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Abstract: In this short review, we focus on some of the subjects, related to J. Cleymans’ pioneering
contribution of statistical approaches to the particle production process in heavy-ion collisions.
We discuss these perspectives from the effects of stochastic processes in collective variables of
hydrodynamic description, which is described by a stochastic variational method. In this connection,
we stress also the necessity of the inclusion of surface and quantum effects in the study of relativistic
heavy-ion reactions.
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1. Introduction

The history of hydrodynamic description goes back to even before the 18th Century,
and as we know, it has been applied widely to the studies of continuum media in many
different scenarios. In fact, the hydrodynamic approach works not only for the description
of a variety of phenomena around us, but also for the systems in completely different
scales, from elementary particles to the Universe. As a microscopic example, the relativistic
hydrodynamic approach is an important tool for the study of the properties of the matter
produced in relativistic heavy-ion collisions. There, the properties of the matter created
in these processes are reflected in the behaviors of collective flow variables [1–6]. On the
other hand, as a macroscopic example, hydrodynamic modeling has been an indispensable
tool in the studies of astrophysical phenomena. More recently, in particular, a full general
relativistic hydrodynamics is required in the investigation of the so-called multi-messenger
astrophysics such as neutron star or black hole mergers; see, e.g., [7].

The above wide range of the applicability of the hydrodynamic description comes
from the fact that its basic kinematic structure is nothing but a set of local conservation
laws, such as energy, momentum, charges, etc., and expressed in the forms of the equations
of continuity. Of course, the proper definitions of the local conserved densities and the
continuum assumption depend on systems and are not always trivial. These may enter
some subtle aspects, as we discuss below. However, once the system is represented as a
continuum medium in the form of local conserved densities and its flows, the corresponding
equations of continuity are applicable independently of the properties and size of the matter.
This is the principal reason why the hydrodynamic approach can have a wide applicability
irrespective of the scale of the system.

On the other hand, it is evident that the set of these equations of continuity alone does
not form a closed system to describe dynamics. They are simply kinematic constraints for
the dynamical evolution of continuum media. To describe the time evolution, we have
to introduce “forces” in a closed form: these forces should be specified as functions (or
functionals) of conserved densities. For example, in the case of an ideal fluid description,
any infinitesimal part of the fluid is assumed to stay in thermodynamic equilibrium adia-
batically during the whole time evolution. In such a case, the force is simply given by the
pressure, which is a function of other local densities.
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As sketched above, the hydrodynamic description requires several assumptions and
also depends on the external input, such as the equation of state (EoS). Thus, the hydrody-
namic description is basically phenomenological. Even its most fundamental assumption
of the continuum medium for the matter is not always justified in a quantitative manner.
This becomes pronounced in the applications to microscopic systems such as relativistic
heavy-ion collisions. As described below, the applicability of hydrodynamics is intimately
related to the concept of coarse-graining procedure through which we introduce the local
densities of the medium and corresponding thermodynamic properties.

To clarify the concept of the coarse-graining procedure, let us consider, as an example,
the statistical model for the particle productions in heavy-ion collisions. In this model,
we consider the whole ensemble of produced particles in a huge number of collisional
events, within a certain kinematic domain. By assuming the grand-canonical ensemble,
this system is characterized by a few thermodynamic parameters, such as temperature
and chemical potentials. These parameters can be adjusted to reproduce the relative
abundance of different species. This statistical approach in heavy-ion collisions indicates
new mechanisms of particle productions, such as Hagerdorn’s prediction of the limiting
temperature in hadronic gas, J/ψ suppression, strangeness enhancement, and thermal
photon and lepton pair signals [8–20]. These observations converged to the idea of the
formation of quark–gluon plasma (QGP), in the early 2000s.

The relativistic hydrodynamic description of the dynamics of QGP is nothing but a
more microscopic and dynamical version of the statistical model. In fact, this is literally
the most microscopic system of fluid ever known [21] (see English translation in [22]).
There, instead of identifying a unique hot QGP fireball as the average over many collisional
events, we consider that such a hot and dense state of the QGP stage is created initially
in the small domain at the instant of the collision and develops as a fluid in spacetime.
The time evolution of the hot QGP depends on the different initial condition defined on an
event-by-event (EbE) basis. This is a natural step toward the spacetime description of the
QGP, starting from the statistical model.

In the case of relativistic heavy-ion collisions, however, the proper system is mi-
croscopic so that the spacetime evolution of the QGP fluid is not observable directly in
experiments. For a given experimental event, we only know a few pieces of global informa-
tion, which characterizes the initial condition of two colliding nuclei and the momentum
distribution of the produced particles with their identification in the final state. Thus,
to apply the hydrodynamic description under such a restrictive condition, we introduce
three distinct steps in practice: (1) preparation of hydrodynamic initial conditions from the
particle system, (2) hydrodynamic evolution, and (3) particlization from the fluid final state.
In the first step, we usually rely on the use of a some well-established event generator based
on nucleon–nucleon high-energy collisions. Then, the initial distributions of the energy
and the momentum are constructed for a given collision geometry of the colliding nucleus,
which is characterized by, for example, the impact parameter (see also the discussion below).
This is done by a smoothing procedure over the energy, the momentum, and the location
of primordial particles produced in each event generator. In this paper, we refer to such a
procedure as geometric coarse graining.

Once the initial condition is determined, in the second step, we follow its hydro-
dynamic evolution until the assumptions of the hydrodynamic description are violated.
For example, if the density of the fluid becomes less than a certain critical value, the fluid
description is considered to be invalid. The hypersurface in the four-dimensional spacetime
where the fluid attains the critical density is called the freeze-out surface. In the third step,
the final fluid state on the freeze-out surface is mapped into the corresponding momentum
distribution of the produced particles, in terms of the so-called freeze-out process. Tech-
nically speaking, the freeze-out mechanism involves complicated physical mechanisms,
such as the chemical and thermal freeze-out, after-burner, etc, but we do not enter into the
details here.
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The above steps are repeated to generate an ensemble of many “hydrodynamic colli-
sional events” for a specific collision geometry. In a nucleus–nucleus collision, the basic
parameters for a collision geometry are the impact parameter (collision centrality) and
the corresponding collisional plane. We identify the simulated event ensembles as that
of the corresponding experimental events classified by the same collisional geometry in a
statistical sense. From this identification, we can calculate statistical correlations of observ-
ables in both ensembles and compare them. Such correlations can characterize non-trivial
signals of the presence of collective motions as dynamic responses of the QGP matter. Here,
we stress that the EbE analysis does not mean the one-to-one correspondence between a
hydrodynamic simulation and experimental data in an individual collisional event. We
rather suppose that the ensemble of the hydrodynamic events is statistically equivalent
as a whole to the corresponding experimental events. This is a kind of coarse-graining
procedure in the identification of observables. For simplicity, we refer to this procedure
as the statistical coarse-graining. This EbE hydrodynamic analysis was first introduced
in [23].

As described above, a hydrodynamic approach in the heavy-ion collisions focuses on
the collective flow of the system, introducing some coarse-graining procedures of different
natures. The collective features in collisional events are reflected in the characteristic
correlations among detected particles. Some observables are known to be related directly
to the global initial condition geometry (such as impact parameter and collision plane)
and others to those EbE fluctuations, e.g., the local inhomogeneities. The EbE analysis has
revealed that the fluctuations in the initial conditions with the same class of the global
geometry manifest themselves in the collective flow observables, such as v2, v3, establishing
hydrodynamic natures.

Here, we stress again that the determination of correlations among observables re-
quires the ensemble average over different events with a specified initial global geometry.
Therefore, strictly speaking, the success of the hydrodynamic description does not nec-
essarily mean that all assumptions behind it are justified literally as they are. In the
hydrodynamic description, we assume that the QGP is formed as a continuum medium rep-
resented by an ensemble of small domains, called fluid elements. They should be specified
by a set of local conserved densities in thermodynamic equilibrium, at least approximately.
For this to happen, the size of a fluid element must be orders of magnitude smaller than that
of the whole fluid, but at the same time, it should be sufficiently dense so that it contains
a huge number of the QGP particles. In addition, the local thermal relaxation time must
be sufficiently shorter than the time scale of the hydrodynamic evolution to keep the fluid
element in a state close to the thermal equilibrium during its evolution. However, as men-
tioned, we are not considering one-to-one correspondence between the two ensembles,
hydrodynamic evolutions, and experimental events, and hence, the observables contain
the statistical coarse-graining. In this sense, the hydrodynamic description for the rather
global collective flow parameters, such as v2, v3, are insensitive to more local dynamics
of the system. To investigate the more detailed behavior of the QGP dynamics, nonlinear
correlations should be analyzed since there are different initial conditions that reproduce
the same collective flow parameters. For example, the distinction of finite v3 flows between
a global triangular anisotropy and the presence of a hot spot in the peripheral region is not
clear [24,25]. The measurements of higher-order correlations in observables will further
refine these questions with respect to the coarse-graining scale, and such efforts are being
made by studying the non-linear response of the collective parameters [26,27].

Up to now, we have not considered the presence of viscosity, which is of course an
important factor for the hydrodynamic description. In ideal hydrodynamics, the fluid
elements are thermally equilibrated during the time evolution and smoothly connected to
their neighbors. Their time evolution should be adiabatic, and the total entropy is conserved.
In such a case, it is well known that the hydrodynamic equation of the system is equivalent
to the set of classical equations of motion of each fluid element. The so-called Lagrange
coordinate system faithfully reflects such an image. Then, it is rather straight to see that we
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can apply the variational method to derive the hydrodynamic equations, defining the action
of the system simply introducing the internal energy of each fluid element. As is known,
the variational approach has many advantages in formulating the dynamical problem in an
elegant and transparent way to deal with, e.g., the relation between the conservation laws
and symmetries. As an example, ideal relativistic hydrodynamic equations are derived
from the same action, just written in a covariant form [28].

From the variational point of view, ideal hydrodynamics describes the optimal trajec-
tory of the fluid elements, where they interact with the neighbors exchanging the internal
energy in an adiabatic way. Then, if we follow this image to deal with dissipative processes,
we need to include the non-adiabatic processes in the interactions among the fluid elements.
This is not trivial in a self-contained variational scheme without introducing an artificial
modification such as Rayleigh’s dissipation function.

One possibility is to extend the domain of dynamical variables as classical determinis-
tic ones by introducing stochastic variables in the definition of the action. This is a natural
way to include the fluctuations associated with the coarse-graining mechanism. Such a gen-
eralized variational method is known as the stochastic variational method (SVM) [29–32].
In this review, we focus our attention on some known systems where the SVM approach
is applicable. The action is defined as the average over the whole ensemble of stochastic
events. The variation is taken with respect to these stochastic dynamical variables, whose
initial and final conditions are specified in terms of their distributions.

The original motivation of the SVM was to derive the Schrödinger equation in terms
of noises around the classical trajectory [29], but the SVM approach is shown to be valid
to derive viscous hydrodynamics, as well. It is shown that the Navier–Stokes and Gross–
Pitaevskii, in addition to the generalized diffusion equations are derived within the frame-
work of the SVM [33]. There, the quantum uncertainties and uncertainties in hydro-
dynamic descriptions due to the coarse-graining procedure are dealt with by the same
framework [32,34–36]. The crucial point of the SVM approach compared to the ordinary
variation method is that we deal with the non-differentiability and the time-reversed
stochastic trajectories.

This paper is organized as follows. In Section 2, we describe the essential structure
of the stochastic variational approach and discuss several known results, such as the
derivation of the Schrödinger equation. In Section 3, we apply the SVM to the system of
fluids and derive generalized viscous hydrodynamics. In Section 4, we discuss the roles
of the new term, which does not appear in standard viscous hydrodynamics. This term,
on the one hand, plays a crucial role for quantum-mechanical systems and, on the other
hand, generates the surface tension in generalized viscous hydrodynamics. In Section 5,
we discuss the uncertainty relation in hydrodynamics. The application to curved geometric
systems is discussed in Section 6. Section 7 is devoted to concluding remarks.

2. Stochastic Variation Method

Let us consider a single-particle system with mass m. In the standard variational
principle of classical mechanics, it is known that the physical particle trajectory x(t) is given
by the optimized path of the action:

I[x(t)] =
∫ t f

ti

dtL(ẋ(t), x(t)) , (1)

where ti and t f are the initial and final times and dot denotes the time derivative. The La-
grangian, L, is defined by

L(ẋ(t), x(t)) =
m
2

ẋ(t)2 −V(x(t)) , (2)

where the potential energy is denoted by V(x(t)). There, it is implicitly assumed that the
virtual trajectories for variation are differentiable. Then, as known, the optimized path
of the action is given by the solution of the Newton equation. If we permit considering,
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however, non-differential virtual trajectories in the variational procedure, the optimized
dynamics could be modified from the Newton equation. The SVM is one such generalized
variational method.

The typical example of non-differentiable trajectories is found in the Brownian motion.
In a manner analogous to this, in the SVM, the particle trajectory is assumed to be given by
the following forward stochastic differential equation (SDE):

dx(t) = u+(x(t), t)dt +
√

2νdW+(t) (dt > 0) , (3)

where u+ is a time-dependent vector field to be determined, and W+(t) is given by the
standard Wiener process, satisfying

E[dW+(t)] = 0 , E[dWi
+(t)dW j

+(t
′)] = |dt| δt t′ δij , (4)

where δ symbol denotes the Kronecker delta, and i, j = 1, 2, 3, stay for the component index
of space-like vectors. The ensemble average for the Wiener process is denoted by E[ ].
The intensity of the stochasticity is characterized by the parameter ν.

The standard definition of velocity in classical mechanics is not applicable in stochastic
trajectories because the left-hand and right-hand limits of a zigzag path do not agree. To
accommodate this ambiguity, we consider also the backward time evolution of the trajectory
described by the backward SDE:

dx(t) = u−(x(t), t)dt +
√

2νdW−(t) (dt < 0) , (5)

where W−(t) represents another standard Wiener process. The vector function u−(x, t) is
determined from u+(x, t) using the consistency condition, discussed below.

Nelson introduced two different time derivatives [37]: one is the mean forward
derivative D+ and the other the mean backward derivative D−, which are defined by

D±x(t) = lim
dt→0±

E
[

x(t + dt)− x(t)
dt

∣∣∣x(t)] = u±(x(t), t) . (6)

Here, the expectation value is the conditional average for fixing x(t), and we used the fact
that x(t) is Markovian.

The two unknown vector functions u±(x, t) are not independent. To see this, let us
introduce the particle distribution, which is defined by

ρ(x, t) =
∫

d3Ri ρ0(Ri)E[δ(x− x(t))] ,

where Ri = x(ti) denotes the initial position of the stochastic particle, and its distribution
is characterized by ρ0(Ri). Applying the forward and backward SDEs to this definition,
two Fokker–Planck equations are obtained (∂t ≡ ∂/∂t):

∂tρ(x, t) = −∇ · {u+(x, t)ρ(x, t)}+ ν∇2ρ(x, t) , (7)

∂tρ(x, t) = −∇ · {u−(x, t)ρ(x, t)} − ν∇2ρ(x, t) . (8)

To conform Equation (8) to Equation (7), u−(x, t) should be chosen to satisfy the consis-
tency condition:

u+(x, t) = u−(x, t) + 2ν∇ ln ρ(x, t) . (9)

A more general representation of the consistency condition is shown in Equation (25)
of [32]. It is also noteworthy that these Fokker–Planck equations are reduced to the same
equation of continuity:

∂tρ(x, t) = −∇ · (ρ(x, t)v(x, t)) , (10)
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where the mean velocity field is defined by

v(x, t) =
u+(x, t) + u−(x, t)

2
. (11)

To apply the stochastic variation to the single-particle Lagrangian (2), one needs
to replace d/dt with D+ and D− of Equation (6). Suppose that the kinetic term of the
Lagrangian is replaced with the average of the two time derivatives. Then, the single-
particle stochastic Lagrangian is defined by

Lsto(x̂, D+x̂, D−x̂) =
m
2
(D+x(t))2 + (D−x(t))2

2
−V(x(t)) . (12)

Let us define the variation of the stochastic trajectory by

x(t) −→ x′(t) = x(t) + δ f (x(t), t) , (13)

where δ f (x, t) is an infinitesimal function satisfying

δ f (x, ti) = δ f (x, t f ) = 0 . (14)

The stochastic variation of the stochastic Lagrangian (12) leads to the stochastic Euler–
Lagrange equation:[

D−
∂Lsto

∂(D+x(t))
+ D+

∂Lsto

∂(D−x(t))
− ∂Lsto

∂x(t)

]
x(t)=x

= 0 . (15)

Substituting Equation (12), one finds:

(∂t + v · ∇)v = − 1
m
∇V + 2ν2∇

∇2√ρ
√

ρ
. (16)

Note that ρ(x, t) is described by the equation of continuity (10).
The above result, Equation (16), of the stochastic variation can be cast into a more

familiar form. Let us introduce a complex function, defined by

ψ(x, t) =
√

ρ(x, t)eiθ(x,t) , (17)

where the phase, θ, is defined by

v(x, t) = 2ν∇θ(x, t) . (18)

The evolution equation of θ(x, t) is obtained from Equation (16), and then, ψ(x, t) satisfies

i∂tψ(x, t) =
[
−ν∇2 +

1
2νm

V(x)
]

ψ(x, t) . (19)

When
ν =

h̄
2m

, (20)

is chosen, Equation (19) becomes the Schrödinger equation; here, h̄ is the reduced Planck’s
constant. Then, actually, Equation (16) coincides with the so-called Madelung’s hydrody-
namic representation of the Schrödinger equation.

3. Generalized Viscous Hydrodynamics

In Section 2 above, it is shown that quantization is the stochastic optimization of the
classical action. That is, when we observe a single-particle system with a macroscopic
scale where the non-differentiability of the particle trajectory becomes negligibly small,
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we can apply the classical variation to the single-particle action, and the Newton equation
is obtained. However, if the system has a microscopic scale, one has to optimize the
corresponding action with the stochastic variation, and the Schrödinger equation is derived.
In this sense, we can understand that classical mechanics emerges as the result of the
coarse-graining caused by large differences in scales of observables.

Let us apply this idea to another example of coarse-graining in hydrodynamics. The be-
havior of the ideal fluid is described by the Euler equation, while that of the viscous
(Newtonian) fluid is described by the Navier–Stokes–Fourier (NSF) equation. In an ideal
fluid, the local thermal equilibrium is perfectly satisfied for each fluid element during their
time evolution. Therefore, the thermodynamic property of the fluid elements changes in a
quasi-static manner. In other words, the time scale of the collective dynamics of an ideal
fluid is much longer than the local relaxation time for thermal equilibrium. On the other
hand, when the fluid changes in a relatively smaller scale, there exist small deviations from
the thermal equilibrium in the internal states. Since this deviation is not represented by
a function of thermodynamic quantities, the fluid obtains extra acceleration mechanisms
attributed to the non-equilibrium nature of the fluid elements. Therefore, one can consider
that the difference between the Euler and NSF equations comes from that of the coarse-
graining in the spacetime scale in the hydrodynamic behavior. In such a smaller scale,
the trajectories of the fluid elements are not always smooth, as is the case of the Schrödinger
equation. If this idea is correct, one can obtain the NSF equation from the Euler equation
by using the stochastic variation.

As mentioned in the Introduction, the motion of a fluid can be represented by the
ensemble of the motions of fluid elements. We consider a simple fluid composed of N
constituent particles with mass m. The Lagrangian of the system is given by the sum of the
contributions from each fluid element as

L =
∫

d3Riρ0(Ri)

[
m
2

(
dx(t)

dt

)2

− Ex(t)

]
, (21)

where x(t) is the Lagrange coordinate of the fluid element. Each fluid element involves a
fixed number of constituent particles, which is conserved in the time evolution. Then, the
initial distribution of the fluid elements is characterized by ρ0(Ri), normalized by N,∫

d3Ri ρ0(Ri) = N . (22)

The internal energy per particle in the fluid element Ri at time t is denoted by Ex(t) and
given as Ex(t) = ε/ρ. Here, ε = ε(ρ) is the internal energy density and ρ = ρ(x(t), t) is the
number density of the constituent particles of the fluid element at time t for a given initial
position Ri.

Applying the classical variation to this Lagrangian, one obtains the Euler equation,
which describes the motion of the ideal fluid:

(∂t + v · ∇)v = − 1
mρ
∇P , (23)

where

P = − d
dρ−1

ε(ρ)

ρ
. (24)

In the Lagrange coordinates moving with the fluid elements of the ideal fluid, the specific
entropy of each fluid element is constant. Thus, the quantity (24) can be identified with the
thermodynamic pressure,

P = −
(

∂

∂ρ−1
ε

ρ

)
s

, (25)
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where s is the specific entropy of the fluid element. The detailed mathematical derivation
of the pressure term in the variation is shown in [32].

Let us apply the stochastic variation to the ideal classical Lagrangian (21). As was
mentioned in the derivation of the Schrödinger equation, there is an ambiguity for the
replacement in the kinetic term of the stochastic Lagrangian, and we simply assumed that
the stochastic kinetic term is given by the average of the contributions of D+ and D−. Here,
we consider a more general situation. Suppose that the kinetic term is given by the most
general quadratic form of D±, defined in Equation (6),

m
2

[
B+{A+(D+x(t))2 + A−(D−x(t))2}+ B−(D+x(t))(D−x(t))

]
, (26)

where

A± =
1
2
± αA , (27)

B± =
1
2
± αB . (28)

and αA and αB are real parameters. In the vanishing limit of the noise, ν→ 0, the two mean
derivatives are reduced to the standard time derivative, and thus, the kinetic term (26)
coincides with the classical kinetic term,

lim
ν→0

m
2

[
B+{A+(D+x(t))2 + A−(D−x(t))2}+ B−(D+x(t))(D−x(t))

]
=

m
2

(
dx(t)

dt

)2

.

Using this, the general form of the stochastic Lagrangian, corresponding to Equation (21), is
given by

L =
∫

d3Riρ0(Ri)E
[m

2

{
B+A+(D+x(t))2 + B+A−(D−x(t))2 + B−(D+x(t))(D−x(t))

}
− ε(ρ(x(t), t))

ρ(x(t), t)

]
. (29)

The stochastic variation finally leads to the following equation,

m(∂t + v · ∇)vi = 2κ∂i
∇2√ρ
√

ρ
− 1

ρ
∂i{P− ζ(∇ · v)}+ 1

ρ

D

∑
j=1

∂j

(
ηEij

)
, (30)

where the traceless symmetric stress tensor is defined by

Eij =
1
2

(
∂ivj + ∂jvi

)
− 1

3
(∇ · v)δij .

The shear viscosity η and the bulk viscosity ζ are defined by

η = 2mαA(1 + 2αB)νρ , (31)

ζ = µ +
η

3
. (32)

The second coefficient of viscosity, µ, emerges from the variation of ε through the changes
of the associated specific entropy, as suggested in [33]. One can find that Equation (30) is
identical to the NSF equation,

m(∂t + v · ∇)vi = −1
ρ

∂i{P− ζ(∇ · v)}+ 1
ρ

D

∑
j=1

∂j

(
ηEij

)
, (33)
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except for the term that contains κ, which is discussed in Section 4 below.
Here, the stochastic optimization of the averaged behavior of fluid dynamics was

considered in terms of the fluctuating motion of the fluid element. It is however possible to
consider models, where the noise terms are added directly to hydrodynamics; for recent
studies, see [38,39] (and references therein).

4. Quantum Effects and Surface Energy

The coefficient κ is defined by

κ = 2αBν2/m .

This does not appear in the NSF equation (33), but one can immediately notice that it
turns out to be the quantum potential term by choosing κ = h̄2/4m. Indeed, Equation (30)
is sometimes used as a model of a quantum viscous fluid [40,41].

The appearance of the κ term in generalized hydrodynamics has been discussed for a
long period of time. For example, Brenner pointed out that, since the velocity of a tracer
particle of a fluid is not necessarily parallel to the mass velocity, the existence of these two
velocities should be taken into account in the formulation of hydrodynamics. This theory is
called bivelocity hydrodynamics [32,34,42–44], and Equation (30) is understood to be one
of the variants.

Another example is related to the diffuse-interface models of hydrodynamics [45].
The properties of the interface between two fluids has been studied since the 19th Century
by Young, Gauss, Maxwell, Gibbs, Rayleigh, van der Waals, and others. In particular,
Korteweg [46] considered that the behavior of liquid–vapor fluids near phase transitions
is described by the Navier–Stokes–Korteweg (NSK) equation, and our Equation (30) is its
special case. Then, the κ term describes the capillary action; for more details, see review [45].

As a matter of fact, the κ term is related intimately to the surface tension and can
be incorporated into the classical Lagrangian. Modifying the internal energy term of the
Lagrangian Equation (21) as

L→ L =
∫

d3Riρ0(Ri)

[
m
2

(
dx(t)

dt

)2

− ε

ρ
− κ

4

(
∇ρ

ρ

)2
]

, (34)

the classical variational approach leads to the κ term in the equation of motion Equation (30)
without the viscous term (ζ, η = 0). This type of internal energy was introduced in the
Thomas–Fermi model for the nuclear density distribution, showing the relation between
the κ term and the surface energy for a saturating system, such as nuclear matter [47,48].

To illustrate the role of the noise in the SVM formulation as the surface energy, let
us consider the hydrostatic equilibrium of a fluid with such a κ term in the Lagrangian.
The density distribution at the hydrostatic equilibrium for a given total number of con-
stituent particles is given by

δ{EToT [ρ]− λN[ρ]} = 0, ∀δρ,

where

EToT [ρ] =
∫

d3x ρ(x)

{
ε(ρ)

ρ
+

κ

4

(
∇ρ

ρ

)2
}

, (35)

and
N[ρ] =

∫
d3x ρ(x) (36)
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is the total number of particles. Here, the number density ρ should be non-negative and λ
is the Lagrangian multiplier (chemical potential). Applying the usual variational procedure
with respect to the density ρ, we readily obtain the following differential equation for the
spherical symmetric case,

d2φ

dr2 =
1
κ

(
dε

dρ
− λ

)
φ, (37)

where r is the radial coordinate and

φ(r) = r
√

ρ(r).

In order to satisfy the boundary condition for φ at r → ∞, i.e., limr→∞ ρ(r) → 0,
Equation (37) should be solved as an eigenvalue problem of λ for a given value of central
density ρ|r=0.

For a system such as nuclear matter, the internal energy par particle as a function of ρ
is characterized by the following properties:

ε

ρ
→ 0, ρ→ 0,

ε

ρ

∣∣∣∣
ρeq

< 0,

d
dρ

(
ε

ρ

)∣∣∣∣
ρ=ρeq

= 0, (38)

ε

ρ
→ ∞, ρ→ ρS,

where ρeq is the equilibrium density for an infinite matter and ρS
(
> ρeq

)
is the maximum

density due to the strong repulsive forces at close distances between particles (hard core).
As an example, let us consider the following function:

ε

ρ
= ε

(
−1

4
+

1(
ρS/ρeq − ρ/ρeq

)2 − 2
1(

ρS/ρeq − 1
)3

ρ

ρeq

)
, (39)

where ε is a positive constant with the dimension of energy.
Figure 1 shows the radial dependences of the number density, ρ̄ = ρ/ρeq, which are

given by the eigenfunctions of Equation (37) by setting ρS = 2ρeq. The result is plotted by
using an adimensional radial variable x =

√
ε/κ r. The solid, dotted, and dashed lines

correspond to ρ̄(0) = 1.18, 1.19, and 1.20, respectively. The line for ρ̄ = 1 corresponds to
the infinite homogeneous matter in its hydrostatic equilibrium. These density distributions
show the plateau in the central bulk domain and the exponentially decreasing surface.
Thus, these distributions are reminiscent of the known Wood–Saxon distribution for the
nuclear density. The surface thicknesses of the three lines are almost constant and scaled by
the value of κ. Indeed, because of the definition of x, one can easily see that the larger κ,
the wider the surface thickness. Due to the practically vanishing radial derivative except for
the surfaces, the positive contribution of the κ term in Equation (35) comes basically from
the surfaces that have almost the same thickness for the three lines. Therefore, to minimize
the energy fixing the total N, the area of the surface should be reduced. This is the reason
why the central density increases for a smaller N.
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Figure 1. The radial dependences of the number density, obtained by solving Equation (37). Here,
ρ̄ = ρ/ρeq, x =

√
ε/κ r, and ρS = 2ρeq is set. The solid, dotted, and dashed lines correspond to

ρ̄(0) = 1.18, 1.19, and 1.20, respectively. The line ρ̄ = 1 corresponds to the infinite homogeneous
matter in its hydrostatic equilibrium. See text for details.

5. Uncertainty Relation in Hydrodynamics

The uncertainty relations characterize an important feature in quantum physics, and its
comprehension requires unceasing improvement. Recently, the present authors proposed a
new formulation of the uncertainty relations, which reproduce quantum mechanical results
and are also applicable to general stochastic dynamics within the framework of SVM [34].
Using this, one can derive the uncertainty relations for the motion of the fluid element of a
viscous (Newtonian) fluid.

To illustrate the method, let us consider the single-particle stochastic Lagrangian (12),
which is applied to obtain the Schrödinger equation. In this Lagrangian, the two time-
derivatives are introduced and are attributed to the non-differentiability of the stochastic
trajectories. Then, two momenta are introduced through the Legendre transformation of
the stochastic Lagrangian:

p±(x, t) = 2
∂Lsto

∂D±x(t)

∣∣∣∣
x(t)=x

. (40)

Here, the factor 2 in the definitions is introduced for a convention to reproduce the classical
result in the vanishing limit of ν.

The standard deviation of position of a quantum particle is defined by

σ
(2)
xi = d(δxi)2c ,

where δ f = f (x, t)− d f c, the following expectation value is introduced:

d f c = 1
N

∫
dDx ρ(x, t) f (x, t) , (41)

where N is the normalization factor of ρ analogous to Equation (22) and is a unity, N = 1,
for quantum mechanics of single particle system, and D denotes the number of the spatial
dimension. The standard deviation of momentum is defined by the average of the two
standard deviations:

σ
(2)
pi =

d(δpi
+)

2c+ d(δpi
−)

2c
2

,
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Using these definitions and the Cauchy–Schwarz inequality, we can show that the
product of σ

(2)
xi and σ

(2)
pj satisfies the inequality [34]:

σ
(2)
xi σ

(2)
pj ≥

h̄2

4
δij + (mdδxiδvjc)2 , (42)

where v(x, t) is defined by Equation (11). The second term on the right-hand side of
Equation (42) is expressed in terms of the quantum-mechanical notation:

mdδxiδvjc = Re[〈(xi
op − 〈xi

op)(pj
op − 〈p

j
op)〉)] , (43)

where xop and pop are the position and momentum operators, respectively, and 〈 〉 de-
notes the expectation value with a wave function. With this identification, one finds that
Equation (42) is the Robertson–Schrödinger inequality. When the second term on the
right-hand side is ignored, this becomes the Kennard inequality.

The advantage of the present approach compared to the standard canonical formu-
lation is that it is easily extended to the generalized coordinates systems. Let us consider
the generalized coordinate, qi, and the corresponding canonical momentum, pj. Then, the
uncertainty relation in the generalized coordinates system is given by [35]

σ
(2)
qi σ

(2)
pj ≥

h̄2

4

∣∣∣∣δi
j −

∫
dDq∂j{Jρ(qi − E[qi(t)])}+

∫
JdDq ρ(qi − E[qi(t)])Γk

jk

∣∣∣∣2
+ |E[(δqi(t))(δpj(t))]|2 , (44)

where J is the Jacobian of the generalized coordinates and Γi
jk is the Christoffel symbol.

The term next to δi
j on the right-hand side gives a finite contribution when qi is a periodic

variable. Actually, for the angle variable θ in the polar coordinates, this is reduced to

σ
(2)
θ σ

(2)
L ≥ h̄2

4

∣∣∣∣1− 2π
∫ ∞

0
rdrρ(r, 2π, t)

∣∣∣∣2 + |E[(δθ(t))(δL(t))]|2 , (45)

where L is the angular momentum. For the eigenstate of the angular momentum, the
right-hand side vanishes, σ

(2)
θ σ

(2)
pθ
≥ 0. The above inequality resolves the famous problem

in the angular uncertainty relation.
In the above calculations, the lower bound of the inequality is due to the consistency

condition (9), which comes from the consistency between the forward and backward
SDEs. That is, the finite minimum uncertainty is attributed to the non-differentiability of
trajectories. Therefore, the similar inequality should be satisfied for the motion of the fluid
element in viscous hydrodynamics. We now apply the same procedure to the Lagrangian of
generalized viscous hydrodynamics (29). Different from the quantum-mechanical case, we
consider the motion of the fluid element. Thus, the uncertainty relation in this application
reads the restriction for the fluctuating motion of the fluid element. Then, the uncertainty
relation for the fluid element of generalized viscous hydrodynamics [32,34] is given by

σ
(2)
xi σ

(2)
pj ≥ m2 (ξ

2 − κ)2

ν2 + ξ2 δij , (46)

where m is the mass of the constituent particle of a simple fluid and ξ is the kinematic viscosity

ξ =
η

2mρ
. (47)

Different from the quantum-mechanical case, the minimum uncertainty on the right-
hand side of the inequality (46) is not a constant, but a function of thermodynamic variables
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through viscosity. For the case of the NSF equation (33), where κ = 0, one can find that the
uncertainty will be enhanced for larger viscosity.

In the same inequality (46), the right hand side shows that the minimum uncertainty
of the inviscid fluid is modified by the effect of viscosity. It is natural to assume that
the minimum uncertainty of the inviscid fluid is larger than the quantum-mechanical
minimum, h̄/2. Suppose that the viscous effect does not improve uncertainty beyond the
inviscid (and thus quantum-mechanical) minimum. To satisfy this condition, the kinematic
viscosity has the following lower bound [35]:

ξ ≥
√

3
2

h̄
m

. (48)

This lower bound is the same order of magnitude as the Kovtun–Son–Starients (KSS)
bound of the shear viscosity [49]. This may suggest the close relation between the KSS
bound and the minimum uncertainty relation. See also [50].

In quantum mechanics, it is known that the minimum uncertainty state is given by
the coherent state. Even in viscous hydrodynamics, one can write down the minimum
uncertainty state, which is given by the generalized coherent state; for details, see [35].

6. Quantum Mechanics in Curved Spacetime

The framework of the SVM is applicable to particle systems described by generalized
coordinates in curved geometries. For this application, the modification of the noise term
in the SDEs is crucial. For example, suppose that the forward SDE for the radial component
in the polar coordinates is expressed by the direct generalization of Equation (3):

dr(t) = ur
+(r(t), θ(t), t)dt +

√
2νdW+(t) (dt) > 0 , (49)

where W+(t) is the Wiener process. This equation however does not function because
dW+(t) can take any real value at random, and thus, the positivity r(t) > 0 can be violated.

In the following, we discuss a non-relativistic SVM system in the curved geome-
try following the formulation developed in [51,52]. Let us consider a curved spacetime
geometry characterized by the metric gµν where g00 is a function only of time, and the
indices denoted by the Greek letters stay for the time (0) and space (1,2,3) components.
Moreover, there is no mixture terms of the spacetime components, g0i = 0. The position
in this generalized coordinates is denoted by qµ. On the other hand, one can find local
Minkowskian coordinates around qµ, which is denoted by ya. The Minkowskian metric
is ηab = diag(−1, 1, 1, 1). The Latin indices a, b, c etc. stay for the local Minkowskian
coordinates, i, j, k, etc. are reserved to denote the spatial components of qµ. Then, one can
introduce the tetrads, defined by

eµ
a (Q) =

∂qµ

∂ya

∣∣∣∣
q=Q

, (50)

ea
µ(Q) =

∂ya

∂qµ

∣∣∣∣
q=Q

. (51)

These tetrads satisfy

gµν(Q)eµ
a (Q)eν

b(Q) = ηab , (52)

ηabea
µ(Q)eb

ν(Q) = gµν(Q) . (53)
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where the convention of taking summation for repeated indices is used. The forward SDE
in generalized coordinates is given by

dq0(t) = c dt , (54)

dqi(t) = ui
+(q(t))dt +

√
2νei

a(q(t)) ◦s dWa
+(t) (dt) > 0 , (55)

where c denotes the speed of light, q(t) = (q0(t),~q(t)) and the Stratonovich definition of
the product is introduced:

f (qt) ◦s dWa(t) = f (qt+dt/2)dWa(t) , (56)

for an arbitrary smooth function f (x). Since dWa
+(t) is defined in the local Minkowskian

coordinates, one can use the same Wiener process been applied so far. The backward SDE
is defined in a similar way; see [51,52] for details.

Let us consider the single-particle system of mass m, which is described by the follow-
ing stochastic Lagrangian:

Lsto =
m
4
{(D+ya) ηab (D+yb) + (D−ya) ηab (D−yb)} −V , (57)

where ya = y(q(t)) and V is a potential energy. Here, the kinetic term is expressed by the
average of the two contributions, D+ and D−. For the case of more general replacement,
one obtains the viscous term [52].

The stochastic variation then leads to

vµ∇µvi +
gij

m
∂jV = 2ν2gij

(
∂j

1
√

ρ
∇LB
√

ρ− 1
2

Rk
j ∂k ln ρ

)
, (58)

where ∇µ, ∇LB, and Rj
k are the covariant derivative, the Laplace–Beltrami operator, and

the Ricci tensor Rk
j = gkl Rjl = gkl Rµ

jlµ, respectively. The four-velocity field is defined by

vµ(Q) = (v0,~v(Q)) =

(
c,

ui
+(Q) + ui

+(Q)

2

)
. (59)

The probability density ρ satisfies the equation of continuity,

∇µ(ρvµ) = 0 . (60)

The remarkable feature of Equation (58) is the last term on the right-hand side, which
is induced by the interplay between quantum fluctuation and spacetime curvature. We call
this the quantum-curvature (QC) term. To investigate the role of this term, ν = h̄/(2m) is
set. Then, taking the limit of the flat spacetime, Equation (58) is reduced to Madelung’s
hydrodynamic representation of the Scrödinger Equation (16). To express the above result
in terms of the wave function, we have to obtain the equation of the phase of the wave
function from Equation (58). This is impossible in general due to the q(t)-dependence of
Rj

k. That is, no wave function can be introduced to express quantum dynamics in general
geometries. It should be emphasized that, normally, the existence of the Hilbert space is
required from the beginning of quantization, but this is not trivial a priori.

However, if the Ricci tensor is a constant, then one can still introduce the wave function,
while the corresponding Schrödinger equation becomes non-linear. For example, let us set

Rj
k = −2γδk

j , (61)

vi =
h̄
m

gij∂jθ . (62)
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Then, the wave function can be defined as ψ =
√

ρeiθ , and the Schrödinger equation is
given by [51]

ih̄∂tψ =

[
− h̄

2m
∇LB + V − h̄2

2m
γ ln |ψ|

]
ψ . (63)

The linearity of quantum mechanics is violated by the QC term.
When the standard Friedmann-Lemaitre-Robertson-Walker FLRW metric is consid-

ered, the QC term becomes a negative pressure term in the energy–momentum tensor.
However, it was found that the magnitude of the negative pressure is extremely smaller
than the accepted value from the observations; see [51] for details.

There are attempts to gain new insights for the interplay between quantum fluctu-
ation and curved geometry in laboratories. For example, the Bose–Einstein condensate
is regarded as an analogue black hole [53–55]. The quantum superposition of spacetime
geometries will be observed through the gravitational entanglement of mesonic particles,
which is called the Bose–Marletto–Vedral (BMV) effect [56–58]. The toy model considered
here can be applied to study these kinds of phenomena.

Quantum mechanics in curved space is normally formulated based on the Hilbert
space, and hence, one may wonder whether the appearance of the non-linear term above is
an artifact of the SVM procedure. In [59–61], Nelson’s stochastic mechanics is extended to
curved systems. To satisfy the linearity of the Schrödinger equation, the adapted parallel
transport of stochastic quantities violates the length conservation of the transported vector.
In the present approach, the stochastic variational principle is required as a fundamental
requirement of quantization, maintaining this length conservation.

7. Summary and Future Challenges

In the present paper, the stochastic variational approach (SVM) was reviewed. The
SVM naturally reproduces the viscous stress tensor under the stochastic optimization of
the action of the ideal fluid. In addition, by considering the forward and backward time
evolutions of stochastic trajectories, the consistency condition for the stochastic trajectories
necessarily leads to a new acceleration term, which is identified with the quantum (Bohm)
potential in a microscopic system. Therefore, the SVM can be considered as a natural
framework to formulate viscous hydrodynamics incorporating the quantum effects.

The term, corresponding to the quantum potential, appears in the applications to
macroscopic systems. By studying the hydrostatic equilibrium of a saturating matter, this
term is interpreted as the surface tension for macroscopic systems. It is instructive to note
that the hydrostatic state is actually a stationary state, where the forward and backward
noises balance exactly.

Since the SVM formalism encompasses quantum mechanics, the generalized uncer-
tainty relations are formulated. We discussed the derivation, its influence to the Kovtun–
Son–Starients (KSS) bound, and the generalized coherent state, which gives the viscous
minimum uncertainty state. The appearance of such “coherent” states may be associated
with the stationary behavior of the surface, which is mentioned above and also the moving
stable surface, as found in solitonic waves.

Another generalization of the SVM is the application to curved geometries. We then
find that the optimized result with the curved SVM is not expressed in terms of the wave
function. That is, the existence of the Hilbert space in quantum mechanics in curved
geometries is not a trivial assumption a priori. This may be related to the unsolved problem
in cosmology such as dark energy. To answer to this question, however, we need to develop
quantum field theory in the SVM [62].

In the studies of relativistic heavy-ion collisions and high-energy astrophysics, such as
neutron star mergers, relativistic hydrodynamics is a fundamental tool, as was emphasized
in the Introduction. However, we still do not have viscous relativistic hydrodynamics,
which includes the quantum and/or the surface effects. The inclusion of these effects may
affect the standard analysis of the hadron spectrum [63]. Furthermore, these effects play



Physics 2022, 4 862

very important roles in hydrodynamic evolution with very high density inhomogeneities
in the initial state. Thus, it is a great challenge to generalize the present form of the SVM
into relativistic systems. Such a direction is under investigation [64].
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