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Abstract: In the current paper, we argue that the ground state of a hadron contains a significant
perturbative quantum chromodynamics (pQCD) core as the result of color gauge invariance and the
values of chiral and gluon vacuum condensates. The evaluation within the method of dispersion
sum rules (DSR) of the vacuum matrix elements of the correlator of local currents with the proper
quantum numbers leads to the value of the radius of the pQCD core of a nucleon of about 0.4–0.5 fm.
The selection of the initial and final states allows to select processes in which the pQCD core of the
projectile gives the dominant contribution to the process. It is explained that the transparency of
nuclear matter for the propagation of a spatially small and color-neutral wave packet of quarks and
gluons—a color transparency (CT) phenomenon—for a group of hard processes off nuclear targets
can be derived in the form of the QCD factorization theorem accounting for the color screening
phenomenon. Based on the success of the method of DSR, we argue that a pQCD core in a hadron
wave function is surrounded by the layer consisting of quarks interacting with quark and gluon
condensates. As a result, in the quasi-elastic processes e + A → e′ + N + (A − 1)∗, the quasi-
Feynman mechanism could be dominating in a wide range of the momentum transfer squared, Q2.
In this scenario, a virtual photon is absorbed by a single quark, which carries a large fraction of the
momentum of the nucleon and dominates in a wide range of Q2. CT should reveal itself in these
processes at extremely large Q2 as the consequence of the presence of the Sudakov form factors,
which squeeze a nucleon.

Keywords: quantum chromodynamics (QCD); exclusive processes; color transparency; nucleon
structure

1. Introduction

The color transparency (CT) phenomenon is the suppression of the final and/or
initial state interaction for the small size wave packet of quarks and gluons produced in
the hard processes and propagated through a nucleus. The quantitative approach is to
calculate the cross-section of the interaction of small size wave packet scattering off a target,
as well as to describe some properties of the bound state hadrons specific for quantum
chromodynamics (QCD).

CT has been derived (i) for the deep inelastic scattering (DIS) processes initiated by
highly virtual photons; (ii) for the processes of the diffractive electroproduction of vec-
tor mesons such as γ∗ + A → V + A for V = ρ, ω, φ, J/ψ, Υ, etc.; (iii) for the processes:
π + A → two jets + A, p + A → three jets + A; (iv) in the case of small parton momen-
tum fraction, small-x processes, factorization theorems can be derived for the diffractive
photoproduction of the bound states of heavy quarks such as J/ψ and Υ, produced in the
ultra-peripheral collisions of heavy ions (A); and (v) CT is generalized to include effects of
the leading twist gluon shadowing for small-x processes.

Within QCD, a hadron consists of the three overlapping layers, corresponding to
two distinctive phases of the QCD matter. The outer layer is formed by the pion cloud of a
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hadron. Just this layer produces inter-nucleon attraction in low-energy nuclear phenomena.
The next layer is formed by quarks interacting with chiral and gluon condensates. The
existence of this layer is the basis of the success of the method of dispersion sum rules in
the calculation of parameters of the ground states of hadrons. The important role of the
vacuum condensate of chiral quark pairs is implied by the phenomenon of spontaneously
broken chiral symmetry in QCD. The boundary between both layers can be evaluated as
the boundary of the region where two-pion exchange between nucleons dominates. This
value of the boundary was estimated in Ref. [1] long ago. In any case, the position of this
boundary is not well defined since it fluctuates.

The second layer is relevant for the competition between soft and hard processes for
the large momentum transfer behavior of hadron form factors. This competition results
from the specific of the Lorentz transformation within light-cone quantum mechanics.
It was found that for a two-body system that large momentum transfer Q is multiplied
by the factor, 1− α, in the argument of the wave function of a final state of a two-body
system [2]. A similar pattern holds for many body systems. Thus, the relative contribution
into form factors of configurations where one constituent carries most of the light cone (LC)
fraction—α—of the hadron is enhanced. Feynman has pointed out that this may lead to a
dominance of the configurations where one parton carries practically all the momentum of
the hadron. Hence, this contribution is referred to as the Feynman mechanism. In practice,
there is a wide pre-asymptotic region, e.g., α ≥ 0.8, which is strongly enhanced in a wide
range of Q2. In what follows, this kinematics is referred to as a quasi-Feynman mechanism.

Together, these two layers describe the QCD phase of the spontaneously broken chiral
symmetry. The significant probability of the perturbative QCD (pQCD) core within the
wave function of a hadron follows from the analysis of the vacuum correlator of local
currents in the coordinate space, i.e., effectively from the color gauge invariance and the
values of the chiral and gluon condensates. Thus, the evaluation of the radius of the pQCD
core of a hadron requires using a model accounting for the condensates.

The discovery of heavy quarks such as c, b, etc. allows to expand CT to the number of
the processes, where CT has already been observed and can be further investigated.

The understanding of the QCD structure of the wave function of a hadron and of a
nucleus allows to separate a group of hard processes, where the hard interaction produces
spatially small wave packets of quarks and gluons. The strength of the interaction of
such wave packets with hadrons is unambiguously calculable within QCD for high-energy
processes. Selecting special initial and final states is necessary for ensuring the dominance
of the contribution of the pQCD core of the hadrons. For this group of phenomena, CT is
one of the elements of the QCD factorization theorem. In these processes, CT was already
unambiguously observed. The second group is formed by the processes, where there is no
constraint for the pQCD core to dominate in the wave function of a hadron. In this case,
the quasi-Feynman mechanism dominates in a wide range of momentum transfer. At an
extremely large momentum transfer, the contribution of the pQCD core should dominate
since the Sudakov form factors gradually squeeze the wave packet.

2. Three-Layer Structure of the Nucleon Wave Function in QCD
2.1. The Spatial Distribution of Valence Quarks in a Nucleon

The valence quark and momentum sum rules for the parton distributions within a
hadron unambiguously follow from the Wilson operator expansion. For certainty, the
discussion in this paper is restricted to the case of a nucleon target. The sum rules for the
generalized valence quark distributions, VN(x, Q2, t), at a non-zero momentum transfer,∫

VN(x, Q2, t)dx = FV(t), (1)

is of a prime interest to us. Here, FV
N (t) is the isotopic (SU(3)) vector form factor of a

nucleon calculable in terms of the combination of the electromagnetic form factors of a
proton and a neutron. The generalized valence quark sum rules follow for any Q2 from the
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combination of the Ward identities for electroweak currents and the energy dependence
of the high-energy amplitudes in QCD in non-vacuum quantum numbers in the crossed
channel [3]. To investigate the pQCD core of a nucleon at moderate Q2, the method of
dispersion sum rules (DSR), developed in [4], is used here.

The radius of valence quark distribution follows from the sum rules and from the data
on the electromagnetic form factors of a nucleon:

(r2
V)

1/2 = 0.65 fm. (2)

2.2. The pQCD Core of the Wave Function of a Nucleon

The Dirac sea is an important property of relativistic quantum field theories. Ignor-
ing the Dirac sea in the non-relativistic approximation leads to the non-conservation of
the energy–momentum tensor as defined in QCD and a related violation of probability
conservation for the high-energy processes. The use of Bethe-Salpether wave functions of
deuteron leads to the additional violation of electric and baryon charges in the theoretcal
description of high energy processes. For example, these violations lead to the so-called
West correction for the structure functions of the deuteron, for the total cross sections
σtot(eD) < σtot(ep) + σtot(eN) in the impulse approximation [5]. Such a correction results
in the violation of the exact QCD sum rules such as the baryon charge sum rule, in the
violation of the Glauber decomposition over rescatterings, etc.

The only approach known so far to account for the Dirac sea in a way consistent
with the exact QCD sum rules is to use the LC mechanics of nuclei. It resembles the
parton model approximation for a quantum field theory, suggested by Feynman. Imposing
angular momentum conservation and the requirement of Lorentz symmetry for on-mass-
shell amplitude, LC mechanics can be transformed into the instant time form for a wide
range of nucleon momenta [6]. In the LC mechanics of a nucleus, the West correction
disappears, as can be found in Ref. [6]. This phenomenon is important in nuclear theory, in
the kinematics, where k2/m2

N is not negligible; here, k denotes nucleon momentum and
mN denotes nucleon mass. The phenomenon is also present in quantum electrodynamics
(QED) in the calculation of high-order corrections to the wave functions of molecules.

To investigate the properties of the LC wave function of a nucleon, it is useful to
analyze the vacuum element of the retarded commutator of local color-neutral currents, J,
with the quantum numbers of a nucleon. Omitting Lorentz indices we can write

K(y0,~y) = 〈0|θ(y0)[J(y0,~y), J(0)]|0〉. (3)

and analyze here. 〈0| and |0〉 denote in and out states, y is the difference of four-
dimensional coordinates of the in and out currents, and y0 is the zero component of
y. θ is the Heaviside function.

The vacuum matrix element of retarded commutator is equivalent to the T-product
correlator [7]. This form of a correlator allows the analytic continuation of the Fourier
transform into the complex plane of energies and to derive dispersion relations. This corre-
lator in the momentum space was analyzed in Refs. [4,8] within the DSR approximation.
For the aims of the study, given here, it is convenient to analyze this correlator in the
coordinate space.

The intermediate states in the correlator with the quantum numbers of a nucleon are
accounted for as the full system of eigen-states of the QCD Hamiltonian:

K(y0,~y)) = ∑
n
〈0|J(0)|n〉2 exp(i(En − E0)y0 − i(pn ·~y))θ(y0)dτn. (4)

Here, En and E0 are the energies of intermediate states and vacuum energy respectively; pn
is the momentum of intermediate states, and τn is the phase volume of intermediate states.

In the Euclidian domain, in the limit i(E0 − En)y0 → ∞, only the contribution of
the state with the minimal mass (n = 0) survives. To improve the convergence of the
DSR approach, one subtracts the contribution of the intermediate states with the masses
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significantly larger than the nucleon mass. The subtracted contribution is calculable in
pQCD [8].

The initial condition for the space–time evolution for the valence quark component of
the wave function of a hadron is

φN(t = 0,~y = 0) = 〈0|J(0)|N〉/(EN − E0). (5)

The current, J, is local in the coordinate space to ensure the conservation of the color
gauge invariance. At the starting point of the space–time evolution, the pQCD wave packet
has the zero size. The hierarchy of the initial conditions is regulated by the asymptotic
freedom combined with the approximate conformal invariance of QCD. In the actual
calculations, one choses the current, J, following Ref. [8], where the spatially local and
color-neutral current J = J3q was used, where q is the quark field. The currents, containing
a larger number of quark–gluon fields, were used for evaluating the gluon distribution in
the nucleon; see discussion in Ref. [9].

The investigation of the space–time evolution of the nucleon wave function with the
increase in the relative distance y between constituents allows to identify the coexistence of
the three distinctive layers in the wave function.

The radius of the pQCD core of a nucleon can be estimated based on the analysis of the
correlator K, in the coordinate space performed in Ref. [10]. The analysis uses the standard
values of the quark and gluon condensates and indicates that the correlator is close to the
free correlator for the radius r ≤ rc, where

rc ≈ (0.4− 0.5) fm. (6)

So, rc can be identified as the radius of pQCD core of a nucleon.
The pQCD core of the radius rc is surrounded by a layer of non-perturbative QCD

phase where bare quarks and antiquarks interact with the vacuum condensates and obtain
masses. As a result, the properties of this layer resemble the constituent quark model of a
nucleon. The thickness, ∆n.p., of the non-perturbative layer can be estimated from

〈r〉N = ∆n.p. + rc, (7)

where 〈r〉N is the radius of a nucleon. For illustration, let us choose 〈r〉 = 0.85 fm. Thus,
∆n.p. ≈ (0.35–0.45) fm. It is natural to separate the pion cloud of a nucleon from the
non-perturbative layer. ∆π ≈ 0.2 fm is the thickness of the pion cloud calculated from
the contribution of the two-pion state in the electromagnetic form factors of a nucleon [1].
Thus, ∆n.p. − ∆π ≈ 0.2 fm.

To conclude, the derived form of the nucleon wave function follows in the weak
coupling regime of QCD from the local color gauge invariance, asymptotic freedom, and
from the small density of the vacuum condensate of the chiral pairs.

2.3. Lattice QCD as the Tool to Probe Nucleon Wave Function

The lattice evaluation of vacuum correlators K (4) may help improve the evaluation
of the non-perturbative QCD phenomena beyond the mean field approximation used in
this paper.

The three-layer structure of a nucleon reveals itself in the distinctive QCD phenomena:
(i) The generation of the running masses of constituents due to their interaction with

vacuum condensates was discussed in Ref. [11] but without a pQCD core. As a result, the
second layer resembles the constituent quark model. The educated guess for the thickness
of this phase is between 0.4 fm and 0.6 fm.

(ii) The investigation of the transitions between the non-perturbative and pQCD
phases would provide a new probe of the role of the spontaneous violation of the chiral
symmetry in the structure of the ground states of hadrons.
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2.4. The Proof of the Presence of pQCD Core within a Hadron

The very existence of the pQCD phase within a nucleon differs from the expectations of
the non-relativistic nuclear theory at the scale comparable to the scale observed in the low-
energy nuclear phenomena. Thus, an additional theoretical reasoning is presented below.

The existence of the pQCD core follows directly from the QCD factorization theorems
derived in the momentum space representation. Let us consider the example of the process
involving a pion.

(i) The dominant high-momentum quark-antiquark, qq̄, component of the pion wave
function is given in QCD by the one gluon exchange:

ψπ(k) = αs fπCπ/k2. (8)

Here, fπ is the constant, determined from the pion β decay, Cπ is a constant calculable in
pQCD, αs is the running coupling constant, and k is the momentum of quark (antiquark).
The product fπCπ is calculable in the approximation of the partial conservation of the
axial current. The Fourier transform of this wave function into coordinate space gives
ψπ(r = 0). The high momentum tail of the wave function of pion in the momentum space
has been measured at FNAL (Fermi National Accelerator Laboratory, Batavia, IL, USA) in
the experiment, where CT was also discovered in the reaction π + A→ two jets + A [12]
with the pattern, predicted in Ref. [13]. A similar behavior is expected for the scattering of
any meson. The only difference is the dependence of the probability of the tail on the type
of a meson.

(ii) The factorization theorem of QCD for two-body processes (see Equation (8)) is
expressed through the wave function of the quark–gluon core of a pion. The existence of
the quark–gluon core of a nucleon unambiguously follows from the QCD factorization
theorem. The direct experimental observation of the quark–gluon core of a nucleon in
the process p + A→ three jets + A is much more difficult than that for the pion since the
pQCD contribution into a hard process is significantly smaller—∝ α2

s . Additionally, the
absolute value of the high-momentum tail of a parton wave function of a nucleon is the
subject of modeling.

2.5. Pion Field in QCD

Inter-nucleon attraction in low-energy phenomena is mostly due to the interaction
of the pion clouds of the interacting nucleons. The pion clouds are located at the nucleon
outer layer. Inter-nucleon repulsion is dominated by the nucleon core. The long-range pion
field of a nucleon has been derived within QCD from the phenomenon of a spontaneously
broken chiral symmetry. The pion mass was calculated in QCD in terms of the chiral
vacuum condensate, 〈0|qq̄|0〉 [14]. The pion mass arises due to the explicit violation of
chiral symmetry by the term in the Lagrangian containing non-zero masses of up (u) and
down (d) quarks [14]:

m2
π = (mu + md)

〈0|qq̄|0〉
f 2
π

. (9)

The concept of the pion cloud of a nucleon is valid within the restricted kinematical
region where a virtual pion is close to the pion mass shell because a pion is a collective
mode. The experimental restriction is that the antiquark distribution in a nucleon is rapidly
decreasing in a nucleon as q̄(x, Q2) ∝ (1− x)m. Global parton distribution fits typically give
m(Q2) ≈ 7. Thus, the distribution of antiquarks mostly originate from the second layer
where antiquarks obtain masses as a result of the interaction with the chiral condensate.
The role of the second layer, for the antiquark distribution within a nucleon is decreasing
with increase in nuclear density. This pattern is the opposite to the expectation of the
models where pion condensate is present in the cores of neutron stars. Within QCD, the
pion field in a hadron is reduced with a significant decrease in the overall size of the
hadron due to effects of color screening and color gauge invariance. This phenomenon
is the property of the weak coupling regime where the interaction is decreasing with the
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decrease of the overall size of a hadron; see discussion below. This QCD phenomenon is
manifested, for example, in the decays of the excited states of charmonium and bottonium
and may be tested by lattice QCD methods. This phenomenon is opposite to the experience
of the low-energy nuclear physics and it is absent in the bag models. This is because the
bag models of a hadron—in contrast to the full QCD—do not include color screening and
asymptotic freedom phenomena. Therefore, in the bag models, a position of the hadron
bag surface does not depend on the distribution of quarks and gluons. This feature also
results in the violation of causality. Thus, QCD implies that the pion field is not a universal
property of a hadron. One of the striking experimental confirmations was the discovery
that for J/ψ and other onium mesons, interaction with pion field is suppressed.

Thus, the preQCD models of nucleon–pion interactions differ from QCD. This differ-
ence reveals itself for the large pion momenta, as was found in Ref. [15] (and references
therein). For the distances within a nucleon that are significantly smaller than the thickness
of a pion cloud, different degrees of freedom dominate within QCD.

Thus, the difference between the preQCD models of nucleon–pion interactions and the
expectations of QCD reveals itself for the large pion momenta and large pion virtualities.
For the distance scale within a nucleon that is significantly smaller than the thickness of the
pion cloud, different degrees of freedom dominate in QCD. The found properties of the
wave function of a nucleon are sufficient to resolve the zero charge puzzle: in a preQCD
quantum field theory, ultraviolet divergencies nullify the interaction of hadrons [16]. Indeed,
in QCD, ultraviolet divergencies present in the preQCD quantum field theories disappear
due to the composite structure of a hadron. aaThe wave function of a hadron contains
in its central region the quark–gluon pQCD core instead of meson fields characteristic
for preQCD field theories as the consequence of the color gauge invariance, asymptotic
freedom, and the small density of vacuum chiral condensates. The scale where the non-
perturbative QCD surface effects are transformed into the quark–gluon core of a hadron
plays the role of cutoff within preQCD field models within effective field theory (EFT).

Let us note that the related phenomena in hot nuclear matter are beyond the scope of
this paper.

3. The Properties of QCD Which Lead to CT Phenomena

The wave packet, produced in the hard processes, is built of highly virtual quarks and
gluons, which weakly interact with the nuclear environment [17].

In Ref. [18], it was assumed that in the elastic πN large angle collisions, the pion
and nucleon are squeezed leading to the cross-section of a quasi-elastic reaction off nuclei
πA→ πN(A− 1)∗ equal to A times the elementary cross-section. There are experimental
indications for a moderate increase in the transparency of nuclear matter with an increase
in Q2 for the electro-production of pions and ρ mesons, as can be found in review [19].

The experiments, designed to search for the CT in the quasi-elastic processes, e + A→
e′ + N + (A− 1), did not observe an increase in transparency up to Q2 = 14 GeV2 [20].
This result is qualitatively consistent with the analyses of the data on electromagnetic
form factors at the intermediate Q2 which indicate that the dominant contribution to
the nucleon [8] and pion [21] form factors is the electron scattering off configurations in
which the virtual photon, γ∗, is absorbed by a leading quark which gained its momentum
distribution in the interaction with vacuum condensates of quarks and gluons. Thus, the
data are inconsistent with the democratic chain approximation, suggested in Ref. [22] at
achievable Q2.

3.1. The Conditions for the Validity of CT

The direct observation of the CT phenomena in the hard high-energy processes requires
the validity of two conditions:

(a) The interaction between hadrons depends on the value of the region occupied by
color within the interacting hadrons. This feature of QCD is proved for hard processes
in the form of QCD evolution equations. If the transverse component of the radius of a
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hard projectile, rt, perpendicular to the wave packet momentum is sufficiently small, the
forward amplitudes are proportional to r2

t :

σtot(a + b) = cr2
t , (10)

Here, a is a small size dipole and b is a hadron target. c is the numerical coefficient calculable
within the QCD factorization theorem.

Equation (10) is another form of the Bjorken scaling for the total cross-sections of DIS
which follows from the approximate conformal invariance of QCD [23]. Equation (10)
has been confirmed in many high-energy experiments. In particular, it serves as a basis
for the description of exclusive and inclusive experiments and can be formulated in the
form of QCD factorization theorems for these processes. Note that the account of the QCD
evolution in x and Q2 leads to the somewhat weaker dependence on rt at the kinematical
region of small x. However, the physics relevant for this extreme kinematics is beyond
the scope of this paper. Thus, the first condition of the validity of CT is the presence of
the trigger, which selects a squeezed quark–gluon configuration within a hadron, and a
part of the proof is the derivation of the dipole model [13,24,25]. The spatial size of the
produced wave packet of quarks and gluons should be significantly smaller than the radius
of a hadron.

(b) The second requirement is that the lifetime, Lc, i.e., the distance propagated by
sufficiently energetic but squeezed quark–gluon wave packet, should be sufficiently large
to avoid expansion while traversing the nucleus. Thus, Einstein time dilation plays an
important role in the CT. The coherence length was derived from the theoretical analyses of
the Fourier transform of the structure functions of a target nucleus/nucleon in coordinate
space. In the rest frame of the nuclear target, at large Q2 [26,27]:

z = Lc = (1/2mN x). (11)

Here, Q2 ≈ (m2
q + k2

t )/z(1 − z) is the resolution of the investigated configuration, mq
is the quark mass, z is a fraction of photon momentum, carried by the produced quark,
and kt is its transverse momentum. This equation follows from the uncertainty principle
for the transition γ∗ → qq̄ and Einstein time dilation. Numerical calculations show that
Equation (11) is also valid within the parton model for moderately large x. Thus, the pQCD
core for a longitudinally polarized photon together with the color-screening phenomenon
guarantee the validity of CT if the lifetime for a wave packet describing the pQCD core is
sufficiently large to traverse a nucleus.

3.2. Discovery of CT

The search for the CT allowed to establish at what resolution scale Q2 the basic degrees
of freedom characterizing the wave function of a nucleon of a nucleus are quarks and gluons.
This would allow to determine an upper bound for the range of virtualities for which EFT
approaches can be used.

The discovery of a small cross-section of a diffractive photo-production of J/ψ meson
was the first observation of CT. The value of the J/ψ–N cross-section, extracted within
the vector dominance model (VDM) of σ(J/ψ–N) ≈ 1 mb, was much smaller than the
genuine cross-section σtot(J/ψ–N) ≈ 4 mb, extracted from the A-dependence of J/ψ
quasi-elastic photo-production. The difference originates from the production of J/ψ in
a small size configuration, whose size is about 1/mc [28], where mc is the c-quark mass.
The phenomenon is especially striking when we compare J/ψ–N and ψ′–N cross-sections,
extracted from the data using VDM. VDM leads to σtot(ψ′–N) < σtot(ψ–N), while in QCD,
the opposite trend is expected since the transverse size of ψ′ is a factor of two larger than
the transverse size of J/ψ.

CT is an unambiguous prediction of QCD for the phenomena, where QCD factorization
theorems are applicable:
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(i) DIS processes off a nuclear target:

σinel(γ
∗
L + A)→ Aσinel(γ

∗
L + N), (12)

where σinel denotes the inelastic cross-section, and γ∗L stands for the longitudinally polarized
photon. At small x, CT is valid as soon as the leading twist nuclear shadowing is taken into
account [23].

(ii) The cross-section of the diffractive electroproduction of longitudinally polarized
vector meson off nucleon and nuclear targets has been predicted in Refs. [29,30]. The
derived QCD factorization theorem is also applicable to a nuclear target. For the invariant
momentum transfer, t = 0, and the large Q2 cross-section of the diffractive electropro-
duction of the vector meson, V = ρ, ω, φ, CT unambiguously follows from the QCD
factorization theorem [30].

(iii) In the case of the diffractive photo-production of a heavy quarkonium, a heavy
mass of c and b quarks guarantees the applicability of the QCD factorization theorem.
These processes were observed at HERA facility (at German Electron Synchrotron DESY,
Hamburg, Germany), see review in [31], and in ultra-peripheral heavy-ion collisions at the
LHC (Large Hadron Collider at the European Organization for Nuclear Research CERN,
Geneva, Switzerland), see review in Ref. [32].

For t = 0,

dσ(γ + A→ V + A)/dt = A2dσ(γ + N → V + N)/dt, (13)

where V = J/ψ or Υ.
One can employ the observation from quarkonium models that the radii of the onium

states are much smaller than those for light vector mesons and pions: rJ/ψ = 0.2 fm and
rΥ = 0.1 fm. Note here that for a small x, expression (13) has an additional factor—the
square of the ratio of gluon densities in the nucleus (per nucleon) and in the nucleon.

(iv) Diffractive production by the pion projectile of two jets off a nuclear target,
π + A → two jets + A. The process was observed at FNAL [12] and predictions [13]
for the longitudinal and transverse momentum of jets and for the A-dependence of the
cross-section were confirmed. The same effect is expected for kaon beams and for the
fragmentation of a proton into three jets.

The restriction on the region of applicability of CT, given by Equation (11), can be
somewhat weakened by accounting for the phenomenon of quantum diffusion in the
space–time evolution of small size wave packet [23,33]:

r2
t (l) =

[
rt(0)2 +

(〈
r2
〉
− rt(0)2

)
(l/Lc)

]
θ(Lc − l) +

〈
r2

t

〉
θ(l − Lc). (14)

Here, rt(l) is the transverse size of the wave packet which evolves with distance l from
the interaction point. Relativistic kinematics is considered where l is equal to the distance
from the interaction point);

〈
r2

t
〉

is a nonperturbative transverse radius squared of the wave

packet. The region of applicability of the above formulae is that
√

r2
t should be significantly

smaller than the radius of a hadron.

3.3. On the Quasi Feynman Mechanism in Quasi-Elastic Processes at Achievable Q2

In the relativistic theory, due to specifics of the Lorentz transformation, the quasi-
Feynman mechanism may dominate in the nucleon and meson form factors up to large Q2

(which are likely to grow with the increase in the number of constituents in a hadron). In this
mechanism, the dominant contribution to the form factor originates from the configurations,
in which one parton carries nearly all the LC fraction of the momentum of the nucleon. In
these configurations, squeezing is moderate while the correlation length in a wide range of
Q2 is comparable to the inter-nucleon distance. As a result, the expected CT effect is rather
mild up to large Q2.
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To visualize a relativistic description, let uschoose the transferred momentum, qt, to
be orthogonal to the quantization axis. This condition can be achieved by choosing the
center-of-mass of the eN system and setting the electron momentum, P → ∞ [34]. The
analysis of the energy denominators of the LC mechanics shows that qt is multiplied in the
argument of the wave function of the final nucleon by the factor (1− α) [2]. Here, α is the
fraction of a nucleon momentum, carried by the interacting constituent.

Let us consider the two-body system [2]:

F(q2
t ) =

∫
ψ

(
m2 + k2

t
α(1− α)

− 4m2
)

ψ

(
m2 + [kt + qt(1− α)]2

α(1− α)
− 4m2

)
S2(q2

t /k2
t ) dαd2kt (15)

Here, ψ is the wave function of two body system m denotes the constituent mass, S(Q2
t /k2

t )
is the Sudakov form factor, which squeezes the wave function of a nucleonAlso, the
production of NN pairs from the vacuum is neglected. in the above formulae.

The coherence length (11) accounts for the space–time evolution of the produced wave
package through an uncertainty principle. A different definition of the coherence length
was used in Ref. [35].

The value of squeezing depends on the minimal kt when radiation is allowed. Here,
k2

t ≈ (ΛQCD)
2 is used as it is popular in the description of hard processes [36]. Thus, at

Q2
t → ∞, the two-body system is squeezed. For the realistic qt, maximal contribution arises

from the region, where α is quite close to one. This resembles the Feynman mechanism
where the leading parton carries the whole momentum of a hadron.

In the mean field approximation, the wave function of a nucleon is effectively modeled
as a two-dimensional harmonic oscillator, as can be found in Ref. [35] and references therein.

Thus, in these models, the quasi-Feynman mechanism dominates in a wide range of
the momentum transfer (actually for any Q2) and can explain [35] the lack of CT effect,
reported in the JLab (Jefferson Laboratory, Newport News, VA, USA) experiment [20]. In a
general case, a wave function contains the short-range correlation between quarks. This
correlation in addition is moderately squeezed by the Sudakov form factor accounting for
the lack of radiation in the process considered.

Let us analyze the e + A → e′ + p + (A− 1) process. The kinematical restriction is
x = Q2/2q0mN = 1, where q0 is the photon energy. Let M be the mass of a state within
a nucleon corresponding to the Feynman mechanism. To evaluate M for the |3q〉 (three-
quarks) system, the average transverse momentum of a leading parton within a nucleon is
set to kt = 0.3(0.4) GeV/c. Thus,

M2 ≈ q2
t (1− α)/α + ∑

i
k2

t /αi ≈
q2

t (1− α)

α
+

4k2
t

1− α
. (16)

Here, the running masses of quarks are ignored in order to simplify the description and
also consider qq̄ as a state rather than a three-quark state, approximating two recoil quarks
by one massless parton (accounting for a finite mass of the recoil, two quarks would
further increase M). For a fixed k2

t , Q2, the minimal value of M2 is reached for (1− α)/α =√
4k2

t /Q2. Thus, a produced state should have a minimal mass squared around

M2 ≥ 2
√

Q24k2
t (17)

For Q2 = 7(14) GeV2, one finds M2 ≈ 1.6 to 2.1 (2 to 3) GeV2. The coherent length (=
lifetime) is

Lc = 2q0/(M2 −m2
N) =

Q2x
mN(M2 −m2

N)
. (18)

Thus, for Q2 = 14 GeV2, Equation (18) leads to Lc ≈ 2 to 3 fm. Lc may appear even
smaller since here it is ignored that gluons carry a fraction of the nucleon momentum, as
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well as the finite mass of the recoil two -quark state. Thus, the produced wave packet rapidly
expands to the nucleon size. Note also that due to the presence of the growth of M2 ∝

√
Q2

with increase in Q2, the increase in Lc is slower than found in Ref [33]. This corresponds
to a relatively slow transition to the hard regime accompanied by a CT phenomenon.
Experimentsat TJNAF (Thomas Jefferson National Accelerator Facility, JLab) did not find a
signal of CT in the quasi-elastic processes e + A→ e′ + p + (A− 1) at Q2 = 14 GeV2 [20]
which may be due to both the slow increase in squeezing and a small and slow increase
with the energy a correlation length. Originally, in Ref. [33], the coherence length was
estimated using a nonrelativistic quark model, leading to ∆M2 = M2 −m2

N ∼ 0.6 GeV2.
Taking M ∼ 2 GeV, based on the mass spectrum of baryons with the nucleon quantum
numbers, would reduce Lc by a factor of five and completely wipe out the CT effect at
14 GeV2. Hence, the current 14 GeV2 data cannot a priori distinguish a short coherence
length scenario and the Feynman mechanism scenario. Also to note is that further analysis
of the data [20] with realistic spectral functions is necessary since the transparency for
scattering off carbon differs by 40% for the s- and p-shells [37], while the short-range
correlations, which constitute 15 to 20% of the spectral function, are not included at all.
In addition, the EMC (European Muon Collaboration, CERN) effect leads to a small but
non-negligible reduction in transparency, somewhat masking the increase in transparency
due to CT [38].

A promising way to investigate the Feynman mechanism as the mechanism of the
onset of CT is to investigate the high-Q2 process e + d→ e + p + n in the kinematics, where
the effective distances between nucleons in the deuteron are 1–1.5 fm. This can be achieved
by choosing the momentum of the nucleon spectator to be approximately 200 MeV/c and
to investigate the dependence of the cross-section on Q2 at x ≈ 1. The cross-section has a
minimum and maximum as a function of the momentum of the nucleon spectator, which
can be used as the effective tool to search for CT [39].

We argued above that the pion field is presumably already suppressed in the hard
processes at Q2 of about few GeV2. This should result in the suppression of pion exchange
reactions such as ed→ e + forward ∆− + slow ∆++ [40].

4. QCD and the Inter-Nucleon Interaction

The chiral QCD dynamics modified by including ∆ isobars is used in the calculation
of two-pion exchange potential, as can be found, e.g., in [41]. This is an example of how
the inner structure of a nucleon enters nuclear theory. The lack of collapse of heavy nuclei
and the form of the dominance of the repulsion in NN interaction at short distances in the
phenomenological potential of NN interaction suggests the important role of strong inter-
nucleon repulsion at the distances rNN ≤ 0.5 fm. The observation of the high momentum
tail of the nucleon momentum distribution allows to restrict the form of inter-nucleon
interaction [42,43].

A pion is not elementary particle but a pseudo-Goldstone boson of QCD. With the
nuclear density increase, an interacting nucleon loses the pion cloud because the pQCD
phase has no pseudo-Goldstone bosons. Thus, the chiral symmetry restoration phase
transition starts at the nuclear densities as a factor of ≥(1.4 fm/2rc)3, approximately three
times larger than the saturation nuclear density.

Intermediate range inter-nucleon forces are due to exchange by constituent quarks
between nucleons. This is because the chiral condensate which gives mass to light quarks
is mostly due to the instanton field of a quark; cf. Ref. [8].

The pQCD core within a nucleon has important implications for the theory of super-
dense nuclear matter, i.e., for the inner cores of neutron stars. At the nucleon densities
where the inter-nucleon repulsion dominates, rNN ≤ 0.5–0.4 fm, the pressure from adjacent
nucleons leads to the squeezing of a nucleon, i.e., to increase xi and kit compared to those
at the saturation of nuclear density. At these densities, only the pQCD cores of nucleons
survives. If the density further increases to (1.4 fm/(0.5–0.7) fm)3, approximately 8 to
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22 times the nuclear density, the chiral restoration phase transition should take place. This
is obviously a rather rough estimate, which is given here merely for illustration.

The interaction between a quark–gluon core and another nucleon becomes repulsive
with the increase in nuclear density. Repulsion becomes very strong for rNN � 2rc ≈ 1 fm.

It was suggested [44] that the repulsion is mainly due to the Pauli principle for quarks
belonging to the different nucleons.

5. Conclusions

We argued that a nucleon in QCD (quantum chromodynamics) contains three coex-
isting layers of two QCD phases. An external layer of a nucleon is formed by the pion
cloud of a nucleon and dominates in the low-energy nuclear phenomena in the form of the
attractive potential of nucleon–nucleon interaction. The perturbative QCD (pQCD) core
of a nucleon leads to the existence of a large group of hard processes off nuclear targets,
where the onset of the color transparency (CT) phenomena is rapid, as described within
the concept of QCD factorization theorems. The non-perturbative phase of spontaneously
broken chiral symmetry surrounding the pQCD core of a nucleon reveals itself in the slow
onset of a CT phenomenon for quasi-elastic processes off nuclear targets. The account of
the Sudakov form factors accelerates the onset of CT but only slightly. Thus, the three -layer
structure of a nucleon leads to the dominance of hadron degrees of freedom at the average
inter-nucleon distances in nuclei, at the saturation nuclear density, and to the restoration of
the chiral symmetry with a further increase in the nuclear density.

Systematic experimental studies of possible CT effects in two-body processes should
continue employing the projectiles and produced hadrons of different sizes (direct pho-
tons [45], pions, kaons, etc.). One should also study 2 → 3 high-energy processes such
as π− + A → π−π− + N + (A− 1)∗ with back-to-back pions with transverse momenta
larger than 1 GeV/c [46].
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