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Abstract: When gravity is quantum, the point structure of space-time should be replaced by a non-
commutative geometry. This is true even for quantum gravity in the infra-red. Using the octonions as
space-time coordinates, we construct pre-spacetime, pre-quantum Lagrangian dynamics. We show
that the symmetries of this non-commutative space unify the standard model of particle physics with
SU(2)R chiral gravity. The algebra of the octonionic space yields spinor states which can be identified
with three generations of quarks and leptons. The geometry of the space implies quantisation of
electric charge, and leads to a theoretical derivation of the mysterious mass ratios of quarks and the
charged leptons. Quantum gravity is quantisation not only of the gravitational field, but also of the
point structure of space-time.

Keywords: quantum gravity; quantum foundations; trace dynamics; noncommutative geometry;
octonions; unification; standard model; mass ratios

1. When Is Quantum Gravity Necessary?

Consider a massive object in a quantum superposition of its two different classical
position states A and B. The resulting gravitational field is also then in a superposition of
the field corresponding to position A and the field corresponding to position B. A clock
kept at a field point C will not register a definite value of time, nor will a measurement of the
metric yield a well-defined result [1]. Let us now imagine a thought experiment in which
every object in today’s universe is in a superposition of its two different position states.
The space-time metric will then undergo quantum fluctuations. Now, the Einstein hole
argument shows that, in order for space-time points to be operationally distinguishable, the
manifold must be overlaid by a (classical) metric [2]. Therefore, in our thought experiment,
the point structure of space-time is lost, even though the energy scales of interest are much
smaller than Planck scale, and the gravitational fields are weak.

When we describe microscopic systems by the laws of quantum theory, we take it for
granted that the universe is dominated by classical bodies, so that a background space-time
can be achieved and is available for defining time evolution of quantum systems. However,
if everything were to be quantised at once, in the sense of the aforementioned thought
experiment, no classical time will be available, and yet we ought to be able to describe
the dynamics. This is an example of quantum gravity in the infra-red (QG in IR): the
action of the gravitational field is much larger than the reduced Planck’s constant, h̄ (unlike
for Planck scale quantum gravity), and yet the point structure of space-time is lost. The
manifold has to be replaced by something non-classical: quantum gravity is quantisation
not only of the gravitational field, but also of the point structure of space-time.

Since the energy scale is not a relevant criterion for deciding whether gravity is classical
or quantum, we propose that a gravitational field is quantum in nature when one or more of
the following three (energy independent) criteria are satisfied: (i) the time scales of interest
are of the order of Planck time, tP; (ii) the length scales of interest are of the order of Planck
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length, LP; and (iii) every sub-system has an action of the order h̄ (and is hence quantum
and obeys quantum superposition). If (iii) holds but (i) and (ii) do not, we have QG in IR If
(iii) holds along with (i) and (ii), then we have quantum gravity in the UV (ultra-violet).

Put differently, there ought to exist a reformulation of quantum (field) theory, even at
low energies, which does not depend on classical time. Such a reformulation is essential
also for the standard model of particle physics. In fact, we show that it helps us understand
why the standard model has the symmetries it does, and why its free parameters take the
specific values they do, and also shows how to unify gravity with the other fundamental
forces: electroweak (EW) and strong. We construct such a dynamics using tP, LP and h̄ as
the only three fundamental parameters in the theory. We note that in these units the low
energy fine structure constant, α f = e2/h̄c ≡ e2 tP/h̄LP ∼ 1/137, where e is electron charge
and c is the speed of light, is order unity and hence quantum gravitational in origin (QG
in IR). On the other hand, particles masses, m ∼ εmP ≡ εh̄tP/L2

P, are not because ε � 1.
However, mass ratios (at low energies) can be, and, in fact, are quantum gravitational
in origin.

To achieve our goal, we build on Adler’s pre-quantum theory, i.e., trace dynamics
(TD) [3,4]. Starting from classical Lagrangian dynamics, TD retains the classical space-time
manifold, but all configuration variables and their canonical momenta are raised to the
status of matrices (equivalently operators). This step is the same as in quantum theory;
however, the canonical Heisenberg commutation relations, [q, p] = ih̄, are not imposed;
here, q and p are canonical configuration variable and momentum, respectively. Instead, we
have a matrix-valued Lagrangian dynamics, where the Lagrangian is the trace of a matrix
polynomial made from matrix-valued configuration variables and their time derivatives
(i.e., the velocities). A ‘trace’ derivative enables the derivation of Lagrange equations of
motion, and a global unitary invariance of the trace Hamiltonian (this being an elementary
consequence of invariance of the trace under cyclic permutations) implies the existence of
the novel conserved Noether charge, C̃ ≡ ∑i [qi, pi], where i stands for the various degrees
of freedom. The Hamiltonian of the theory is in general not self-adjoint, and dynamical
evolution is not restricted to be unitary. Assuming these dynamics hold on Planck time
scale resolution, one asks what the averaged dynamics on lower energy scales will be, if
one coarse-grains the dynamics on time scales much larger than Planck time. Using the
techniques of statistical thermodynamics, it is shown that, if the anti-self-adjoint part of
the Hamiltonian is negligible, the emergent dynamic is relativistic quantum (field) theory.
The aforementioned Noether charge is equi-partitioned over all bosonic and fermionic
degrees of freedom, and canonical commutation and anti-commutation relations emerge
for the statistically averaged canonical variables, which obey the Heisenberg equations
of motion. If the anti-self-adjoint part of the Hamiltonian becomes significant (this is
enabled by large-scale quantum entanglement), spontaneous localisation results, leading to
the quantum-to-classical transition and emergence of classical dynamics. For a detailed
explanation of the emergence of the classical universe, the reader is referred to Section XIII
of [5].

2. Replacing the Point Structure of Spacetime by the Non-Commutative Geometry of
the Octonions

Next, TD is generalised, so as to replace the four-dimensional (4D) Minkowski space-
time manifold by a higher dimensional non-commutative space-time, and incorporate
matrix-valued pre-gravitation, thus taking TD to a pre-space-time, pre-quantum theory.
Let us recall that, in special relativity, given the four-vector Vµ = dt t̂ + dx x̂ + dy ŷ + dz ẑ
connecting two neighbouring space-time points having a separation (dt, dx, dy, dz), one
can define the line element, ds2 = ηµνVµVν, and the four-velocity, dqµ/ds, of a particle
having the configuration variable, qµ = (qt, qx, qy, qz). Here, Greek letters denote the time
(0) and space components, and ηµν is the flat spacetime metric. The action for the particle is
mc
∫

ds, where m is the particle mass, and the transition to curved space-time and general
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relativity (GR) is made by introducing the metric gµν, i.e., ds2 = gµνdxµdxν, and writing
down the action,

S =
c4

16πG

∫
d4x

√
−g R + ∑

i
mic

∫
ds + SYM (1)

Here, the first term is the Einstein–Hilbert action, SYM stands for the action of Yang–
Mills fields and also includes their current sources, G is the Newtonian constant of gravity,
g is the deteminant of gµν, and R stands for scalar curvature.

We now generalise this action to construct a pre-spacetime, pre-quantum action prin-
ciple [6], from which the sought for quantum theory without classical time emerges, and
whose symmetries imply the standard model of particle physics and fix its free parameters.
The space-time coordinates (t, x, y, z) are replaced by a set {ei, i = 0, 1, 2, . . . , m− 1} of
m non-commuting coordinates, to be specified later in this Section. The configuration
variable qµ for a particle is replaced by a matrix qF, whose entries are odd-grade Grass-
mann elements over the field of complex numbers (so as to represent fermions). qF has
m components qi

F, one for each of the coordinates ei, i.e., qF = (q0
F e0 + · · ·+ q(m−1)

F em−1).
The point structure of space-time is lost; instead, we have a non-commutative geometry,
and the matrix-valued velocity is defined as dqF/dτ ≡ q̇F. Here, the newly introduced
Connes time, τ, is a unique property of a non-commutative geometry; it is an absolute
real-valued time parameter distinct from the non-commuting coordinates ei, and is used to
describe evolution [7].

To introduce pre-gravitation into trace dynamics, we recall the spectral action principle
of Chamseddine and Connes, according to which the Einstein–Hilbert action can be cast
in terms of the eigenvalues of the square of the (regularised) Dirac operator, DB, on a
Riemannian manifold, by making use of a truncated heat kernel expansion [8]:

Tr [L2
P D2

B] ∼
∫

d4x
√

g
R
L2

P
+O(L0

P) ∼ L2
P ∑

n
λ2

n . (2)

Here, the eigenvalues λn of the Dirac operator play the role of dynamical variables of
general relativity [9]. Following trace dynamics, each eigenvalue λn is raised to the status
of a canonical matrix momentum: λn → pBn ∝ qBn/dτ ≡ DB, and the bosonic matrix
qB (with even grade Grassmann elements as entries) is now the configuration variable,
and it has m matrix components qm

B over the non-commuting coordinates ei. Therefore,
we have N copies of the Dirac operator (n runs from 1 to N, with N → ∞). The trace
Lagrangian (space-time part) of the matrix dynamics for the n-th degree of freedom is
given by L2

P Tr (dqBn/dτ)2. The full action for the total matrix dynamics (space-time part)
is S ∼ ∑n

∫
dτ L2

P Tr (dqBn/dτ)2. Yang–Mills fields are expressed by the matrices qBn,
pre-gravitation by the q̇Bn, the fermionic degrees of freedom by fermionic matrices qFn and
by their ‘velocities’, q̇Fn. Each of the n degrees of freedom has a fundamental action, which
is given by [5,10]

S
h̄
=

a0

2

∫ dτ

τP
Tr
[

q̇†
B + i

α

L
q†

B + a0β1

(
q̇†

F + i
α

L
q†

F

)]
×
[

q̇B + i
α

L
qB + a0β2

(
q̇F + i

α

L
qF

)]
, (3)

where a0 ≡ L2
P/L2, and τP is Planck time. The net action of this generalised trace dynamics

is therefore the sum over n of N copies of the above action, one copy for each degree of
freedom, and this new action replaces action (1) in the pre-theory. This full action defines
the pre-spacetime, pre-quantum theory, with each degree of freedom (defined by the above
action) considered as an ‘atom’ of space-time-matter (an STM atom). L is a length parameter
(scaled with respect to LP; qB and qF have dimensions of length), which characterise the
STM atom, and α is the dimensionless Yang–Mills coupling constant. β1 and β2 are two
unequal complex Grassmann numbers [5].
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The subsequent analysis of this pre-space-time, pre-quantum theory is carried out
analogously to the pre-quantum trace dynamics. Equations of motion are derived, and
there is again a conserved Noether charge. Assuming that the theory is valid at the
Planck time scale, the coarse-grained emergent low-energy approximation obeys quantum
commutation rules and Heisenberg equations of motion, and this is also the sought for
reformulation of quantum theory without classical time. The emergent dynamics is also the
desired quantum theory of QR in IR. If a sufficient number of STM atoms get entangled, the
anti-self-adjoint part of the Hamiltonian becomes important, and spontaneous localisation
results; the fermionic part of the entangled STM atoms gets localised. There hence emerges
a 4D classical space-time manifold (labelled by the positions of collapsed fermions), which
is sourced by point masses and by gauge fields, and whose geometry obeys the laws of GR
given above by Equation (1). Those STM atoms which are not sufficiently entangled, con-
tinue to remain quantum; their dynamics are described by the low energy pre-theory itself,
or approximately by quantum field theory on the 4D space-time background generated by
the entangled and collapsed fermions (these being the macroscopic bodies of the universe).

Note that the non-commutative coordinate system {ei ; i = 1, 2, . . . , n} is not impacted
by the coarse-graining. The averaging takes place only over the time-scale τ and hence
over energy; therefore, the non-commuting coordinates ei remain valid at low energies as
well. What, then, should we choose as our ei, in place of the four real numbers (t, x, y, z)
which label the 4D space-time manifold in classical physics? We take clue from the normed
division algebras, i.e., number systems, in which the four operations of addition, subtrac-
tion, multiplication and division can be defined. There are only four such number systems:
real numbers R, complex numbers C, quaternions H, and the octonions O. A quaternion,
H = (a0e0 + a1 î + a2 ĵ + a3k̂), is a generalisation of complex numbers, such that the ai here
are reals, e2

0 = 1 and

î2 = ĵ2 = k̂2 = −1 ; î ĵ = − ĵî = k̂; ĵk̂ = −k̂ ĵ = î; k̂î = −îk̂ = ĵ . (4)

Quaternions are used to describe rotations in three dimensions, and the automorphism
group formed by the three imaginary directions is SO(3). Complex quaternions C×H
generate the Lorentz algebra SL(2,C) ∼ SO(1, 3) and the Clifford algebra Cl(2), if one of
the three quaternionic imaginary directions is kept fixed. If no direction is kept fixed, they
generate the Lorentz algebra in 6D: SL(2,H) ∼ SO(1, 5) and the Clifford algebra Cl(3).
However, they are not a big enough number system for unifying all the standard model
symmetries with the Lorentz symmetry, whereas the octonions seem to be just right for
that purpose.

An octonion is defined as O = a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 such
that the ai are reals, e2

0 = 1, each of the seven imaginary directions (e1, e2, . . . , e7) squares to
−1, these directions anti-commute with each other, and their multiplication rule is given
by the so-called Fano plane. Octonionic multiplication is non-associative. The imaginary
directions form the automorphism group G2, which is the smallest of the five exceptional
Lie groups G2, F4, E6, E7, E8, all of which have to do with the symmetries of the octonion
algebra. F4 is the automorphism group of the exceptional Jordan algebra: the algebra
of 3× 3 Hermitean matrices with octonionic entries, and E6 is the automorphism group
of the complexified exceptional Jordan algebra [11]. The octonions are what is thought
for non-commuting coordinates ei, on which the action principle (3) is constructed. They
generate 10D space-time: SL(2,O) ∼ SO(1, 9). The coordinate geometry of the octonions
dictates the allowed symmetry groups, and definition and properties of fermions such as
quantisation of electric charge [12], value of the low energy fine structure constant [13], and
mass-ratios [14]. The parameter L and the coupling constant α in (3) are determined by the
algebra of the octonions, not by the dynamics of qF and qB. This way, not only does the
geometry tell matter how to move, it also tells matter what to be. The dynamical variables
(qB, qF) curve the flat geometry {ei}; however, even before the dynamics are switched on,
the low-energy standard model of particle physics is fixed by the ei, unlike when space-time
is R4. The transition ei → qi

Fei + qi
Bei is akin to the transition ηµνxµxν → gµνxµxν, with the
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important difference that the former transition takes place at the ‘square-root of metric’
level, as if for tetrads, and the matrices qB and qF incorporate standard model forces besides
gravity, and also fermionic matter. In fact, with the redefinition, ˙̃QB ≡ (iαqB + Lq̇B)/L and
˙̃QF ≡ (iαqF + Lq̇F)/L, the Lagrangian in Equation (3) can be brought to the elegant and

revealing form, as if describing a two-dimensional (because β1 6= β2) free particle:

S
h̄
=

a0

2

∫ dτ

τPl
Tr
(

˙̃Q
†
B +

L2
p

L2 β1
˙̃Q

†
F

)(
˙̃QB +

L2
p

L2 β2
˙̃QF

)
. (5)

In this fundamental form of the action, the coupling constant α is not present. Actually,
α, along with mass ratios, emerges only after (left-right) symmetry breaking segregates the
unifying dynamical variable ˙̃QB into its gravitational part q̇B and Yang–Mills part qB.

3. Spinor States for Quarks and Leptons from the Algebra of the Complex Octonions

The automorphism group G2 of the octonions has two maximal sub-groups SU(3) and
SO(4) ∼ SU(2)× SU(2), the first of which is the element preserver group of the octonions,
and the second is the stabiliser group of the quaternions inside the octonions [15]. The
two groups have a SU(2) intersection. Keeping one of the seven imaginary directions,
say e7, fixed, the remaining six directions can be used to form an MTIS (maximally totally
isotropic subspace) and the following generators (along with their adjoints) for the Clifford
algebra Cl(6):

α1 =
−e5 + ie4

2
, α2 =

−e3 + ie1

2
, α3 =

−e6 + ie2

2
. (6)

(This is a covariant choice as all the imaginary directions are equivalent and interchanging
any of them does not change the analysis or results.) From here, one can construct spinors
as minimum left ideals of the algebra, by first constructing the idempotent ΩΩ†, where
Ω = α1α2α3. The eight resulting spinors are

V = ΩΩ†; Vad1 = α†
1V ; Vad2 = α†

2V ; Vad3 = α†
3V ;

Vu1 = α†
3α†

2V ; Vu2 = α†
1α†

3V ; Vu3 = α†
2α†

1V ; Ve+ = α†
3α†

2α†
1V .

(7)

After defining the operator Q = (α†
1α1 + α†

2α2 + α†
3α3)/3 as one-third of the U(1) num-

ber operator, we find that the states V and Ve+ are singlets under SU(3) and respectively
have the eigenvalues Q = 0 and Q = 1. The states Vad1, Vad2, Vad3 are anti-triplets under
SU(3) and have Q = 1/3 each, whereas the states Vu1, Vu2, Vu3 are triplets under SU(3)
and each have Q = 2/3. These results allow Q to be interpreted as electric charge, and the
eight states represent a neutrino, three anti-down quarks, three up quarks and the positron
having the standard model symmetries SU(3)c ×U(1)em (subscripts ‘c’ and ‘em’ stand for
‘color’ and ‘electromagnetic’, respectively). Anti-particle states are obtained by complex
conjugation. The eight SU(3) generators can also be expressed in terms of the octonions
and represent the eight gluons, whereas the U(1) generator is for the photon. We hence
see the standard model of particle physics emerging from the symmetries of the physical
octonionic space, and the quantisation of electric charge is a consequence of the coordinate
geometry of the octonions [12].

To see how the weak force (and electroweak) and chiral gravity emerge from the other
maximal sub-group SO(4) ∼ SU(2)× SU(2), we must consider three fermion generations
and the larger exceptional Lie group E6 because these symmetries are shared pair-wise
across fermion generations, as shown in Figure 1. Furthermore, the neutrino is assumed to
be Majorana because only then the correct values of mass ratios are obtained [14]. In addi-
tion, notably, E6 is the only one of the exceptional groups having complex representations.
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Figure 1. Unification from symmetries of E6. See text for details.

4. Pre-Gravitation and Mass Ratios from a Left-Right Symmetric Extension of the
Standard Model of Particle Physics

The 78-dimensional exceptional Lie group E6 is the automorphism group of the com-
plexified Jordan algebra, and admits the sub-group structure shown in Figure 1, as moti-
vated by the discussion in [16]. E6 contains three intersecting copies of Spin(9, 1) ∼ SL(2,O),
which have an SO(8) intersection, and the triality property of SO(8) motivates that there
are exactly three fermion generations. In order to account for the symmetries of E6 and to
obtain chiral fermions, we now work with split bioctonions (instead of octonions, which
are used in Equation (5), i.e., before symmetry breaking) [17].

Embedded in the three Spin(9, 1) are three copies of SU(3), one of which is SU(3)c
and one is for generational symmetry—this is shown in the left part of Figure 1. There
is a pairwise intersection amongst a pair of generations, which is the electroweak group
SU(2)L ×U(1)Y (subscript ‘L’ denotes ‘left’ and subscript ‘Y’ stays for ‘hypercarge’) from
which the weak interaction and electromagnetism (EM) can be obtained. There is a three
way intersection marked L which is the 4D Lorentz group SO(3, 1). The Cl(4) generators
of SU(2)L are constructed from the Cl(6) of and Cl(2) of the Lorentz algebra, and it can be
shown that SU(2)L acts only on left handed (LH) fermions. The spinor states for the LH
quarks and leptons of one generation are constructed analogously to those in spinors (7), by
using the LH active Majorana neutrino as the idempotent, with complex conjugation giving
the corresponding antiparticles. The spinor states for the second and third generation are
respectively obtained by applying two successive 2π/3 rotations on the eight states of
the first generation, while staying in the plane defined by the form (ei + iej) of a given
first generation particle (SO(8) symmetry implies eight independent great circles on an
8-sphere, one for each of the eight particles, and three particles of three generations). There
are a total of 24 LH fermions and their 24 anti-particles and 12 gauge bosons. The unified
symmetry group of Lagrangian (5) is E6.

Similarly, three generations of right-handed (RH) fermions are obtained by using split
octonions and the three RH sterile Majorana neutrinos as the idempotent. We identify the
associated SU(3) with SU(3)G—a newly introduced gravitational sector; and identify the
U(1) number operator with (±square-root) of the mass of a quark/lepton (in Planck mass
units), and the eight respective spinor states of one generation are: the sterile neutrino,
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three positrons of three different gravi-colors, three RH up quarks of three colors same
as SU(3)c, and one down quark which is a singlet under SU(3)G, along with the singlet
sterile neutrino [18]. These obtain the respective square-root mass number (0, 1/3, 2/3, 1)
explaining why the down quark is nine times heavier than the electron. The SU(2)R is
RH chiral gravity (LQG, loop quantum gravity) [19], which reduces, in the classical limit
induced by spontaneous localisation, to GR. The Lorentz group (whose Casimir invariant
is the introduced mass number) is common with the LH particles, and its six dimensions,
together with the 24 RH fermions and 12 new gauge bosons, when added to the LH sector,
give the correct count of 78 for E6. The split complex number gives a scalar field that acts
as the Higgs mediating between the LH charge eigenstates, and RH mass eigenstates. Is
U(1) gravity the dark energy? This possibility is discussed further in Section 5.

The group E6 is also the symmetry group for the Dirac equation in 10D [16] for three
fermion generations (either LH or RH). The eigenvalue and eigenmatrix problem for the
Dirac equation is in fact the same as J3(8)X = λX, where J3(8) is the exceptional Jordan
algebra with symmetry group F4. Substituting the above-mentioned spinor states of LH
fermions (these being eigenstates of electric charge) and solving this eigenvalue problem
expresses the LH charge eigenstates as superpositions of the RH mass eigenstates (thus
fixing α and L in Equation (3)), and the ratios of the eigenvalues yield mass ratios of charged
fermions as shown in Figure 2; these exhibit very good agreement with the mysterious
mass ratios, as shown in the Table 1 below [14].

E6 has three copies of 10D spacetime. We never compactify the extra six complex
dimensions—these represent the standard model internal forces which determine the
geometry of these extra dimensions. Quantum systems do not live in 4D spacetime. They
live in E6 and their true dynamics is the generalised trace dynamics, with evolution given
by Connes time. Only classical systems live in 4D spacetime, where they descend as a
result of spontaneous localisation of highly entangled fermions (compactification without
compactification). This overcomes the troublesome non-unique compactification problem
of string theory.

Figure 2. Square-root mass ratios of charged elementary fermions [14].
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Table 1. Comparison of theoretically predicted square-root mass ratios with experimentally known
range [14].

Square Root Mass Ratios

Particles Theoretical Mass Ratio Minimum
Experimental Value

Maximum
Experimental Value

muon/electron 14.10 14.37913078 14.37913090
taun/electron 58.64 58.9660 58.9700
charm/up 23.57 21.04 26.87
top/up 289.26 248.18 310.07
strange/down 4.16 4.21 4.86
bottom/down 28.44 28.25 30.97

Apart from the two mass ratios of charged leptons, other theoretical mass ratios
lie within the experimental bounds [20]. On accounting for the so-called Karolyhazy
correction [21], we might possibly get more accurate mass ratios for all particles including
charged leptons. This will be investigated in future work.

In quantum theory, even at low energies, assuming a point structure for spacetime is
an approximation; it is because of this approximation that the standard model of particle
physics has so many unexplained free parameters. When we replace this approximate
description by a non-commutative spacetime, we find evidence that these parameter values
get fixed. In particular, we derive the low energy fine structure constant [13,21] and mass
ratios of charged fermions [14] from first principles. We do not need experiments at ever
higher energies to understand the low energy standard model. Instead, we need a better
understanding of the quantum nature of spacetime at low energies, such that the quantum
spacetime is consistent with the principle of quantum linear superposition.

5. Further Developments, Clarifying Remarks, and Current Status of the Present
Unification Programme

The aforesaid essay is intended to give the reader a short overview of a new approach
to quantum gravity and unification, details of which can be found in [5]. This Section
reports on a few new insights not described in our earlier work, and provide clarifying
details on some of the statements in the previous sections.

One further way to motivate the present theory is to recall that, when one takes
the square root of the Klein–Gordon equation to arrive at the Dirac equation for spin-
half fermions described by spinors, one does not take the corresponding square root of
the four-dimensional Minkowski spacetime labelled by four real numbers. However,
suppose one were to take the latter square root as well; then, one arrives at a spinor
description of spacetime, i.e., Penrose’s twistor space, labelled by complex numbers, and
one notes that SL(2, C) is the double cover of the Lorentz group SO(3, 1). We can now
try to describe fermions on this twistor space (both the fermions as well as the space-time
are now spinorial) and we can write down the Dirac equation on this twistor space. We
can go even further and replace the complex numbers by one or the other of the only two
additional division algebras, the quaternions (H) and the octonions (O). Quaternionic
twistor space is equivalent to 6D spacetime because SL(2, H) is the double cover of SO(5, 1),
whereas octonion-valued twistor space is equivalent to 10D spacetime because SL(2, O) is
the double cover of SO(9, 1). When we describe fermions on octonionic twistor space, we
begin to deduce remarkable results such as three generations of quarks and leptons, and
quantisation of electric charge, just as in the standard model. We are now solving the Dirac
equation on the spinor equivalent of 10D Minkowski space-time, and this implies mass
quantisation, a derivation of the low energy fine structure constant and of mass ratios of
quarks and charged leptons. The bosonic sector now includes pre-gravitation in unification
with the standard model forces, and the theory is shown to obey an E8 × E8 symmetry [18].
Indeed, the theory we arrive at is a revised string theory without the troublesome non-
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uniqueness problem of compactification, and the fundamental entities are 2-branes with an
area of the order of Planck area.

It is important to note that, in going from real numbers to complex numbers to
octonions, we have not changed the energy scale of the problem; rather, we have gone from
4D Minkowski spacetime to 8D twistor space. In so doing, we have simply found a new
mathematical description of the standard model which explains the standard model origin
and its unification with pre-gravitation. We therefore arrive at the inescapable conclusion
that elementary particles live in a space with E8 × E8 symmetry even at low energies (built
on a 10D complex non-commutative spacetime). They do not live in ordinary spacetime,
and definitely not in 4D classical space-time. The extra dimensions are not Planck size,
but large extra dimensions, and have an absolute modulus of the order of the scale of the
strong force and the weak force (10−18 m to 10−15 m). This can be approximately justified
by recalling that, in this theory, the absolute modulus, l, of the extra dimensions goes as
l ∼ R1/3 (because of the holographic principle [22]), where R is the cosmic length scale,
and both l and R are expressed in units of Planck length. Further work remains to be done
to make this result rigorous, and also to derive the Higgs mass and the masses of the W
bosons from fundamental considerations.

The action principle in Equation (3) is motivated by the action principle for a free
particle in Newton’s mechanics, which of course is nothing but the integral of the kinetic
energy over absolute time. Now, over octonionic space (more precisely, complex split
bioctonionic space) we have written the equivalent expression for the kinetic energy of a
2-brane over Connes time. The undotted variables are related to the left-chiral sector, this
being the gauge bosons of the standard model and three generations of left chiral fermions,
defined over octonionic space. The dotted variables are related to the right chiral sector,
this being pre-gravitation SU(3)G × SU(2)R ×U(1)G and three generations of right chiral
fermions, defined over the split part of bioctonionic space [18]. A detailed investigation
of the Lagrangian as regards its particle content is currently in progress. q̇B is the Dirac
operator on octonionic space and qB, the Yang–Mills field, is the correction to the Dirac
operator, as in conventional quantum field theory. The spectral action principle tells us the
classical limit of the trace of the Dirac operator squared, when Yang–Mills fields are present.
This classical limit has been discussed briefly in our earlier study [10] and is given by the
following equation, from [6], where DBnew ≡ DB + αA is the corrected Dirac operator
resulting after including the Yang–Mills potential A:

Tr [L2
P D2
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N
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[
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gR term is the Einstein–Hilbert action;
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g term is responsible for the cosmological constant;
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•
11N f4

960π
2

∫
d4x
√

gR∗R∗ term would be responsible for the Gauss–Bonnet gravity.

This is the expansion of the squared Dirac operator when gauge fields are included
alongside gravity. We do not yet take into account the volume term, and conformal gravity,
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and Gauss–Bonnet gravity in our present work. It is, however, an issue of great significance
that in the classical limit, GR is being modified by conformal gravity, and encourages us
to relate our theory, described to MOND (modified Newtonian dynamics) and RMOND
(relativistic MOND), as an alternative to cold dark matter. Interestingly, there so far seems
to be no cold dark matter candidate particle in our theory, and MOND and sterile neutrinos
seem to arise naturally in our approach to unification; see Section XIV of [5]; further work
is currently in progress in this direction.

The matrix-valued equations of motion are easily written down after first defining:

q1 = qB + a0β1qF, q2 = qB + a0β2qF, (8)

where we have set a0 ≡ L2
P/L2. In terms of these two variables, the above trace Lagrangian

can be written as

TrL =
1
2

a1a0Tr
[

q̇1q̇2 −
α2c2

L2 q1q2 + i
αc
L
(q̇1q2 + q1q̇2)

]
, (9)

where a1 ≡ h̄/cLP. The last term in the trace Lagrangian is a total time derivative, and
hence does not contribute to the equations of motion, so that we can get dynamics from
the Lagrangian:

TrL =
1
2

a1a0Tr
[

q̇1q̇2 −
α2c2

L2 q1q2

]
. (10)

The canonical momenta are given by (δ denotes variation with respect to the matrix
variable)

p1 =
δTrL
δq̇1

=
1
2

a1a0q̇2; p2 =
δTrL
δq̇2

=
1
2

a1a0q̇1 . (11)

The Euler–Lagrange equations of motion are

q̈1 = −α2c2

L2 q1; q̈2 = −α2c2

L2 q2 . (12)

In terms of these two complex variables, the 2-brane behaves like two independent
complex-valued oscillators. However, the degrees of freedom of the 2-brane couple with
each other when expressed in terms of the self-adjoint variables qB and qF. This is because
q1 and q2 both depend on qB and qF, the difference being that q1 depends on β1 and q2
depends on β2.

The trace Hamiltonian is

TrH = Tr[p1q̇1 + p2q̇2 − TrL] = a1a0

2
Tr

[
4

a2
1a2

0
p1 p2 +

α2c2

L2 q1q2

]
, (13)

and the Hamilton’s equations of motion are

q̇1 =
2

a1a0
p2 q̇2 =

2
a1a0

p1; ṗ1 = − a1a0α2c2

2L2 q2; ṗ2 = − a1a0α2c2

2L2 q1 . (14)

It is understood that these generalised trace dynamics are defined over complex
bioctonionic space, and elementary particles and gauge bosons including those for pre-
gravitation are special cases of these dynamical variables, reminiscent of the different
vibrations of the string in string theory.

5.1. Octonions, Elementary Particle Physics, and Gravitation

Octonions have been associated with physics for a very long time. In fact, already in
the 1920s, Jordan discovered the algebraic formulation of quantum mechanics, and the
Jordan algebras, and, in particular, his work led to the discovery of the exceptional Jordan
algebra J3(8) (also known as the Albert algebra). This is the algebra of 3 × 3 Hermitean
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matrices with octonionic entries. Since the 1970s, there have been extensive investigations
of how the octonions bear a fundamental connection with elementary particles, quarks as
well as leptons of the standard model [15,23–34].

How does our work compare with and differ from those earlier works on applications
of octonions to quantum mechanics and particle physics? Our work is strongly inspired by
those earlier investigations and is built on them, especially with regard to the definition
of elementary particle states using Clifford algebras of octonionic chains, applications of
the exceptional Lie groups and the exceptional Jordan algebra. However, our fundamental
perspective is different from those earlier studies, which have been largely focused on
relating octonions to the standard model and its extensions, such as Grand Unified Theories
(GUTs), to the octonions. Our starting point is fully quantum foundational: to seek a
reformulation of quantum theory, which does not depend on classical time. This turns out
to be a pre-quantum, pre-spacetime theory, which is a matrix-valued Lagrangian dynamics
on an octonionic twistor space. Remarkably, it is also a theory of quantum (pre-)gravity and
a unification of the standard model of particle physics with pre-gravitation. The eigenvalue
problem for the Dirac equation on octonionic space (equivalently 10D spacetime) is solved
by the characteristic equation of the exceptional Jordan algebra. In combination with the
Lagrangian of the theory, this leads to a derivation of the low energy fine structure constant,
and mass ratios of quarks and charged leptons. Thus, by bringing in gravitation, and
trace dynamics, our work significantly expands the scope of earlier related research. This
new scenario is summarised in Figure 3. Below, we elaborate on some aspects of these
new developments.

Figure 3. Octonions, and an E8 × E8 unification of standard model and pre-gravitation [18]. Here,
‘GR’ stays for ‘general relativity’, ‘SM’ stays for ‘standard model’.
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5.2. Mass Quantisation from a Number Operator

The masses of the electron, the up quark, and the down quark, are in the ratio 1:4:9.
This fact calls for a theoretical explanation. A few years ago, Cohl Furey proved the
quantisation of electric charge as a consequence of constructing the states for quarks and
leptons from the algebra of the octonions [12]. The complex octonions are used to construct
a Clifford algebra Cl(6), which is then used to make states for one generation of quarks
and leptons. The automorphism group G2 of the octonions has a sub-group SU(3), and
these particle states have the correct transformation properties as expected if this SU(3)
is SU(3)c of QCD (quantum chromodynamics). Furthermore, (one-third of) a number
operator, built from the Cl(6) generators, has the eigenvalues (0, 1/3, 2/3, 1) (with 0 and
1 for the SU(3) singlets and 1/3, 2/3 for the triplets) allowing this to be identified with
electric charge. This proves charge quantisation, and the U(1) symmetry of the number
operator is identified with U(1)em. Anti-particle states obtained by complex conjugation
of particle states are shown to have electric charge (0, −1/3, −2/3, −1). Thus, the algebra
describes the electro-colour symmetry for the neutrino, down quark, up quark, electron,
and their anti-particles. Note that it could instead be the second fermion generation, or the
third generation. Each generation has the same charge ratio (0, 1/3, 2/3, 1).

This same analysis can now be used to show that the square-roots of the masses of
electron, up and down are in ratio 1:2:3. All we have to do is to identify the eigenvalues of
the number operator with the square-root of the mass of an elementary particle, instead
of its electric charge. In addition, we also obtain a classification of matter and anti-matter,
after noting that complex conjugation now sends matter to anti-matter, as follows:

Matter
√

mass Anti–matter
√

mass

anti–neutrino 0 neutrino 0

electron 1/3 positron − 1/3

up–quark 2/3 anti–up − 2/3

down–quark 1 anti–down − 1

Compared to the electric charge case above, the electron and down quark have
switched places, and we already have our answer to the mass quantisation question,
placed at the start of this Subsection. There is again an SU(3) and a U(1), but obviously
this is no longer QCD and EM. We identify this symmetry is identified here with a newly
proposed SU(3)G ×U(1)G, whose full physical implications remain to be unravelled (GR
emerges from SU(2)R this being an analog of the weak force SU(2)L). E6 × E6 admits
a sub-group structure with two copies each of SU(3), SU(2) and U(1). Therefore, one
set is identified with the standard model SU(3)× SU(3)×U(1) (electric charge based)
and the other with the newly introduced SU(3)G × SU(2)R ×U(1)G (sqaure-root mass
based). In the early universe, the separation of matter from anti-matter is the separation of
particles with positive square-root mass from particles of negative square root mass. This
separation effectively converts the vector-interaction of pre-gravitation into an attractive
only emergent gravitation.

However, the second and third fermion generations do not have the mass ratios 1:4:9
unlike the electric charge ratios which are the same for all three generations. Why so?
Because mass eigenstates are not the same as charge eigenstates. We make our measure-
ments using eigenstates of electric charge; these have strange mass ratios, e.g., the muon is
206 times heavier than the electron. If we were to make our measurements using eigenstates
of square-root mass, we would find that all three generations have the mass ratios 1:4:9
whereas this time around the electric charge ratios seems to be strange. There is a perfect
duality between electric charge and square-root mass. A free electron in flight—is it in
a charge eigenstate or a mass eigenstate? Neither. It is in a superposition of both, and
collapses to one or the other, depending on what we choose to measure. In fact, the free
electron in flight does not separately have a mass and a charge; it has a quantum number
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which could be called charge-sqrt mass, which is the quantum number for the unified force.
Unification is broken by measurement: if we measure EM effect then we attribute electric
charge to the source. If we measure inertia or gravity, we attribute mass to the source. These
statements are independent of energy scale. A classical measuring apparatus emerges from
its quantum constituents as a consequence of sufficient entanglement: the emergence of
such classical apparatus is the prelude to the breaking of unification symmetry. In the early
universe, sufficient entanglement is impossible above a certain energy (possibly the EW
scale), and it appears as if symmetry breaking depends on energy. This is only an indirect
dependence. The true dependence of symmetry breaking is on the amount of entanglement.
In our current low energy universe, we have both low entanglement systems (quantum,
unified) and high entanglement systems (classical, unification broken).

5.3. Some Further Insights into the Origin of Mass Ratios for Three Fermion Generations

Prior to the left-right symmetry breaking, the E8×E8 symmetry is intact. We have three
identical fermion generations of lepto-quark states having an associated U(1) quantum
number, which we call ‘electric-charge-square-root-mass’ and which takes the values
(0, 1/3, 2/3, 1). These lepto-quarks are excitations of the Dirac neutrino (quantum number
0) and can be labelled as LHdownquark-RHelectron (1/3), LHupquark-RHupquark (2/3)
and LHelectron-RHdownquark (1) with the understanding that all three generations are
identical. The left-right symmetry breaking segregates these lepto-quark states into left
chiral fermions with the associated U(1) quantum number being electric charge, and
the right chiral fermions with the associated U(1) quantum number being square-root
mass. The Dirac neutrino segregates into a LH active Majorana neutrino and a RH sterile
Majorana neutrino. The LH chiral fermions are excitations of the active LH Majorana
neutrino, and are the anti-down quark (1/3), up quark (2/3) and positron (1) and their
antiparticles. The RH chiral fermions are excitations of the sterile LH Majorana neutrino,
and are the electron (1/3), up quark (2/3) and the down quark (1); numbers in brackets
now show square-root mass. A Higgs coming from the right sector gives masses to the
LH fermions; and, remarkably, a charged Higgs coming from the left sector gives electric
charge to the LH fermions. The gauge symmetry associated with the LH sector is the
standard model symmetry SU(3)c × SU(2)L × U(1)Y and that associated with the RH
sector is pre-gravitation SU(3)G × SU(2)R ×U(1)G.

The LH states, being eigenstates of electric charge, are different from the RH states,
which are eigenstates of square-root mass. When we solve the Dirac equation for three
generations of a family with a given electric charge, assuming the neutrino to be Majorana,
it reveals mass quantisation, and the charge eigenstates are superpositions of square-root
mass eigenstates and the corresponding eigenvalues carry information about the mass
ratios across three generations. We called these eigenvalues ‘Jordan eigenvalues’ [21]; they
are shown in the table in Figure 4.

For a given electric charge value q 6= 0, the three eigenvalues take the form q± ε
√

3/8
where ε = (−1, 0, 1).

√
3/8 is also the magnitude of the octonion, which describes the state

of the three generations of a family of charged fermions. For the neutrino, the
√

3/8 is
replaced by

√
3/2. If the Jordan eigenvalues are calculated assuming the neutrino to be a

Dirac particle then there is a subtle change in the values: the
√

3/8 is replaced by
√

3/2 for
the charged leptons (no other change), and for the neutrino the eigenvalues are now very
different: (−1/2−

√
3/2, 1,−1/2 +

√
3/2). The shift from

√
3/2 to

√
3/8 results because,

in going from the Dirac neutrino to the Majorana neutrino, the lepto-quark state splits
into two halves—the LH charge eigenstate and the RH mass eigenstate—and hence the
magnitude

√
3/2 is divided into two equal halves of

√
3/8 each. The Jordan eigenvalues

hold for the anti-particles as well, with the charge q being replaced by its negative value
−q. Obviously, the eigenvalues of the neutrino do not change from the values, shown in
Figure 4; consistent with the neutrino being its own anti-particle.
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Figure 4. The eigenvalues of the characteristic equation of the exceptional Jordan algebra, for quarks
and leptons [21].

Furthermore, these Jordan eigenvalues also represent superposition of square-root
mass eigenstates in terms of charge eigenstates, with the down quark family interchanged
with the charged lepton family. This is because the electric charge values 1/3, 2/3, and 1
for the down quark family, up quark family, and electron family, respectively, are numeri-
cally also the same as square-root mass numbers respectively for the electron family, up
quark family, and down quark family. Thus, the eigenvalues for the up quark family stay
unchanged when charge and square-root mass number are interchanged for the electron
family and down quark family. As soon as mass eigenstates are superpositions of charge
eigenstates, the eigenvalues in the superposition determine the peculiar observed mass
ratios, we now elaborate in some detail below using the related data shown in Figure 5.

The first set of three rows are marked [1/3]D, where D stays for ‘Dirac neutrino’ and
1/3 is the ‘electric-charge-square-root-mass’ quantum number prior to symmetry breaking,
identical for three generations. The 4th, 5th, 6th rows are marked [2/3]D for the same
quantum number taking the value 2/3. The 7th, 8th and 9th rows are marked [1]D because
this quantum number takes the value 1. For a given value of this quantum number, the
left-right symmetric lepto-quark can be written as superposition of a LH fermion and a
RH fermion, with the two Jordan eigenvalues in any of the nine rows giving the numerical
coefficient of the superposition. The successive eigenvalues are labelled as the pairs (A1,
B1), (A2, B2), (C1, C2), (D1, D2), (E1, E2), (F1, F2), (G1, G2), (H1, H2), (I1, I2). The first
Jordan eigenvalue in any given row labels the LH fermion, and the second eigenvalue is
the same row labels the right handed (RH) fermion.
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Figure 5. From the Jordan eigenvalues, towards an understanding of the mass ratios. e1, e2, e3 denote
the charged lepton family. d1, d2, d3 denote the down quark family. u1, u2, u3 denote the up quark
family. D stays for the ‘Dirac neutrino.’ See text for more details.

When the left-right symmetry breaks, the U(1) quantum number prior to symmetry
breaking becomes the U(1) number electric charge for all LH fermions and takes the same
set of values (0, 1/3, 2/3, 1) across the three generations. Analogously, it takes the same
set of values (0, 1/3, 2/3, 1) as the square-root mass number across the three generations
of RH fermions, with the relative position of the electron and down quark interchanged.
The up quark family positions stay unchanged at 2/3. Since we make all measurements
using electric charge eigenstates (and not mass eigenstates), the mass eigenstates manifest
in measurements as superpositions of electric charge eigenstates, and the ratios of Jordan
eigenvalues reveal the observed mass ratios. Had we been making measurements using
mass eigenstates, the electric charge eigenstates would manifest as superpositions of mass
eigenstates, and we would have observed strange charge ratios.

Note that, in every set of three rows for a given [1/n]D, there is a row where the left
quantum number is the same as the right quantum number. These are the rows two, five
and eight, with the numbers (B1, B2), (E1, E2) and (H1, H2). These give rise to the mass
ratios (1/3, 2/3, 1) for the lightest charged fermions: electron, up quark, down quark. The
other two rows with any given [1/n]D flip eigenvalues. These are the rows one and three,
four and six, seven and nine. That is, (A1, A2) interchanges eigenvalues with (C1, C2), (D1,
D2) with (F1, F2), and (G1, G2) with (I1, I2).

The mass ratios arrived at, from these eigenvalues, as follows, simplest case being
the up quark family (up, charm, top) with its quarks, labelled u1, u2, u3. The up quark
has the square-root mass ratio u = E1 =2/3. The charm to up square-root mass ratio is
c/u = F1/D1 = (2/3 +

√
3/8)/(2/3−

√
3/8). The top to charm ratio is t/c = E1/D1 =

(2/3)/(2/3−
√

3/8).
The down quark family (down, strange, bottom) and the electron family (electron,

muon, tau lepton) are mixed, as can be seen in the first three and last three rows. For the
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[1/3]D rows, the first entry in every row is from the down quark family, and the second
entry from the electron family, whereas the roles are reversed in the [1]D rows.

As per the last three rows, the down quark has the square-root mass ratio d = H1 = 1.
The strange quark has the square-root mass ratio s/d = I1/G1 = (1 +

√
3/8)/(1−

√
3/8).

The bottom to strange ratio is (I1/G1) (I1/H1). The origin of the peculiar factor I1/H1
remains to be understood.

From the first three rows, we see that the electron has the square-root mass ratio
e = B1 = 1/3. The muon has the square-root mass ratio mu/e = (C1/A1)/(I1/G1), and this
same ratio also holds for tau/mu.

These ratios above are the same as those, shown earlier in Figure 2. We believe that the
octonionic theory provides a reasonably good understanding of the observed mass ratios of
charged fermions. The mixing of the down quark family and the electron family is possibly
the result of a gauge-gravity duality and of the fact that the three generations are not entirely
independent of each other but related by the triality property of SO(8) [18]. Another
remarkable feature we observed is that the eigenmatrices corresponding to the Jordan
eigenvalues for the charged fermions always have the diagonal entry as 1/3, irrespective of
whether the associated quantum number is 1/3 or 2/3 or 1. This seems to suggest that all
charged fermions are made of three base states that all have an associated quantum number
1/3. The possible consequences of these observations are currently being investigated.

5.4. Octonions and the Koide Formula

The Koide formula [35] is the following observation for the experimentally measured
masses of charged leptons:

me + mµ + mτ

(
√

me +
√mµ +

√
mτ)2 = 0.666661(7) ≈ 2

3
. (15)

That is, this ratio is close to (and a little less than) 2/3, but not exactly 2/3. Remarkably,
the octonionic theory explains when the ratio is exactly 2/3, and why it departs from that
exact value.

Prior to the left-right symmetry breaking, we can consider that a LH-electron-RH-
electron state has an associated electric-charge-square-rot-mass of 1, and the neutrino
is a Dirac fermion. In this case, the Jordan eigenvalues, as we mentioned above, are
(1−

√
3/2, 1, 1 +

√
3/2). These give the superposition amplitudes when RH mass eigen-

states are expressed as superposition of LH mass eigenstates. The Koide ratio is then

(1 +
√

3/2)2 + (1)2 + (1−
√

3/2)2

32 =
2
3

. (16)

Thus, the exact value 2/3 is realised prior to symmetry breaking and prior to when
the RH electron and RH down quark switch places. This switch might help understand
why the mass ratios for charged leptons know about the Jordan eigenvalues (1 +

√
3/8)

and (1−
√

3/8), which are otherwise associated with the down quark family.
Using our theoretical mass ratios for the charged leptons as reported in Figure 2, we

get the following theoretically predicted value for the Koide ratio,

me + mµ + mτ

(
√

me +
√mµ +

√
mτ)2 = 0.669163 ≈ 2

3
, (17)

which is greater than the experimentally measured value of the Koide ratio and also greater
than 2/3. The departure from the exact value of 2/3 is a consequence of the left-right
symmetry breaking and of the switch between the RH down quark and RH electron. (It
remains to be seen if the Karolyhazy correction will predict an exact match between theory
and experiment).
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Since unification already takes place at low energies (i.e., whenever the system is
quantum and not yet measured upon), it follows that, before we make a measurement
on the charged leptons to measure their masses, the Koide ratio is exactly 2/3. After
the measurement is made, the theoretical prediction for the resulting value is 0.669163,
whereas the measured value is smaller than 2/3. The uncertainty in the mass of the tau-
lepton 1776.86(12) MeV is such that, by demanding the Koide ratio to be 2/3, one can
predict the mass of the tau-lepton to be 1776.969 MeV. At the upper limit 1776.98 MeV of
the experimentally measured tau-lepton mass, the ratio is 0.66666728706, i.e., larger than
2/3, but smaller than our predicted theoretical value for Minkowski spacetime (the value
realised after measurement).

The above is an important result as we now know when the Koide ratio is exactly
2/3 (it is when the electron is not being observed). In addition, we understand why the
measured value of this ratio is not exactly 2/3. Actually, the measured value coud be
demanded to be equal to the theoretical value, and thereby fixing the mass of the tau-lepton.
It turns out there are no such allowed values for the tau-lepton mass, which is further
evidence that the measured value could lie between the spinor spacetime value (2/3) and
the Minkowski spacetime value if the mass of the tau lepton is greater than 1776.969 MeV.
This is also indirect evidence that sterile neutrinos exist.

5.5. Why Is Matter Electrically Neutral?

When left-right symmetry breaking mechanism in the early universe separated matter
from anti-matter, particles were segregated from their anti-particles. In addition, however,
the sign of the electric charge was not the criterion for deciding what went where. Matter
has the positively charged up quark (2/3) and the negatively charged down quark (−1/3)
and the electron (−1). Anti-matter has their anti-particles. If sign of electric charge was
the deciding criterion for separating matter from anti-matter, all particles in our universe
ought to have had the same sign of charge. That is not the case, and moreover, the matter
is electrically neutral. How could that have come about? Even the algebraic proof based
on the octonions, which shows quantisation of electric charge, naturally clubs positively
charged particles together, when their states are made from a Clifford algebra:

Particles Electric charge Anti–particles Electric charge

anti–neutrino 0 neutrino 0

anti–down quark 1/3 down − 1/3

up–quark 2/3 anti–up − 2/3

positron 1 electron − 1

What picks the up quark from the left, and down and electron from the right, and
clubs them as matter, and yet maintain electrical neutrality? We have proposed that the
criterion distinguishing matter from anti-matter is square-root of mass, not electric charge.
One can make a new Clifford algebra afresh from the octonions, and show that square-root
of mass is quantised, as in the above mass table. Let us now calculate the net electric charge
of matter, remembering that there are three down quarks (color) and three up quarks
(color): 0 + (−1 × 1) + (3 × 2/3) + (3 × −1/3) = 0. It seems remarkable that the sum
of the electric charges of matter (particles with +ve sqrt mass) comes out to be zero. It
need not have been so. This demonstration might help understand how matter-antimatter
separation preserved electrical neutrality. Before this separation, the net square-root mass
of matter and anti-matter was zero, even though individual sqrt masses were non-zero.
In this, we differ from the standard gauge-theoretic picture of EW symmetry breaking
and mass acquisition. In EW, particles are massless before symmetry breaking because
a mass term in the Lagrangian breaks gauge invariance. However, for us, sqrt mass is
not zero before the symmetry breaking—its non-zero value was already set at the Planck
scale (and cosmological expansion scaled down actual mass values while preserving mass
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ratios). Indeed, it is rather peculiar if, prior to the symmetry breaking, particles have
electric charge but no mass. For us, QFT (quantum field theory) on a spacetime background
(and hence gauge theories) are not valid before the left-right symmetry breaking. In fact,
spacetime itself, along with gravitation, emerge after this symmetry breaking, as a result of
the quantum to classical transition. Spacetime emerges iff classical matter emerges. Prior to
the symmetry breaking, dynamics are described by trace dynamics, there is no spacetime,
and we have ‘atoms’ of space-time-matter. The concepts of electric charge and mass are
not defined separately; there is only a charge-square-root mass (a hypercharge can also be
defined, as for EW), and this is the source for a unified force in octonionic space.

5.6. Octonions, Scale Invariance, and a CPT Symmetric Universe: A Possible Explanation for the
Origin of Matter–Antimatter Asymmetry

In the octonionic theory, prior to the so-called left-right symmetry breaking, the
symmetry group is E8× E8 and the Lagrangian of the theory is scale invariant. There is only
one parameter, a length scale, which appears as an overall multiplier of the trace Lagrangian.
Something dramatic happens after the symmetry breaking. Three new parameters emerge,
to characterise the fermions: Electric charge has two signs, sign change operation C is
complex conjugation, and ratios are (0, 1/3, 2/3, 1). Chirality/spin has two signs, sign
change operation P is octonionic conjugation. The ratios are (1/2, −1/2). Square-root
of mass has two signs, sign change operation, T, is time reversal, t → −t. Ratios are
(0, 1/3, 2/3, 1). Thus, there are 2 × 2 × 2 = 8 types of fermions, based on sign of charge,
square-root mass and spin. This could possibly offer an attractive explanation for the origin
of matter–antimatter asymmetry: a CPT symmetric universe. The four types of fermions
which have positive square root mass become matter, our universe, moving forward in
time. The other four types of fermions, which have negative square root mass, become
anti-matter, a mirror universe is surprisingly found moving backward in time. The forward
moving universe and the backward moving universe together restore CPT symmetry. Our
universe by itself violates T, and hence also CP. Matter and anti-matter repel each other
gravitationally, thus explaining their separation. This also explains why gravitation in
our universe is attractive, even though the underlying pre-gravitation theory is a vector
interaction. Prior to the symmetry breaking, an octonionic inflation (scale invariant, time-
dependent in Connes time) precedes the ‘big bang’ creation event, which is the symmetry
breaking itself. Freeze out happens when radiation to matter-antimatter transition is no
longer favorable. Segregation takes place; our matter universe has a one in a billion excess
of matter over anti-matter. The backward in time mirror universe has a one in a billion
excess of anti-matter over matter. The mathematics of complex octonions naturally account
for the C, P, T operations. Scale invariance is transformed into CPT invariance in the
emergent universe. We hope to make this idea rigorous in forthcoming investigations. In
an elegant proposal, Turok and Boyle [36] have also recently proposed a CPT symmetric
universe (mirror universes). They, however, did not use the octonions.

5.7. Prospects of Tests through Particle Physics Experiments and Phenomenology

In Section XV of [5], we have briefly discussed some of the possible experimental
predictions of this theory and prospects for their experimental tests. Below, we discuss some
particle physics related predictions and their possible relevance for collider experiments
and neutrino experiments. These ideas are largely based on a detailed conversation with
Ashutosh Kotwal, and their compilation by Vatsalya Vaibhav.

Our theory predicts specific new particles, though much work remains to be done to
predict their specific properties such as masses. We predict that the neutrino is Majorana
and that there are three right-handed sterile neutrinos. At present, we do not understand
neutrino masses, though there is a very real possibility that the neutrino is massless and
flavor oscillations are caused by spacetime being higher dimensional and octonionic, and
the neutrinos being spacetime triplets [18]. This possibility could be verified if we can
calculate the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix from first principles in
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the octonionic theory; this will be attempted in future work. The Majorana nature of the
neutrino also suggests neutrinoless double beta decay, experimental implications for which
we investigate further below. The possibility that the sterile neutrino could be massive
and light (hence hot dark matter) or heavy (hence cold dark matter) are also investigated,
although it is true that our theory favours MOND over cold dark matter.

Our theory also predicts a new charged Higgs boson, and possibly a doubly charged
Higgs, although their masses and the fundamental origin of their scalar nature remains to
be understood. In addition, of interest is whether the Higgs triplet in this theory can cause
the W mass to depart from the standard model prediction. The hierarchy problem, and
the exact mechanism of the electroweak symmetry breaking and the left-right symmetry
breaking remain to be understood: these could be the same symmetry breaking and could
perhaps be mediated by a quantum-to-classical phase transition. It is also of interest to
try and predict the (g-2) anomaly, some related physics was discussed in [10], and this
issue might also be related to our derivations of mass ratios and the low energy fine
structure constant.

A general line of investigation of serious interest is to note that our predictions are
made on octonionic twistor space, which is non-classical, whereas all measurements are in
Minkowski spacetime, and based on quantum field theory calculations. In transiting from
trace dynamics to emergent quantum field theory, there could be important and smoking
gun corrections, which could possibly be cast in the language of effective field theory.

As per our recent study on E8 × E8 symmetry, we have been able to account for 208
out of the 496 degrees of freedom [18]. While we have commented briefly in that study on
the unaccounted degrees of freedom, more work needs to be done to find if they predict
new particles which can confirm or rule out this theory.

5.8. Why Is There No Black Hole Information Loss Paradox in the Octonionic Theory?

There appears to be an information loss paradox because we are ignoring the phys-
ical process of the quantum-to-classical transition, which keeps the black hole (made of
enormously many quantum constituents) classical in the first place. Let us consider the
following analogy: Consider a box of gas at thermodynamic equilibrium—this is the maxi-
mum entropy and minimum information state. Now, a sudden spontaneous fluctuation
sends the entire set of gas molecules to one corner of the box. This is a transient low entropy
high information and ordered state, far from thermodynamic equilibrium. At the very
next instant, the gas molecules will return to equilibrium, spread all over the box, entropy
will have been gained, and information lost. If we ignore the spontaneous fluctuation,
which sent the gas to a corner, then we have an information loss paradox. Obviously, there
is no paradox in reality: information gained during the spontaneous fluctuation is lost
during the return to equilibrium. It is exactly the same physics, when we work with a
fundamental theory (generalised trace dynamics valid at Planck time resolution), from
which quantum theory and classical gravitation are emergent phenomena. Quantum theory
(without classical time) is emergent as the thermodynamic equilibrium state description in
a statistical thermodynamic approximation of the underlying theory. Classical gravitation,
spacetime, and hence the black hole, is far from the equilibrium transient state which
arises from a spontaneous fluctuation caused by non-unitary evolution. At equilibrium,
the evolution is unitary, except when a large fluctuation kicks in. In Adler’s theory of
trace dynamics, a collection of quantum states at thermodynamic equilibrium constitute
a state of maximum entropy (the most likely state to emerge from coarse-graining of the
underlying system). Departure from equilibrium by way of a spontaneous fluctuation
produces the black hole as a state of relatively low entropy and high information. By way
of Hawking evaporation, the black hole returns to the state of maximum entropy and
thermodynamic equilibrium (one has to be careful here while talking of pure states and
mixed states; there is no classical spacetime at thermodynamic equilibrium, in this theory.).
To this, one could object that not all black holes are formed in the way suggested in the
previous paragraph above. That is true; if one has in mind stellar gravitational collapse
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ending in black hole formation. However, let us trace the star all the way back to the very
early universe: inflationary quantum perturbations became classical, spacetime emerged,
density perturbations grew, the star formed, the black holes formed, it Hawking radiated,
and is going back to the inflationary stage, which was quantum in nature. The formation
of classical large scale structure in the universe is like the gas in the box spontaneously
fluctuating away from equilibrium. Hawking evaporation is like the gas returning to
equilibrium. Interestingly, the above reasoning also throws light on the current accelerating
phase of the universe. de Sitter like inflationary expansion is the natural expansion state
of the universe—the equilibrium quantum state. Emergence of classicality gives rise to
the radiation dominated and matter dominated eras, where matter density is high enough
to dictate a power-law expansion of the scale factor, overriding de Sitter like expansion.
In recent cosmic history, matter density is falling, and hence de Sitter like scale-invariant
expansion (quantum equilibrium) is again dominating. These dynamics are very likely
related to the emergent classical Lagrangian of our theory, which exhibits modification of
GR by conformal gravity, and will be investigated further for its cosmological implications.

5.9. How Taking the Square-Root of Minkowski Space-Time Paves the Way for Unification

In summary, we believe we have a promising theory of unification under development,
as captured in Figure 6 and explained briefly below.

Figure 6. Taking the square-root of 4-dimensional (4D) Minkowski space-time paves the way
to unification.

It is like going from the surface of the ocean to the ocean bed. The ocean floor
can exist without the surface, but the surface cannot exist without the floor. We live
in a 4D Minkowski space-time curved by gravitation, in which standard model gauge
fields and fermions reside. However, there is a more precise description. We take the
square-root of Minkowski space-time and arrive at Penrose’s twistor space, described by
complex numbers. In this spinor space-time, replace complex numbers with quaternions,
then by octonions. More precisely, complex split bioctonions. We arrive at a space with
E8 × E8 symmetry whose geometry is a unified description of the standard model and pre-
gravitation. The gauge group is SU(3)c × SU(2)L ×U(1)Y × SU(3)G × SU(2)R ×U(1)g.
Coupling constants are determined by the geometry. In the classical limit, the 4D curved
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spacetime and the standard model emerge, but with pre-determined values of coupling
constants. Fermions span space-time as well as the space of the gauge fields. Taking the
square root of Minkowski space-time does not involve change of energy scale. It only
gives a more precise mathematical formalism—one that is key to unification, which already
takes place at low energies, if we do not restrict ourselves to 4D classical spacetime: only
classical systems live in 4D. Quantum systems always live in E8 × E8 even at low energies.
If we want a comparison with string theory, then this new theory is string theory without
compactification. Compactification is effectively achieved by the quantum-to-classical
transition; it does not have to be enforced in an ad hoc manner.
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