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The Very Long Lifetime of 14C in the Shell Model
Igal Talmi
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Rehovot 7610001, Israel; igal.talmi@weizmann.ac.il

Abstract: This is a fitting memory for our late friend and colleague Aldo Covello. For many years,
he was our host in the series of Spring Seminars which he organized. In these conferences, the shell
model was a central subject which was taken very seriously. This paper is written after 70 years of
successful shell model calculations of nuclear energies and also various transitions. The beta decay of
14C has been an enigma. The history and present situation are described. The importance check of
any theory to yield the strength of the mirror transition of 14O is pointed out.
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In this paper, I look back at 70 years of the nuclear shell model. Actually, there is
a prehistoric part, which is close to 100 years old. Atomic nuclei were discovered by
Rutherford in 1911. For several years, their composition was a mystery until the neutron
was discovered by Chadwick in 1932. In the same year, Heisenberg published a paper in
which he showed that nuclei are composed of protons and neutrons.

In those early days before mass-spectroscopy was used to measure nuclear binding
energies, physicists used various transitions and reactions to determine that certain nuclei
are more stable than others. In atoms, extra stability is associated with closed shells. In the
same year, 1932, Bartlett suggested a similar structure for some nuclei [1]. He suggested
that, in 4He, there are closed 1s shells of protons and neutrons and in 16O there was also a
closed 1p shell. Not many papers followed Bartlett’s idea. Most thorough and systematic
ones were written by Elsasser [2–6]. By studying experimental data, he discovered several
nuclei with extra stability. It was difficult for most physicists to understand how a system
with a rather large number of particles interacting by strong short-range forces may be
described by an independent particle model. In addition, the nature of the magic numbers
was baffling. The lowest of them, 2, 8 and 20, could somehow make sense. Higher magic
numbers, discovered by Elsasser, 50, 82 and 126, could be obtained only from very strange
central potentials.

In a comprehensive review article, Bethe and Bacher [7] gave a description of nuclear
physics in 1936. They present the shell model, arguments against it but also a case where
only it seems to explain the data. A very devastating paper against any shell model was
published in the same year by no lesser person than Niels Bohr [8]. He wrote: “In the atom
and in the nucleus we have indeed to do with two extreme cases of mechanical many-body
problems for which a procedure of approximation resting on a combination of one-body
problems, so effective for the former case, loses any validity in the latter”.

During World War II, nuclear physicists in major countries were occupied with work
on nuclear weapons. In 1948, Maria Mayer published a detailed study [9] in which she
showed that nuclei whose proton and/or neutron numbers were found by Elsasser to be
magic have indeed extra stability. Mayer’s paper revived the interest in the shell model.
Feenberg and Hammack [10] and Nordheim [11] published detailed papers in which
they tried to reproduce the new data in models similar to that of Elsasser. The shells
which proposed contained certain orbits characterized by the orbital angular momenta l of
the nucleons.

Maria Mayer [12] and, independently, Jensen et al. [13] introduced a novel idea. The
shell structure, taken to be that of a harmonic oscillator central potential, is modified by a
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strong spin–orbit interaction. The l orbit is split into a lower j = l + 1/2 orbit and a higher
j = l – 1/2 one. Both orbits remain in the same major shell with an important exception.

The spin–orbit interaction,

2a(s.l) = a[(s + l).(s + l)− l.l− s.s] = a[j(j + 1)− l(l + 1)− 3/4] , (1)

is equal to al for j = l + 1/2 and to −a(l + 1) for j = l − 1/2. The j = l + 1/2 orbit with
the highest value of l in a shell is mostly affected. If its energy is sufficiently pushed down
(by a negative value of a), it may join the shell below it. This effect leads to the observed
magic numbers. For example, the closed shells 1s, 1p, 1d2s, 1 f 2p contain 40 protons or
neutrons but only when joined by the 10 protons (or neutrons) in the 1g9/2(l = 4, j = 9/2)
orbit is the magic number 50 reached. The simple Mayer–Jensen shell model has been
widely accepted and used by experimentalists and theorists. Wigner, who made seminal
contributions to nuclear physics, remained skeptical. He could not understand the origin
of the interaction (1).

Apart from the radial dependence, wave functions in the shell model are well defined
for ground states of closed shells nuclei. They remain well defined also if a single nucleon
is added or removed from such nuclei. If there are several nucleons outside closed shells
(valence nucleons), they may couple in several states (with the exception of two identical
j = 1/2 nucleons or holes). To calculate energies and wave functions, it is necessary to
calculate eigenvalues and eigenstates of the sub-matrix of the Hamiltonian, which is defined
by states of the shell. Maria Mayer was aware of this situation and stated coupling rules
for the spins of ground states. They were J = 0 for even-even nuclei of which there are
no exceptions and J equal to j of one of the orbits in the shell for odd-even (or even-odd)
nuclei. There are some exceptions to the second rule.

Mayer tried to find some theoretical basis for her rules. She looked at some jn con-
figurations of neutrons and of protons and “for simplicity”, calculated their energy levels
with a delta interaction [14]. The calculated ground state spins agreed with her rules! In
addition, the pairing energy emerged from the calculation. She thought that the exceptions
to her rule are due to the finite range of the interaction. Her student Dieter Kurath wrote a
short paper [15] on this subject and so did I, a student of Pauli in Zurich [16].

In spite of the schematic nature of the zero range delta interaction, Mayer’s novel
approach made an important impact. In earlier calculations, it was assumed that the
interaction between nucleons may be approximated by a constant over the nucleus. Short
range interactions were not easy to handle in standard spectroscopy. Matrix elements of
two-body interactions were expanded in terms of Slater integrals, each obtained from a
term in the expansion of the integrand in terms of the particle coordinates r1 and r2 . If
the interaction is constant where the wave functions do not vanish, only the k = 0 Slater
integral does not vanish. If, however, the interaction is a delta function, all Slater integrals
need not vanish; each is proportional to 2k + 1.

Kurath in Ref. [15] showed that an argument of Racah against a ground state spin
calculated in the shell model [17] is based on the k = 0 Slater integral. Racah created
modern spectrometry for the earlier version of the nuclear shell model, but, when it became
unpopular, he moved to atomic spectroscopy.

I had been looking for an expansion in which matrix elements of the delta interaction
will have only one term. Instead of the Slater expansion of the interaction, the product
of wave functions could be expanded in terms of the center-of-mass R = (r1 + r2)/2
and relative coordinate r = r1 − r2. A simple and finite expansion occurs only for the
kinetic energy and for the harmonic oscillator potential. The results should be independent
of R since the interaction is translationally invariant [18]. This transformation is used
now everywhere.

As mentioned above, for an efficient use of the shell model, it is necessary to know the
two-body interaction. In the early days, people tried to use the interaction between free
nucleons with or without some theoretical modifications. Even if agreement with some
experimental data was obtained, no agreement with other ones could be reached. The
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standard excuse was “configuration mixing”—disagreements were blamed on the effect of
shell model configurations not included. Such a procedure may lead to good agreement,
but it has no meaning. An amusing example of failure of such a calculation is offered
by dealing with calcium isotopes. In 1955, Ford and Levinson published a series of three
papers on levels of 43Ca. They started from levels of 42Ca of which the first excited level,
with J = 2, was known. Above it, two higher levels were measured, but their spins were
unknown. Ford and Levinson took those spins to be J = 4 and J = 6, as in some other
nuclei and, using their energies with those of the measured states, calculated positions
of 43Ca levels—so far, so good. However, they did not get correctly the position of the
first excited J = 5/2 state. This situation was known to several authors who left this
problem. Ford and Levinson did not give up but called for help with the mixing of other
configurations with the ( f7/2)

n one. As if by miracle, the calculated position of the J = 5/2
state came out very close to the measured value and so was the case with some other
observables. In the fall of 1956, there was an international conference on theoretical physics
in Seattle, WA, USA. Jensen gave a talk on the nuclear shell model and the Ford–Levinson
work seemed to be one of its successes. Not much later, the spins of the 2 levels, taken
by Ford and Levinson to have J = 4 and J = 6, were measured to have spins J = 0 and
J = 2 . . . They do not belong to the ( f7/2)

2 configuration. They are “intruder states” from
some other configuration.

Slowly, the realization that the operators which should be used in a model may be
very different from the real ones dawned on nuclear physicists. This was pointed out very
clearly by Keith Brueckner and his collaborators. The problem was how to determine the
effective interaction for the shell model in nuclei where the shell model seems to give a
reasonable description. Clearly, no theoretical derivation seems easy for such a complex
system. I have been looking for a case where the shell model description will indicate
a simple configuration. I chose a case which seemed simple and in summer 1954 asked
a student to study it and determine the effective two-body interaction. The system we
considered was the four low lying states of 40K which have spins obtained by coupling a
1d3/2 proton hole with a 1 f7/2 neutron (J = 2, 3, 4, 5).

To check the consistency of our calculation, we calculated energies of states of an-
other simple related shell model configuration. We chose the energy levels of the 1d3/2
proton—1 f7/2 neutron configuration (J = 2, 3, 4, 5) expected in 38Cl. We looked at the levels
published by 1954, and the only agreement was in the spin J = 2 of the ground state. We
were disappointed but not surprised. We used pure jj-coupling wave functions which may
have been rather extreme. In addition, it was not clear that it is a good approximation to
use matrix elements from one nucleus in another one. Only in 1956 were accurate measure-
ments of 38Cl levels published, and they were in very good agreement with our calculated
ones [19]. A few days after Ref. [19] was published, the case considered there appeared in
a paper by Pandya [20]. He derived the Pandya relation expressing analytically particle–
hole interaction as a linear combination of particle–particle interactions. He looked for an
example and found the 38Cl—40K case.

The work and results of Ref. [19] started a new period in shell model calculations. I
gave a talk on this work in a meeting of the Israel Physical Society and Racah said that
this is the beginning of nuclear spectroscopy. Matrix elements of the effective interaction,
diagonal and non-diagonal, were extracted from complex nuclei [21]. It took some time,
but the successful calculations were convincing. When I was advocating this method,
Arthur Kerman told me that, while he was a student at Caltech (California Institute of
Technology, CA, USA), Richard Feynman was trying to use this method on light nuclei
(probably in the 1p shell). In 1962, I gave a colloquium talk in Caltech. After the talk,
Feynman told me that he tried this approach until, for a certain nucleus, his prediction was
that four low lying levels are almost degenerate. He thought that this is very unlikely and
dropped this approach. Perhaps Feynman talked about 16N in which measured energies of
the four lowest states are below 0.4 MeV.
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Eigenvalues of the Hamiltonian obey the variational principle and hence may be
calculated even with approximate wave functions. This method has been widely applied
in calculations of energies and other observables [21]. Only one of the earlier papers and
books, where this approach is discussed, is mentioned here. It referred to the specific
case which is discussed in the following [22]. It is the 14C beta decay which should be an
allowed Gamow–Teller beta decay with a half life of a few days. Its observed lifetime is
more than 5000 years. It has been a great gift to archaeology and a great enigma to nuclear
structure physics.

The J = 0 ground state of 14C, according to the shell model, is due to the two proton
holes in the 1p orbit. This configuration has two possible J = 0 states, one with S = 0,
L = 0(1S0) and the other with S = 1, L = 1(3P0). The single nucleon spin–orbit interaction
Equation (1), which gives rise to the shell model, leads to a linear combination of these
two states:

x|1S0 > +y|3P0 > . (2)

This is an isospin T = 1 level. It decays by emitting an electron and neutrino to the T = 0
ground state of 14N which has J = 1. In the p−2 configuration, there are three independent
T = 0 states in which any state with J = 1 may be expressed as a linear combination of
them. Thus, the 14N ground state may be expressed as

α|3S1 > +β|1P1 > +γ|3D1 > . (3)

The operator of the allowed beta decay is σ = 2 s, which has non-vanishing matrix
elements only between states with the same part which depends on r. Thus, in the case
considered here, it is equal to a linear combination of αx and βy. Its precise value is

√
6(αx− βy/

√
3) . (4)

Inglis noted that, if the effective forces are central and even in the presence of spin-orbit
interaction, the matrix element (4) cannot vanish [23]. He argued, as shown below, that
the coefficients x and y in Equation (2) have the same signs. In the case of central-and
spin-orbit interactions, the L = 2 D state has a non-vanishing non-diagonal matrix element
only with the 1P1 state. This is due to the single particle spin–orbit interaction. The α and β
coefficients in Equation (3) have opposite signs. As a result, the matrix element (4) cannot
vanish. Inglis suggested that the near vanishing of the matrix element is due to mixing of
higher configurations into states of the 1p shell.

This is the situation, in the extreme case of jj-coupling. The coefficients of the (1p1/2)
−2

state with J = 0, T = 1 are x =
√

1/3 and y =
√

2/3. The coefficients of the J = 1, T = 0
state are α = −

√
1/27, β =

√
6/27 and γ =

√
20/27 as in Ref. [23].

In 1954, Jancovici, a graduate student in Princeton and I, a visitor there, noticed that
the situation is changed if tensor forces are included in the shell model interactions. The 3D1
state may then strongly interact with the 3S1 state in addition to its spin–orbit interaction
with the 1P1 state. If this interaction is sufficiently strong, the signs of the α and β become
equal and cancellation or near cancellation may be possible [24]. That work was carried
out in the period when various interactions were used taken from attempts to extract them
from analysis of nucleon–nucleon reactions. Ref. [24] was no exception, and this was the
case with the several publications which followed it. One conclusion was clear: tensor
forces may play an important role in 14C beta decay.

Cohen and Kurath [22] carried out shell model calculations in the 1p shell. Following
our paper [24] and its followers, they determined the effective interaction by attempting to
achieve the best fit to measured energy levels. No attempt was made to obtain the longevity
of 14C, but they refer to it. They write in their comments on their results on 14N: “The major
point of interest here concerns the beta decay of 14C which has been difficult for the shell
model . . . actually, changing the 14N ground state to one which has an over-lap of 0.998
with the state from the latter case would produce the nearly exact cancellation indicated by



Physics 2022, 4 944

experiment”. They mention a possible effect of mixing with configurations from a higher
shell. The experimental situation is still complex and the results of Ref. [22] support the
view that the longevity of 14C may have a simple explanation in the shell model.

The wave-function [2] is an eigenstate of the sub-matrix of the Hamiltonian

3P0
1S0

∣∣∣∣∣E(3P0) − 2a
√

2 =

−2a
√

2 E(1S)

∣∣∣∣∣E(3P0)− E′ − 2a
√

2 +

−2a
√

2 E(1S)− E′

∣∣∣∣E′ 0
0 E′

(5)

In the matrices (5), E(3P0) and E(1S0) are the energies of the states before diagonaliza-
tion. E′′ is the lower J = 0 eigenvalue of Hamiltonian (5), either of the left or right side of it.
The higher eigenvalue, E′ , lies 13.75 MeV above E′′. To diagonalize the matrix on the left, it
is sufficient to diagonalize the left matrix on the right. Diagonalization of the matrix on
the left yields the two eigenvalues E′′ and E′. Hence, diagonalization of the matrix on the
right yields the corresponding eigenvalues 0 and E′′–E′ . This difference is taken here to be
–13.75 MeV.

The difference between the two eigenvalues of the spin–orbit interaction (1) of a single
nucleon is

El+1/2 − El−1/2 = a(2l + 1) . (6)

The value of a in the case considered here can be obtained from the difference of the
single hole states in 15N. The ground state of 15N is a J = 1/2− state, and a J = 3/2− state is
6.324 MeV above it. Thus, the value of a is 2.108 MeV, the coefficient in Equation (1) is 4.216
and the non-diagonal matrix element in Hamiltonian (5) is –4.216

√
2 = –5.962 MeV.

The matrix to be diagonalized:

3P0
1S0

∣∣∣∣∣ U − 4.216
√

2
−4.216

√
2 W

(7)

Since one of its eigenvalues is 0, its determinant vanishes so that UW = 8 × 2.1082 =
8 × 4.442 = 35.54. The trace of matrix (7) is equal to the trace of the diagonalized matrix.
Thus, U + W = (E′′ – E′) + (E′ – E′) = –13.75 MeV. From these values follows U = –10.3 and
W = –3.45 MeV. The derivations above may be summarized by a simple expression of U
and W. The matrix (7) has an eingenvalue 0 and hence its determinant vanishes:

UW − 8a2 = 0 . (8)

The other eigenvalue, N, is equal to the trace of the matrix, E = U + W. Thus, Equation (8)
may be rewritten as

U(N −U)− 8a2 = 0 = U2 −UN + 8a2 = (U − N/2)2 − N2/4 + 8a2 . (9)

From Equation (9), the explicit expression for the lower diagonal matrix element
follows:

U =
1
2
(E−

√
(E2 − 4(8a2)) . (10)

The higher element is given by

W =
1
2
(E +

√
(E2 − 4(8a2)) . (11)

The sum of Equations (10) and (11) is U + W = N and their product is

UW = (E−
√
(E2 − 4(8a2)))(E +

√
(E2 − 4(8a2)))/4 = (E2 − (E2 − 4(8a2)))/4 = 8a2 . (12)
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The coefficients of the eigenstate (3) can be obtained from the matrix (5) by∣∣∣∣∣∣
−10.3− 5.962

−5.962− 3.45

∣∣∣∣∣∣
y

= −13.75
x

∣∣∣∣∣∣
y

x
(13)

The relation (8) is satisfied by

x = (13.75− 10.3)y/5.962 = 0.579y or x = 5.962y/(13.75− 3.45) = 0.579y. (14)

The normalized coefficients are equal, to a good approximation, to x = 0.5 and
y =
√

0.75. The wave function (2) with these coefficients has an overlap larger than 0.995
with the J = 0 state of two p1/2 holes.

The amplitudes in the 14N ground state, the coefficients of Equation (4), may be
obtained by diagonalization of the shell model sub-matrix

3S1
1P1
3D1

∣∣∣∣∣∣
V(S) a

√
2/3 VT

a
√

2/3 V(P) −a
√

5/6
VT −a

√
5/6 V(D)− a(3/2)

(15)

As shown in Ref. [24], due to the tensor forces, the coefficients α and β may have the
same sign. If it is absent, they have different signs due to the positive non-diagonal element
of the spin–orbit interaction between the 3S1 and the 1P1 states.

The matrix element of the Gamow–Teller beta decay is given by Equation (4) as
√

6(xα− yβ/
√

3) . (16)

Due to the values of x and y obtained above,
√

0.75/
√

3 =
√

0.25 = 0.5 and this matrix
element vanishes for any equal coefficients, α = β. The experimental situation in 14N is
more complicated than in 14C. In the following, we assume that the matrix element (11) is
strongly reduced. Using plausible coefficients, it is possible to check this mechanism by
looking at the mirror beta decay. The faster decay of 14O to the 14N ground state should be
due to the difference in Coulomb energies. The values of α and β in obtaining 0 or close to
them may occur in the actual nuclei. The measured matrix element in the 14C is actually
very small but not exactly zero.

As stated above, the near cancellation of the beta decay matrix element in 14C, should
not occur for the mirror transition of 14O. In the case considered above, states are of two
proton holes interacting also by the Coulomb interaction. In 14O, there are neutron holes
and the difference [10] is slightly smaller, 6.176 MeV. Hence, a = 2.059, the coefficient in
Equation (1) is 2a = 4.118 and the non-diagonal matrix element in Hamiltonian (5), in the
present case, is –4.118

√
2 = –5.824 MeV.

In matrix (5), E(3P0) includes -2α, and its energy should be increased by 0.1 MeV. Using
Equation (10) in this case yields U = 1

2 (–13.65 –
√

13.652 − 4× 5.8242) = –10.38 MeV and
W = –3.27 MeV. In the case considered now, x = 3.27y/5.824 = 0.561 and x = 10.38y/13.65 =
0.561. The normalized coefficients are x = 0.489 and y = 0.872. To calculate the beta decay
matrix element (9), it is not sufficient to take α = β. A plausible choice, consistent with
a large value of γ, is α = β = 0.3. With this value, the square of the element (9) becomes
equal to 0.09× 6(0.489− 0.872/

√
3)2 = 0.000104. The f t value is obtained by dividing

5300 by this number [25]. Thus, log f t = log(5300/0.000104) = 7.7, which is in the region of
experimental results.

The importance of 14C dating in archaeology is demonstrated by the University of
Cambridge which publishes a journal called Radicarbon. Most of the articles in it deal
with applications of 14C, but, several years ago, an issue was devoted to the nuclear
physics behind the phenomenon. The paper “The half-life of 14C—–Why is it so long?” by
Kutschera was published online by Cambridge University Press [26]. It contains a detailed
bibliography on this subject—Ref. [24]—as well as recent large scale computations. No
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results on beta decay of 14O are presented. In the Introduction, Kutschera states that, in the
approach of Ref. [24], using the simple shell model, some reduction of the rate of 14C beta
decay is obtained but not sufficiently. No reference is quoted. This approach may turn out
to be not the correct one but not for the reason given in Radiocarbon.

Only three of the many papers listed in Ref. [27] are mentioned here. Fayache, Zamick,
and Muther considered central, spin–orbit and tensor forces [28]. They considered, however,
also mixing of nearby configurations and various values of the interactions. They found
a set of values which fits the data. They quote a theoretical derivation of these values (if
“the enhancement of the small component of the Dirac spinors of the nucleons is taken
into account”).

Negret et al. (38 authors, all listed in the References) present experimental results
relevant to beta decay from which information on A = 14 nuclei may be deduced. The
theoretical analysis is based on calculations in which shell model wave functions were
used, but no central potential (core) is assumed, NCSM. Not all low levels appear and the
big reduction of 14C beta decay is not reproduced. The important result is that the main
component of the J = 1, T = 0 ground state of 14N is indeed 3D1 . The authors, like some
others, believe that clustering is an important ingredient that should be included. The
authors of the next paper do not share this opinion.

Maris, Vary, Navratil, Ormand, Nam, and Dean use ”ab initio no-core shell model”
in their calculation [29]. The Hamiltonian is taken from “the chiral effective field theory
including three-nucleon force terms”. They find that the latter have a large effect leading
to the large reduction of the beta decay rate of 14C. If this sounds simple, the order of the
matrix with which they deal is 872,999,912. The number of non-vanishing, diagonal and
non-diagonal 3NF (3-nucleon-forces) matrix elements is about 2× 1013. The shell model is
supposed to give some simplicity from the complexity of the nuclear many body system.
The results of this paper are far from simple.

To find if the shell model is sufficiently detailed to yield the results of beta decay of 14C
and 14O, it may be necessary to understand the level structure of these nuclei and of 14N. It
may be necessary to consider possible mixing between levels of the 1 f 2p configuration and
some 1g2d levels. Even small admixtures may affect the values of the small decay rates. At
this time, it is too early to give up the hope.
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