and several values of B, and (b) VII(x) with C = 2A
and several values of B.
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Figure 2. The spectral phase diagram (SPD) for: (a) VI(x), and (b) VII(x). The diagram shows the
distribution of the energy spectrum (scattering states “S”, bound states “B”, resonances “R”, and regions
where both bound states and resonances can occur (“B&R”) as a function of the potential parameters.

In the atomic units } = m = 1, where h is the Planck’s constant and m is the mass, the
time-independent Schrödinger equation in the configuration space x for the potential V(x)
and energy E is as follows: [

−1
2

d2

dx2 + V(x)− E
]

ψ(x) = 0. (3)

In the TRA [1,2], the solution of this equation, which we write as Dψ(x) = 0, where
D is the wave operator, is written as a bounded convergent series of discrete square-
integrable functions {φn}. That is, ψ(x) = ∑n fnφn(y), where y = y(x) is a coordinate
transformation and { fn} are the expansion coefficients. The basis set {φn}must be complete
and should result in a tridiagonal matrix representation for the wave operator, 〈φn|D|φm〉,
that is, the action of the wave operator on the basis element should read [1]:

Dφn(y) = W(y)[dnφn(y) + cn−1φn−1(y) + bnφn+1(y)], (4)

where W(y) is a nodeless entire function and {bn, cn, dn} are constant coefficients. More-
over, the integral

∫ x+
x−

φm(y)W(y)φn(y)dx must be proportional to δm,n, where δm,n is the
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Kronecker delta. Hence, the wave equation Dψ(x) = 0 becomes a three-term recursion
relation for the expansion coefficients { fn} as follows:

dnFn + bn−1Fn−1 + cnFn+1 = 0, (5)

where we have written fn = f0Fn, making F0 = 1. Accordingly, the solution of the
wave equation, Dψ(x) = 0, reduces to an algebraic solution of the discrete Equation (5).
Moreover, the set { fn} contains all physical information about the system modelled by
the potential. It should be noted that, in general, the discrete sequence {Fn} satisfying
the three-term recursion relation (5) is an infinite sequence. Moreover, if bncn > 0 for
all n, then {Fn}∞

n=0 is an orthogonal infinite sequence, that is,
∫ z+

z−
ω(z)Fn(z)Fm(z)dz ∝ δn,m,

where ω(z) is a positive weight function. However, as shown in Sections 2 and 3 below,
for the problem under consideration here, bncn > 0 only for n ≤ N. Therefore, only the
subsequence {Fn}N

n=0 forms an orthogonal set on the real line and thus we look for solutions
of the wave equation Dψ(x) = 0 in the form of a finite series ψ(x) = f0(z)∑N

n=0 Fn(z)φn(y).
To solve for the continuous spectrum or for an infinite discrete spectrum of a given

physical system, completeness of the set {φn} implies that it is an infinite and dense set.
However, for systems with a finite number of bound states, a finite basis set {φn}N

n=0 could,
actually, produce a physically faithful representation of the system, provided that the
number of bound states is less than or equal to the size of the basis N + 1. Additionally, for
a quasi-exact solution where one looks for a finite portion of the infinite discrete spectrum,
such a finite basis set could lead to a good approximation of that portion of the spectrum
with an accuracy that increases as N does.

For the finite number of bound states of the system modelled by either VI(x) or VII(x),
we choose a finite basis set with the following elements:

φn(y) = (y− 1)α(y + 1)−β J(µ,ν)
n (y), (6)

where J(µ,ν)
n (y) is the Romanovski–Jacobi (R-Jacobi) polynomial, defined on the semi-

infinite real line y(x) ≥ 1, as shown in Appendix A. The real basis parameters {α, β, µ, ν}
are to be determined below in terms of the physical parameters {a, A, B, C} by the TRA
constraints. Moreover, n = 0, 1, .., N with N =

⌊
− µ+ν+1

2

⌋
, where bzc stands for the largest

integer less than z. Therefore, the basis set, whose elements are given by Equation (6), is
finite with a size equal to N + 1.

In Sections 2 and 3, we use the TRA to solve this equation for the two potential models.
We conclude in Section 4 with some remarks and discussion of our findings.

2. TRA Solution of the Potential Model (1a)

In this case, we choose the coordinate transformation y(x) = (x/a)2 + 1. Writing the
differential operator d2

dx2 and the potential VI(x) in terms of the dimensionless variable y,
Equation (4) becomes:

Dψ(x) = − 2/a2

y + 1

[(
y2 − 1

) d2

dy2 +
y + 1

2
d

dy
− A

y− 1
+

B
y + 1

− C +
ε

2
(y + 1)

]
ψ(x) = 0, (7)

where ε = a2E. This equation is the confluent Heun equation (see, for example, Equa-
tion (1.1.4) on p. 90 of Heun’s Differential Equations [8]). The solutions of this equation as
an infinite expansion in terms of hypergeometric polynomials (Jacobi polynomials) are
described in Section 2.3 of [8]. Here, we use a similar treatment but within the frame-
work of the TRA and with finite expansion. Therefore, we write the solution as the series
ψ(x) = ∑n fnφn(y). Consequently, we need to evaluate the action of the wave operator
on the basis elements D|φn〉 and then impose the TRA constraint (5). To achieve this, we
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choose the basis parameters 2α = µ + 1
2 and 2β = −ν− 1, then use the differential equation

of the R-Jacobi polynomial,J(µ,ν)
n (y), given in Appendix A by Equation (A1), to obtain:

D|φn(y)〉 = − 1
a2

(y−1)α

(y+1)β+1

{
µ2− 1

4
y−1 −

ν2−1
y+1 + 1

2

[
(2n + µ + ν + 1)2 − 1

4

]
− 2A

y−1 + 2B
y+1 − 2C + ε(y + 1)

}
J(µ,ν)
n (y)

(8)

The TRA constraint (5) and the recursion relation of the R-Jacobi polynomials (A3)
dictate that the terms inside the curly brackets in Equation (8) must be linear in y. Thus,
one should choose the R-Jacobi polynomial parameters as:

µ2 = 2A +
1
4

, ν2 = 2B + 1. (9)

Reality dictates that A ≥ − 1
8 and B ≥ − 1

2 . These constraints are automatically
satisfied since A and B were already required to be positive. Moreover, the polynomial

parameters inequalities µ > −1 and µ + ν < −2N − 1 dictate that µ =
√

2A + 1
4 and

ν = −
√

2B + 1. This also shows that the maximum number of bound states that could be

obtained by our TRA solution, N + 1, becomes
⌊

1
2

(√
2B + 1−

√
2A + 1

4 − 1
)⌋

+ 1. With

these choices of basis parameters, Equation (8) becomes:

D|φn〉 = −
1
a2

(y− 1)α

(y + 1)β+1

{
1
2

[
(2n + µ + ν + 1)2 − 1

4

]
+ ε− 2C + εy

}
J(µ,ν)
n (y). (10)

Using the three-term recursion relation for the R-Jacobi polynomials (A3) in this
equation and comparing the result to the TRA constraint (5), we obtain:

W(y) =
−E

y + 1
, (11a)

dn =

{
1
2

[
(2n + µ + ν + 1)2 − 1

4

]
+ ε− 2C

}
1
ε
+

ν2 − µ2

(2n + µ + ν)(2n + µ + ν + 2)
, (11b)

bn =
2(n + 1)(n + µ + ν + 1)

(2n + µ + ν + 1)(2n + µ + ν + 2)
, cn =

2(n + µ + 1)(n + ν + 1)
(2n + µ + ν + 2)(2n + µ + ν + 3)

. (11c)

For n = 0, 1, .., N with N =
⌊
− µ+ν+1

2

⌋
, we can show that bncn > 0 for all n ≤ N.

Then, according to Favard’s theorem [9] (also called the spectral theorem, see Section 2.5
in [10]), the sequence {Fn(z)}N

n=0, satisfying the three-term recursion relation (5), forms a
set of orthogonal polynomials with f 2

0 (z) being the positive definite weight function. The
polynomial argument z depends on the energy ε and the potential parameter C. The weight
function, f 2

0 (z), for the orthogonal TRA sequence, {Fn(z)}, should not be confused with the

weight function (y− 1)µ(y + 1)ν for the R-Jacobi polynomial J(µ,ν)
n (y). Nonetheless, the

two orthogonal polynomials along with certain powers of their weight functions appear in
the wavefunction series as follows:

ψ(x) = ∑n fnφn(y) = f0(z)(y− 1)α(y + 1)−β∑nFn(z)J(µ,ν)
n (y). (12)

If we define the polynomial,

Pn =
(µ + 1)n(ν + 1)n
n!(µ + ν + 1)n

µ + ν + 1
2n + µ + ν + 1

Fn := GnFn, (13)



Physics 2022, 4 1072

then, the recursion relation (5) written for {Pn} becomes identical to that of the polyno-
mial H̃(µ,ν)

n (z; γ, θ), shown in Appendix A as Equation (A8) with the following argument
and parameters:

z2 =
1

C(C− ε)
, γ2 =

1
16

, cosh θ =
ε− 2C

ε
. (14)

Consequently, the kth bound state wavefunction with energy Ek = εk/a2 is written as
the following finite series:

ψk(x) ≈ f0(zk)(x/a)µ+ 1
2
[
(x/a)2 + 2

] ν+1
2

N

∑
n=0

G−1
n H̃(µ,ν)

n

(
zk;

1
4

, θk

)
J(µ,ν)
n (y), (15)

where µ =
√

2A + 1
4 , ν = −

√
2B + 1, Gn is defined in Equation (13), and zk and θk are

defined in Equation (14). Therefore, once the energy eigenvalue Ek is obtained, the finite
series (15) will give a representation of the corresponding bound state. The physical
properties of the system (e.g., the energy spectrum) is obtained from the analytic properties
of the TRA polynomial H̃(µ,ν)

n (z; γ, θ) such as its weight function, generating function, zeros,
asymptotics, etc. Unfortunately, these properties are not yet known and deriving them
remains an open problem in orthogonal polynomials [11,12]. Therefore, we had to resort
to numerical means to obtain the bound states energy spectrum. Table 1 shows the full
energy spectrum of VI(x) for the given set of values of the potential parameters. We used
two numerical methods:

(1) The Lagrange mesh method (LMM) parametrized by a linear grid of size M and a
variational scale parameter h. See Appendix B.2 and [13,14] for more details.

(2) Hamiltonian matrix diagonalization (HMD) in a complete Laguerre basis as explained
in Appendix B.1 below.

Table 1. The negative of the complete energy spectrum (in units of 1/a2) for the poten-
tial VI(x) obtained using LMM and HMD techniques for the potential parameter values:
{a, A, B, C} = {1, 10, 1000, 250}making N = 19. For the LMM, the variational parameter h = 0.1 and
a grid size M = 100 are used, whereas for the HMD, the scale parameter λ = 80 and a matrix size
M = 100 are considered. See text for details.

n HMD LMM

0 118.975 956 421 536 118.975 956 421 534
1 80.435 591 712 686 80.435 591 712 687
2 47.013 687 512 153 47.013 687 512 147
3 18.794 202 298 767 18.794 202 298 770

Figure 3a is a plot of the un-normalized bound state wavefunctions corresponding to
the energy spectrum in Table 1. The red solid trace is the finite-series approximation (15),
whereas the superimposed blue dotted trace is produced by a robust numerical routine
that gives a highly accurate evaluation of the wavefunction. The routine evaluates a
normalized eigenvector of the matrix wave equation using the corresponding eigenvalue
in addition to a set of eigenvalues of an abbreviated submatrix. Such evaluation avoids
direct computation of eigenvectors of matrices that could result in reduced accuracy and/or
convergence, especially for large matrix sizes. The accuracy is further enhanced due to the
tridiagonal matrix representations of the wave operator in the TRA. In such representations,
one is at liberty to utilize various robust computational packages specialized for use with
such matrices in which Gaussian quadrature, continued fractions, and other tools are
available. The figure shows a very good match with about 3× 10−4 average deviation
(defined as the absolute difference between the two traces divided by their sum over the
entire range).
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Table 2. The negative of the complete energy spectrum (in units of 1/a2) for the poten-
tial VII(x) obtained using LMM and HMD techniques for the potential parameter values:
{a, A, B, C} = {1, 10, 1000, 500}making N = 19. For the LMM, the variational parameter h = 0.0028
and a grid size M = 100 are used, whereas for the HMD, the scale parameter λ = 250 and a matrix
size M = 100 are used.

n HMD LMM

0 3035.684 174 172 442 3035.684 174 170 930
1 1230.873 985 966 404 1230.873 985 965 147
2 482.923 837 697 235 482.923 837 696 618
3 134.670 968 410 057 134.670 968 409 830
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3. TRA Solution of the Potential Model (1b)

We repeat the same treatment in Section 2 for the potential model VII(x). However,
we choose the following coordinate transformation and basis parameters:

y(x) = 2[(x/a) + 1]2 − 1, 2α = µ + 1, 2β = −ν− 1
2

. (16)

Subsequently, the action of the wave operator on the basis elementsD|φn〉 becomes the
confluent Heun equation [8]. Using the differential equation of the R-Jacobi polynomial (A1),
this equation reduces to the following:

D|φn(y)〉 = − 2
a2

(y−1)α−1

(y+1)β

{
µ2−1
y−1 −

ν2− 1
4

y+1 + 1
2 (2n + µ + ν + 1)2 − 1

8

− 2A
y−1 + 2B

y+1 − C + ε
2 (y− 1)

}
J(µ,ν)
n (y)

(17)

The TRA constraint (5) and the recursion relation of the R-Jacobi polynomials (A3)
dictate that we assign the following values to the R-Jacobi polynomial parameters:

µ2 = 2A + 1, ν2 = 2B +
1
4

. (18)

Reality dictates that A ≥ − 1
2 and B ≥ − 1

8 . Moreover, the polynomial parameters

inequalities µ > −1 and µ + ν < −2N − 1 dictate that µ =
√

2A + 1 and ν = −
√

2B + 1
4 .

This also shows that the maximum number of bound states that could be obtained by the

TRA solution, N + 1, becomes
⌊

1
2

(√
2B + 1

4 −
√

2A + 1− 1
)⌋

+ 1. With these choices of

basis parameters, Equation (17) becomes:

D|φn〉 = −
1
a2

(y− 1)α−1

(y + 1)β

[
(2n + µ + ν + 1)2 − 1

4
− (2C + ε) + εy

]
J(µ,ν)
n (y). (19)

Using the three-term recursion relation for the R-Jacobi polynomials (A3) in this
equation and comparing the result to the TRA constraint (5), one obtains:

W(y) =
−E

y− 1
, (20a)

dn =

[
(2n + µ + ν + 1)2 − 1

4
− (2C + ε)

]
1
ε
+

ν2 − µ2

(2n + µ + ν)(2n + µ + ν + 2)
, (20b)

bn =
2(n + 1)(n + µ + ν + 1)

(2n + µ + ν + 1)(2n + µ + ν + 2)
, cn =

2(n + µ + 1)(n + ν + 1)
(2n + µ + ν + 2)(2n + µ + ν + 3)

. (20c)

Consequently, the recursion relation (5), written in terms of {Pn} and defined in
Equation (13), becomes identical to Equation (A8) of the TRA polynomial H̃(µ,ν)

n (z; γ, θ)
with the following parameter and argument relations:

z2 =
4

C(C + ε)
, γ2 =

1
16

, cosh θ =
ε + 2C
−ε

. (21a)

The condition that cosh θ ≥ 1 dictates that −C < ε < 0 is the same condition that
guarantees the reality of z. On the other hand, for ε < −C, comparing the recursion
relation (5), written for {Pn}, to Equation (A7), we conclude that Pn = H(µ,ν)

n (z; γ, θ) with

z2 =
−4

C(C + ε)
, γ2 =

1
16

, cos θ =
ε + 2C
−ε

. (21b)
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Finally, the kth bound state wavefunction with energy Ek = εk/a2 is written as the
following finite series for −C < εk < 0:

ψk(x) = 2
µ+ν

2 + 3
4 f0(zk)

( x
a
+ 1
)ν+ 1

2
[( x

a

)2
+ 2

x
a

] µ+1
2 N

∑
n=0

G−1
n H̃(µ,ν)

n

(
zk;

1
4

, θk

)
J(µ,ν)
n (y).

(22a)
On the other hand, for εk < −C, the wavefunction becomes:

ψk(x) = 2
µ+ν

2 + 3
4 f0(zk)

( x
a
+ 1
)ν+ 1

2
[( x

a

)2
+ 2

x
a

] µ+1
2 N

∑
n=0

G−1
n H(µ,ν)

n

(
zk;

1
4

, θk

)
J(µ,ν)
n (y),

(22b)

where µ =
√

2A + 1, ν = −
√

2B + 1
4 , Gn is defined in Equation (13), and zk and θk

are defined in Equations (21a,b), respectively. The physical properties of the system are
obtained from those of the TRA polynomials H(µ,ν)

n (z; γ, θ) and H̃(µ,ν)
n (z; γ, θ), which have

yet to be obtained and remain an open problem in orthogonal polynomials. Table 2 shows
the full energy spectrum of VII(x) for the given set of values of the potential parameters
obtained using LMM and HMD. A comparison of the results listed in Tables 1 and 2 shows
that our calculation with VII(x) is less accurate than that with VI(x). We believe that this
accuracy deficiency is most likely due to the long range 1/x singularity present in VII(x)
but not VI(x). To give a pictorial representation demonstrating this deficiency, in Figure 4
we show the two potential plots with the energy spectrum superimposed. One can observe
three features that contribute to the computational difficulty:

(1) VII(x) is deeper, sharper, and has a slower decay compared to VI(x);
(2) The ground state from the bottom of the potential VII(x) is much higher when com-

pared to VI(x);
(3) The reduction in the energy spacing of the VII(x) spectrum is much more rapid when

compared to VI(x).
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and results of Tables 1 and 2 are used. One can observe the three features of VII(x) (b), mentioned at the
end of Section 3, which are the source of deficiency in the computational accuracy compared to VI(x) (a).

Figure 3b is a plot of the un-normalized bound state wavefunctions corresponding to
the energy spectrum shown in Table 2. The red solid trace is the finite-series approximation
(22), whereas the superimposed blue dotted trace is produced by a robust numerical routine
that gives a highly accurate evaluation of the wavefunction. The figure shows quite a good
match, with about a 3× 10−4 average deviation (defined as the absolute difference between
the two traces divided by their sum over the entire range).
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4. Conclusions

The potential plots in Figure 1 and the spectral phase diagram in Figure 2 show that
the two potential functions, introduced in this paper, have a rich structure. Therefore,
these potentials can be used to model various physical systems with a wide range of
structural and dynamical properties. These two potentials do not belong to the class of
exactly solvable quantum mechanical problems. Nonetheless, we were able to use the
tridiagonal representation approach and obtain a reasonably accurate approximation of the
bound state solutions with the constraint that all potential parameters are positive. That
is, the tridiagonal representation approach (TRA) solution space is confined to the green
“B&R” region of the spectral phase diagram (SPD). We should also mention that for C < 0,
the TRA can also be used to obtain an approximation for the lowest

⌊
− µ+ν+1

2

⌋
+ 1 bound

states. In the SPD, these solutions lie in the blue “B” region.
The shortcoming of the solution found here is that the analytic properties of the TRA

polynomials H(µ,ν)
n (z; γ, θ) and H̃(µ,ν)

n (z; γ, θ), which contain all the physical properties of
the system, are yet to be derived. This is a mathematical problem which goes beyond the
scope of this work and the expertise of the authors. However, for the complete descriptions
of the solution given by Equations (15) and (22), one needs only the corresponding energy
eigenvalue Ek. We used two independent numerical routines to obtain a highly accurate
evaluation of the complete energy spectrum, as shown in the tables.

We should also note that increasing the accuracy of our results requires us to increase
the size of the basis, which is not possible in this problem since N is fixed by the values
of the potential parameters A and B. In other finite TRA solutions where N depends on
arbitrary basis parameter(s) and/or the energy, such an increase in accuracy is possible.
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Abbreviations

The following abbreviations are used in this paper:

HMD Hamiltonian matrix diagonalization
LMM Lagrange mesh method
R-Jacobi Romanovski–Jacobi [15]
R-Routh Romanovski-Routh [21]
SPD spectral phase diagram
TRA tridiagonal representation approach

Appendix A. Romanovski–Jacobi Polynomial

The Romanovski–Jacobi (R-Jacobi) polynomials [15] are a finite orthogonal subset of
the Jacobi polynomials and defined over the semi-infinite interval y ≥ 1. They belong to
one of the three schemes in Lesky’s classification [16,17]. To distinguish them from the
conventional Jacobi polynomials P(µ,ν)

n (y) defined on the finite interval −1 ≤ y ≤ +1,
we use the notation J(µ,ν)

n (y), used by Natanson [18] (the conventional notation R(µ,ν)
n (y)
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used by many (see, e.g., [19,20]) was changed to distinguish between R-Jacobi and R-Routh
polynomials [21], both denoted by the same letter ‘R’):

J(µ,ν)
n (y) =

Γ(n + µ + 1)
Γ(n + 1)Γ(µ + 1) 2F1

(
−n,n+µ+ν+1

µ+1

∣∣∣1− y
2

)
= (−1)n J(ν,µ)

n (−y). (A1)

Here, n = 0, 1, 2, ..., N, µ > −1, and µ + ν < −2N − 1. This satisfies the following
differential equation:{(

y2 − 1
) d2

dy2 + [(µ + ν + 2)y + µ− ν]
d

dy
− n(n + µ + ν + 1)

}
J(µ,ν)
n (y) = 0. (A2)

This also satisfies the following three-term recursion relation:

y J(µ,ν)
n (y) = ν2−µ2

(2n+µ+ν)(2n+µ+ν+2) J(µ,ν)
n (y)

+ 2(n+µ)(n+ν)
(2n+µ+ν)(2n+µ+ν+1) J(µ,ν)

n−1 (y) + 2(n+1)(n+µ+ν+1)
(2n+µ+ν+1)(2n+µ+ν+2) J(µ,ν)

n+1 (y),
(A3)

and the following differential relation:

(y2 − 1) d
dy J(µ,ν)

n = 2(n + µ + ν + 1)
[

(ν−µ)n
(2n+µ+ν)(2n+µ+ν+2) J(µ,ν)

n

− (n+µ)(n+ν)
(2n+µ+ν)(2n+µ+ν+1) J(µ,ν)

n−1 + n(n+1)
(2n+µ+ν+1)(2n+µ+ν+2) J(µ,ν)

n+1

] (A4)

The associated orthogonality relation reads as follows:

∞∫
1

(y− 1)µ(y + 1)ν J(µ,ν)
n (y)J(µ,ν)

m (y)dy =
2µ+ν+1

2n + µ + ν + 1
Γ(n + µ + 1)Γ(n + ν + 1)
Γ(n + 1)Γ(n + µ + ν + 1)

sin πν

sin π(µ + ν + 1)
δnm, (A5)

where n, m ∈ {0, 1, 2, ..., N}. Equivalently (see Equation 4.9 in Ref. [19]),

∞∫
1

(y− 1)µ(y + 1)ν J(µ,ν)
n (y)J(µ,ν)

m (y)dy =
(−1)n+12µ+ν+1

2n + µ + ν + 1
Γ(n + µ + 1)Γ(n + ν + 1)Γ(−n− µ− ν)

Γ(n + 1)Γ(−ν)Γ(ν + 1)
δnm. (A6)

The TRA polynomial H(µ,ν)
n (z; α, θ) is defined in Ref. [11] by its three-term recursion

relation, Equation (8) therein, which we rewrite here as:

(cos θ)H(µ,ν)
n (z; γ, θ) =

{[(
n + µ+ν+1

2

)2
− γ2

]
z(sin θ)− ν2−µ2

(2n+µ+ν)(2n+µ+ν+2)

}
H(µ,ν)

n (z; γ, θ)

− 2(n+µ)(n+ν)
(2n+µ+ν)(2n+µ+ν+1) H(µ,ν)

n−1 (z; γ, θ)− 2(n+1)(n+µ+ν+1)
(2n+µ+ν+1)(2n+µ+ν+2) H(µ,ν)

n+1 (z; γ, θ) ,

(A7)

where H(µ,ν)
0 (z; α, θ) = 1 and H(µ,ν)

−1 (z; α, θ) := 0. For some ranges of values of the polyno-

mial parameters, it is more appropriate to define H̃(µ,ν)
n (z; γ, θ) = H(µ,ν)

n (−iz; α, iθ), which
maps the recursion (A7) into:

(cosh θ)H̃(µ,ν)
n (z; γ, θ) =

{[(
n + µ+ν+1

2

)2
− γ2

]
z(sinhθ)− ν2−µ2

(2n+µ+ν)(2n+µ+ν+2)

}
H̃(µ,ν)

n (z; γ, θ)

− 2(n+µ)(n+ν)
(2n+µ+ν)(2n+µ+ν+1) H̃(µ,ν)

n−1 (z; γ, θ)− 2(n+1)(n+µ+ν+1)
(2n+µ+ν+1)(2n+µ+ν+2) H̃(µ,ν)

n+1 (z; γ, θ).

(A8)
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Appendix B. Energy Spectrum Calculations

Appendix B.1. Hamiltonian Matrix Diagonalization in the Laguerre Basis

For this calculation, we choose the following complete basis:

χm(x) = Cm(z)
σ
2 +

1
2 e−z/2Lσ

m(z), (A9)

where z = λx, Lσ
m(z) is the Laguerre polynomial, and Cm =

√
m!/Γ(m + σ + 1). The

positive scale parameter λ is an optimization parameter with inverse length dimension.
The action of the kinetic energy operator on the basis (A9) is as follows:

− 1
2

d2χm

dx2 = −λ2

2
Cm(z)

σ
2−

1
2 e−z/2

[
−1

2
(2m + σ + 1) +

σ2 − 1
4z

+
z
4

]
Lσ

m(z), (A10)

where we have used the differential equation of the Laguerre polynomial. To obtain
the action of the Hamiltonian operator on the basis (A9), we add to (A10) the following
potential energy component VI(x)χm(x):

VI χm = λ2Cm(z)
σ
2 +

1
2 e−z/2

{
A
z2 +

2C− A

z2 + 2(λa)2 −
2(λa)2B

[z2 + 2(λa)2]
2

}
Lσ

m(z). (A11)

To eliminate the singular z−1 term inside the square brackets of (A10), we match it with
the singular z−2 term inside the curly brackets of (A11) by choosing σ2 = 1+ 8A. Using the
recursion relation and orthogonality of the Laguerre polynomials, the Hamiltonian matrix
in the basis (A9) with σ =

√
1 + 8A becomes:

〈χn|H|χm〉 = λ2

8

[
(2n + σ + 1)δn,m + δn,m+1

√
n(n + σ) + δn,m−1

√
(n + 1)(n + σ + 1)

]
+λ2(2C− A)〈n| z

z2+2(λa)2 |m〉 − 2a2λ4B〈n| z
[z2+2(λa)2]

2 |m〉,
(A12)

where we define:

〈n|g(z)|m〉 = CnCm

∫ ∞

0
(z)σe−zg(z)Lσ

n(z)Lσ
m(z)dz. (A13)

We can use the Gaussian quadrature associated with the Laguerre polynomial to
obtain a very good approximation of this integral. Moreover, the basis overlap matrix
is Ωn,m = 〈χn|χm〉 = (2n + σ + 1)δn,m − δn,m+1

√
n(n + σ)− δn,m−1

√
(n + 1)(n + σ + 1).

The accuracy in the evaluation of the two integrals in (B4) improves with the size of the
basis {χm(x)}M

m=0 and an optimized choice for the scale parameter λ. Finally, with the
matrices H and Ω being determined, we can obtain the energy spectrum {Ek} from the
generalized eigenvalue equation H|ψk〉 = EkΩ|ψk〉. In Table 1, these results are listed for
the given basis size M and optimization parameter λ.

For the potential VII(x), we repeat the same procedure in the same basis (A9) but
with σ =

√
1 + 2A. Consequently, we obtain the following matrix elements of the

Hamiltonian matrix:

〈χn|H|χm〉 = λ2

8

[
(2n + σ + 1)δn,m + δn,m+1

√
n(n + σ) + δn,m−1

√
(n + 1)(n + σ + 1)

]
− λ2

2 (A + 2B− 2C)〈n| 1
z+2λa |m〉+ λ2 A

4 〈n|
z

(z+2λa)2 |m〉+ λ2B〈n| z
(z+λa)2 |m〉

(A14)

The energy spectrum {Ek} is obtained from the generalized eigenvalue equation
H|ψk〉 = EkΩ|ψk〉. In Table 2, these results are listed for the given basis size, M, and
optimization parameter, λ.
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Appendix B.2. Lagrange Mesh Method

For this calculation, we use the Lagrange-mesh method (LMM) based on Gaussian
quadrature associated with the Laguerre polynomial [13,14]. Starting with the Schrödinger
Equation (3), and using the Lagrange–Laguerre basis [13]:

ϕi(x) =
(−1)ix√
xi(x− xi)

e−x/2LM(x), (A15)

with i = 1, 2, .., M and xi being one of the (dimensionless) zeros of the Laguerre poly-
nomial LM(x). Consequently, the wave equation reduces to the following generalized
eigenvalue equation: [

1
2h2

↔
T +

↔
Vh

]
|ζ〉 = E(Ξ|ζ〉), (A16)

where: (↔
T
)

ij
=


1

12x2
i

[
4 + (4M + 2)xi − x2

i
]
− 1

4 Sii , i = j,[
xi+xj

(xi−xj)
2 − 1

4

]
Sij , i 6= j,

(A17)

with Sij = (−1)i−j/√xixj,
(↔

Vh

)
ij
= V(hxi)δij, and Ξij = δij + Sij is the basis overlap

matrix [13]. The variational parameter h is chosen within a range, where the eigenvalues
are stable.
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