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Abstract: The color transparency (CT) of a hadron, propagating with reduced absorption in a nucleus,
is a fundamental property of QCD (quantum chromodynamics) reflecting its internal structure
and effective size when it is produced at high transverse momentum, Q. CT has been confirmed
in many experiments, such as semi-exclusive hard electroproduction, eA → e′πX, for mesons
produced at Q2 > 3 GeV2. However, a recent JLab (Jefferson Laboratory) measurement for a proton
electroproduced in carbon e C→ e′pX, where X stands for the inclusive sum of all produced final
states, fails to observe CT at Q2 up to 14.2 GeV2. In this paper, the onset of CT is determined by
comparing the Q2-dependence of the hadronic cross sections for the initial formation of a small
color-singlet configuration using the generalized parton distributions from holographic light-front
QCD. A critical dependence on the hadron’s twist, τ, the number of hadron constituents, is found
for the onset of CT, with no significant effects from the nuclear medium. This effect can explain the
absence of proton CT in the present kinematic range of the JLab experiment. The proton is predicted
to have a “two-stage” color transparency with the onset of CT differing for the spin-conserving
(twist-3, τ = 3) Dirac form factor with a higher onset in Q2 for the spin-flip Pauli (twist-4) form factor.
In contrast, the neutron is predicted to have a “one-stage” color transparency with the onset at higher
Q2 because of the dominance of its Pauli form factor. The model also predicts a strong dependence at
low energies on the flavor of the quark current coupling to the hadron.

Keywords: QCD color transparency; high-transverse-momentum reaction in nuclei; hadron electro-
production in nuclei; nuclear absorption

1. Introduction

Color transparency (CT) is a unique prediction of quantum chromodynamics (QCD),
the theory of the fundamental constituents of hadrons, quarks and gluons. CT represents
the ability of a hadron produced at large momentum transfer, Q, in a hard exclusive
process to transit a nucleus with reduced absorption. This property reflects the fact that
the dynamics of a hadron produced in a hard scattering reaction is dominated by its
valence Fock state where its quark constituents have small transverse separation, a⊥ ∝ 1/Q,
and, thus, propagate as a small-size color-singlet [1–4]. For example, the semi-exclusive
electroproduction process eA → e′HX, where the hadron H is produced with a large
transverse momentum opposite to the scattered lepton and X stands for the inclusive
sum of all produced final states, is dominated by the hard scattering of its valence quark
constituents with small transverse separation of the order of 1/Q. The produced hadron,
thus, propagates as a small color-singlet, and the effects of the nuclear environment are
suppressed. The same principle underlies the theory of hard exclusive reactions [5], as well
as predictions such as QCD counting rules for hadronic form factors (FFs) and hard-
scattering exclusive cross sections [6–8]. Measurements of CT can, thus, distinguish between
the predictions of conventional hadronic and nuclear physics and the onset of quark and
gluonic degrees of freedom.
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The reduced nuclear absorption as a function of momentum transfer has been con-
firmed in many semi-exclusive hard scattering reactions including the electroproduction
of mesons, eA → e′MX, where an isolated meson is produced at high transverse mo-
mentum squared of order Q2 > 3 GeV2. Overviews of the CT measurements are given
in Refs. [3,4,9]. However, a recent measurement of the electroproduction of protons by
the Hall C Collaboration at the Jefferson Laboratory (JLab) [10], does not observe CT in
quasielastic 12C(e, e′p) for Q2 up to 14.2 GeV2, thus, setting strong constraints for the onset
of CT for baryons.

The analysis of CT presented in this paper is based on the results from holographic
light-front QCD (HLFQCD) [11,12], a new approach to hadron physics rooted on the
gauge/gravity correspondence [13], LF quantization [14], superconformal quantum me-
chanics [15–17] and the generalized Veneziano model, including external currents [18–20].
The framework incorporates features of the hadron spectrum, which are not obvious from
the QCD Lagrangian, such as confinement, chiral symmetry breaking and the connection
between the baryon and the meson spectrum. The HLFQCD framework also provides
nontrivial connections between the dynamics of FFs and quark and gluon distributions
by incorporating Regge behavior at small longitudinal momentum fraction, x, and the
inclusive-exclusive connection at large x [21–23].

The nonperturbative features of HLFQCD, and, in particular, the analytic structure of
the generalized parton distributions (GPDs) [24–26] , are directly relevant for the analysis
of the dynamics underlying CT. The effective transverse-impact distance of a hadron as
a function of Q2 is found to depend on hadron’s twist, the number of quark and gluon
constituents of a given Fock state, as well as the quark current which couples to the hadron.
The hard interaction with the lepton can trigger the initial formation of a small color-
singlet configuration which can then propagate with minimal interaction in the nuclear
medium. The dependence on the number of constituents of the hadron’s valence Fock state
is critical for controlling the onset of color transparency; for example, the color transparency
of a proton or deuteron is highly delayed compared with the observed onset of pion
transparency, with no significant effects from final state inelasticity. The dependence on
twist reflects the fact that the momentum transfer required to bring all of the constituents of
the hadron’s valence Fock state to small transverse separation, and, thus, create a small size
color-singlet, grows with the number of constituents. In fact, this mechanism could explain
the sudden drop of CT in quasi-elastic proton scattering A(p, 2p) reaction off nuclei [27],
observed precisely at the crossing of the charm threshold [28]. Different interpretations are
given in Refs. [29,30].

2. Physics of Color Transparency

The connection between GPDs and CT has been the subject of previous theoretical stud-
ies [31,32]. In this paper, this connection is examined within the framework of HLFQCD,
which provides analytic expressions to describe the quark and gluon GPDs in the full x
and t = −Q2 domains.

2.1. The Effective Transverse Size of a Hadron at Large Longitudinal Momentum Fraction x

The flavor FF of a hadron can be written in terms of its GPD, Hq(x, t) ≡ Hq(x, ξ =
0, t) = ρq(x, t), at zero skewness, ξ,

Fq(t) =
∫ 1

0
dx Hq(x, t)

=
∫ 1

0
dx q(x) exp[tσ(x)], (1)

where q(x) is the longitudinal parton distribution function (PDF) and σ(x) is the profile
function. In LF quantization, the flavor FF has an exact single-particle representation in
impact space (see Appendix A)
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Fq(q2) =
∫ 1

0
dx
∫

d2a⊥eia⊥ · q⊥q(x, a⊥), (2)

where a⊥ is the x-weighted transverse position of the n− 1 spectator partons,

a⊥ =
n−1

∑
j=1

xjb⊥j. (3)

The transverse coordinate, a⊥, the transverse-impact parameter, is conjugate to the
transverse momentum, q⊥, and x is the longitudinal momentum fraction of the active
quark. The relative transverse variable, b⊥j, in impact space, is the variable conjugate to
the relative transverse momentum, k⊥j, of particle j with longitudinal momentum fraction
xj. The index j is summed over the n− 1 spectator quarks.

The LF distribution, q(x, a⊥), in transverse-impact space is the Fourier transform of
the distribution ρq(x, t) = Hq(x, t) = q(x) exp[tσ(x)] [33–36]:

q(x, a⊥) =
∫ d2q⊥

(2π)2 e−ia⊥ ·q⊥ρq(x, q⊥)

=
1

4π

q(x)
σ(x)

exp

(
− a2

⊥
4σ(x)

)
. (4)

Let us remark that in Refs. [34,35], the transverse impact-parameter variable a⊥ is
labeled b⊥, whereas in Ref. [36], it is labeled ~η.

The distribution function, q(x, a⊥), represents the number density of quarks of fla-
vor q with longitudinal momentum x and transverse-impact distance, a⊥, in a given
hadron [34,35]. The x-dependent transverse-impact distance squared is then given by

〈a2
⊥(x)〉q =

∫
d2a⊥a2

⊥q(x, a⊥)∫
d2a⊥q(x, a⊥)

= − 1
ρq(x, t)

∇2
Q ρq(x, t)

∣∣∣
t=−Q2=0

= 4 σ(x). (5)

In HLFQCD σ(x) is flavor independent and, for hadron twist τ, the number of hadron
constituents in a given Fock component, the FF has the reparametrization-invariant integral
representation, expressed in terms of Euler’s Beta function [21]:

F(t)τ =
1

Nτ
B(τ − 1, 1− α(t))

=
1

Nτ

∫ 1

0
dx w′(x)w(x)−α(t)[1− w(x)]τ−2, (6)

where α(t) = α(0) + α′t is the Regge trajectory of the vector meson which couples to the
quark current in the hadron, and Nτ is a normalization factor. The trajectory α(t) can be
computed within the superconformal LF holographic framework, and the intercept, α(0),
incorporates the quark masses [16,17]. The function w(x) is a flavor-independent function
with w(0) = 0, w(1) = 1 and w′(x) ≥ 0, where the prime defines x-derivative. The profile
function σ(x) and the PDF qτ(x) are determined by w(x):

σ(x) =
1

4λ
log
( 1

w(x)

)
, (7)

qτ(x) =
1

Nτ
w′(x)w(x)−α(0)[1− w(x)]τ−2, (8)



Physics 2022, 4 636

with α′ = 1/4λ. Boundary conditions follow from the Regge behavior at x → 0, w(x) ∼ x,
and at x → 1 from the inclusive-exclusive counting rule [37,38], qτ(x) ∼ (1− x)2τ−3,
which fix w′(1) = 0. These physical conditions, together with the above-given constraints,
basically determine the form of w(x).

Following Ref. [39], the x-dependent transverse-impact distribution of the proton is
computed here for the model of the PDFs given in Ref. [21]

u(x) =
(

2− r
3

)
qτ=3(x) +

r
3

qτ=4(x), (9)

d(x) =
(

1− 2r
3

)
qτ=3(x) +

2r
3

qτ=4(x), (10)

ignoring the sea contribution. The result, including comparison with available data, is
shown in Figure 1. The profile function σ(x) and the PDF qτ(x) are given by Equations (7)
and (8), with the result 〈a2

⊥(x)〉p = 4σ(x), independent of the value of r in the model
PDFs in Equations (9) and (10). The specific form of w(x) is used here as given in
Refs. [21–23], w(x) = x1−xe−α(1−x)2

with α = 0.5± 0.05, and the precise value of the mass
scale, κ ≡

√
λ = 0.534 GeV, determined from the Regge trajectories for the ρ and φ vector

mesons [40]. This value of
√

λ lies within the uncertainty bound of
√

λ = 0.523± 0.024 GeV,
determined from the full mass spectrum of the light hadrons, including all radial and orbital
excited states [41]. Let us note that similar results have been found in Ref. [42] for the
nucleon and in Ref. [43] for pions and kaons. As it is shown in Figure 1, at large x, the
proton converges to its point-like configuration (PLC). A similar behavior is predicted
at large values of Q2, as it is expected in a very high momentum transfer reaction; this
discussed in Section 2.2 below.

For comparison with the results of Section 2.2, one can also define the x-independent
transverse-impact distance squared by taking the x-average [39],

〈a2
⊥〉q =

1
Nq

∫
dx q(x)〈a2

⊥(x)〉q, (11)

and compute, for example, the transverse radius of the proton from the charge weighted
sum, 〈a2

⊥〉p = 2eu〈a2
⊥〉u + ed〈a2

⊥〉d. Here, Nq denotes the number of valence quarks, Nu = 2
and Nd = 1. Ignoring the sea contribution in the proton, Equation (11) gives the value
〈a2
⊥(x)〉p = 0.36 fm compared to the measured value, 〈a2

⊥(x)〉p = 0.43± 0.01 fm, obtained
from electron-proton scattering [39].

2.2. The Effective Transverse Size of a Hadron at Large Momentum Transfer t and the Onset of
Color Transparency

It is shown above that the dependence of the hadron’s transverse-size squared 〈a2
⊥(x)〉q

on the longitudinal momentum fraction x is flavor independent and it is uniquely deter-
mined by the hadron profile function σ(x): 〈a2

⊥(x)〉q = 4 σ(x). Its behavior in t = −Q2,
however, depends on specific properties of the hadron. In fact, one expects from general
considerations that the initial formation of a PLC for a bound state with a large number of
constituents—the deuteron for example, with its large phase space, has a lower probability
to fluctuate to a small configuration as compared with a two-particle bound state, say the
pion. Consequently, it presents to the nuclear environment a larger transverse impact area
as it traverses through the nucleus, and it will be slowed down or absorbed with greater
probability as compared with a pion projectile with a smaller transverse impact area for the
same Q2. The particle with a larger number of constituents will thus require a larger Q2 to
have the same transparency: the onset of color transparency will be higher in Q2 compared
to a hadron with fewer constituents.
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Figure 1. The x-dependence of the proton transverse-size, 〈a2
⊥(x)〉p, determined by the hadron’s

profile function, σ(x) (Equation (5)). Top: Comparison of the results obtained with the data, extracted
in Ref. [39] from the data by CLAS and HERMES experiments. The solid circle represents the
HERMES data and open circles the CLAS data. The band represents the model uncertainty. Bottom:
At large light-front momentum fraction, x, and equivalently, at large values of the momentum transfer
squared,Q2, the transverse size of a hadron behaves as a point-like color-singlet object. This behavior
is the origin of color transparency in nuclei. The rainbow color gradient represents the transition
from the ultraviolet to the infrared domains.

A similar effect is expected when comparing the relative CT of a nucleon to that of a
pion, where the detailed dependence on the individual constituents in the LF wave function
(LFWF) is essential. The integrand of Equation (A5) is in fact a function of the transverse
position of the n− 1 spectator components q⊥ ·∑n−1

j=1 xjb⊥j = q⊥ · a⊥ (see Equation (3)):
It corresponds to a change of transverse momentum xjb⊥j for each of the n− 1 spectator
particles. This dependence is crucial for determining the relative CT of different hadrons
since it measures the transverse size of a scattered hadron in a given Fock state.

The transverse impact surface dependence on the momentum transfer, t = −Q2, is
computed from the expectation value of the profile function σ(x):

〈4σ(t)〉q =

∫
dx 4σ(x)ρq(x, t)∫

dxρq(x, t)

=
4

Fq(t)
d
dt

Fq(t), (12)
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with the GPD Hq(x, t) = ρq(x, t) = q(x) exp[tσ(x)], integrated over the longitudinal
variable x of the active quark. From Equation (5) it follows that 〈4σ(t)〉q at t = 0 is precisely
the x-independent transverse-impact distance squared (11), namely, 〈a2

⊥〉q = 〈4σ(t = 0)〉q.
The transverse impact surface, 〈4σ(t)〉, thus, measures the slope of the hadron FF at any
value of the momentum transfer, Q2 = −t > 0: the transverse distance naturally evolves
from a small color-singlet configuration at large Q2 to the actual equilibrium size at Q2 = 0
compatible with the usual definition of the hadron radius: 〈a2

⊥〉 = 2
3 〈r2〉.

In the nonperturbative framework, presented here, the GPDs incorporate the far-off-
shell components of the LFWF, which controls the behavior of the FF at large Q2, and the
power counting rules from the inclusive-exclusive connection [21]. For a given twist-τ Fock
component in the hadron wave function one finds:

〈4σ(t)〉τ =
1
λ
[ψ(τ − α(t))− ψ(1− α(t)], (13)

a result which follows directly from the expression of the FF, given in Equation (6),
since B(u, v)−1∂vB(u, v) = (ψ(v)− ψ(u + v)), with ψ(z) the digamma function, ψ(z) =
Γ(z)−1dΓ(z)/dz. For integer twist, τ = N, the recurrence relation for the digamma function,
ψ(z + 1)− ψ(z) = 1/z, can be used to obtain

〈4σ(t)〉τ =
1
λ

τ−1

∑
j=1

1
j− α(t)

, (14)

an expression reminiscent of the classical Regge pole structure of a scattering amplitude.
In contrast to the dependence of the transverse impact area as a function of x, given by
Equation (5), Equation (14) depends explicitly on the hadron’s twist, τ, and the properties of
the specific quark current, which couples with the active quark in the hadron, characterized
by the hadron’s Regge trajectory, α(t). For large values of t = −Q2, Equation (14) leads to

〈σ(t)〉τ →
(τ − 1)

Q2 , (15)

which shows that, as expected, the hadronic size decreases with Q2. Physically, the Q2

required to contract all of the valence constituents of a hadron to a color-singlet domain of
a given transverse size, grows as the number of the spectator constituents as τ − 1. Let us
note that the applied procedure to compute the Q2-dependence of the effective transverse
size differs from the procedure of Ref. [32], given instead in terms of the relative impact
variables. The procedure of Ref. [32] leads to a rising transverse-impact surface with
increasing Q2 and decreasing twist, in contradiction with the results, presented here, and
the observations [44].

2.3. Inelastic Corrections to the Onset of Color Transparency

One has to note that additional effects for the onset of CT from the interaction of the
scattered hadron, as it propagates through nuclear matter, do not modify the onset of CT,
provided that the momentum transfer Q2 is relatively large. To show this, the inelastic
scattering cross section is evaluated assuming that the effects from the expansion of the
small scattered hadron are not significant during the collision time as it transits out of
the nucleus [45,46]. In this approximation, one can use the inelastic cross section formula
for the scattering of a small dipole of transverse size, d⊥, off a nucleon in the two-gluon
exchange approximation [47–49]:

σinel
τ (Q2, x) =

4π2

3
αs(Q2)〈στ(Q2)〉xGN(x, Q2), (16)

where GN(x, t) is the gluon distribution in the nucleon, which underlies the inelastic cross
section for the scattered hadron, and x ∼ Q2/s, where s is the center of mass energy
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squared of the colliding particles. The intrinsic gluon distribution in the pion and nucleons
was studied in Ref. [23] in the full range of x and t.

Deriving Equation (16), it is assumed that the size of the small color dipole d2
⊥ is small

relative to the equilibrium size of the proton, namely, d2
⊥ � 〈a2

⊥〉, with 〈a2
⊥〉 = 〈4σ(t = 0)〉.

One, thus, has from Equations (13) and (15):

d2
⊥(Q

2) ' 〈4σ(Q2)〉 ∼ 4(τ − 1)
Q2 , (17)

for relatively large Q2, and

σinel
τA

(Q2, x)

σinel
τB (Q2, x)

' 〈στA(Q
2)〉

〈στB(Q2)〉 , (18)

with no significant twist-dependent effects from final state inelasticity; here, τA and τB
denote the twists of the hadrons HA and HB electroproduced, respectively, in the reaction
eA→ e′HX at large Q2. Therefore, to a first approximation, the onset of CT for the scattered
hadron in nuclei only depends on the ratio of the transverse impact surface at large enough
Q2, thus, on the relative twist.

2.4. The Feynman Mechanism

It has been argued [46] that the “Feynman mechanism”—where the behavior of the
struck quark at large longitudinal momentum x → 1 in the proton LF wave function is
assumed to play a key role for hard exclusive hadronic processes—does not predict color
transparency. This process takes place when an active quark, carrying a significant fraction
of the nucleon’s momentum, is turned back by the incident virtual photon. In this case, the
spectator quarks are “wee” partons and would not shrink to a small transverse distance;
thus color transparency would not be observed [46].

Let us stress that the CT mechanism is applicable to hard exclusive scattering events
which are controlled by valence Fock states: for example, in ep→ e′p′, where the entire pro-
ton changes direction, and one has, as well, to take into account the transverse dependence
of the LFWF. Each spectator quark j in the final-state LFWF has momentum, xjq, and the
transverse impact distance shrinks to small separation a⊥ ∝ 1/Q as shown above; therefore
CT does occur at large Q2 in contrast from the deep inelastic scattering mechanisms, where
only the struck quark at large x flips its direction, thus avoiding the formation of a PLC at
any Q2.

3. Discussion of the Results

Figure 2 shows that the gap in the effective transverse impact surface, 〈4σ(t)〉, for
different twist (the number of constituents of a given Fock component) is most significant
at intermediate energies and for low twist values, particularly between twist-2 (τ = 2)
and twist-3. For example, the effective transverse impact surface for twist-2 at 4 GeV2 is
similar to that of twist-3 at 14 GeV2. Likewise, the impact surface at 4 GeV2 for twist-2 is
similar to that of twist-4 at 22 GeV2, thus, implying an important delay in the onset of CT
at intermediate energies in terms of the number of quark constituents. This is particularly
relevant for the proton since it contains, at approximately equal probability, both twist-3,
but also twist-4, in its LFWF. The twist-4 contribution is required in order to generate
the proton’s anomalous magnetic moment and Pauli FF. This predicts a larger value of
Q2 in order to produce color transparency for the proton, consistent with the recent JLab
electroproduction measurement [10].
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Figure 2. The transverse impact area 〈4 σ(t)〉 as a function of Q2 and the number of constituents
(twist), τ, implies a significant delay in the onset of color transparency at intermediate energies
for τ > 2. The dashed line indicates the characteristic transverse size, required for the onset of
color transparency.

3.1. Two-Stage Color Transparency in the Nucleon

The initial small hadron configuration in lepton-proton elastic scattering at large Q2

leads to spin-flip and non spin-nonflip transitions. They correspond to a distinctive lepton’s
angular distribution, specified by the Rosenbluth differential cross-section in terms of the
Dirac and Pauli FFs. Here, the specific distributions (9) and (10) from Ref. [21] are used to
obtain the Dirac FFs for proton and neutron in the approximation where sea components
are neglected:

Fp
1 (Q

2) = F3(Q2), (19)

Fn
1 (Q

2) = − 1
2

(
F3(Q2)− F4(Q2)

)
, (20)

Fτ , defined by Equation (6).
The result for the proton is independent of the value of r, whereas for the neutron it

corresponds to r = 3/2 from the anti-de-Sitter (AdS) normalization constraints. The leading
twist-4 result for the Pauli FF is computed from the overlap of LF orbital-angular-momenta
L = 0 and L = 1 components [11]:

Fp,n
2 (Q2) = χp,nF3(Q2), (21)

where χ is the nucleon anomalous magnetic moment. In Equation (21), higher-twist sea
contributions are neglected [50]. Let us note that the Dirac neutron FF (20) has equal
but opposite sign, twist-3 and twist-4 components, which leads to a strong cancellation of
the Dirac FF.

The inelastic process, as the nucleon travels in the nuclear medium, depends on the
nucleon’s transverse impact surface. For the proton, the charge averaged density gives a
sensible measure of its impact transverse size. For the neutron, however, it gives a very
small effective size. One can use instead the isoscalar averaged distribution 1

3 [u(x) + d(x)]
to compute the effective dependence of the nucleon transverse impact size. The isoscalar
component corresponds to the physics of Pomeron exchange and it is also a measurable
quantity related to the isospin I = 0 nucleon FF combination: Fp + Fn. This definition
leads to the same effective transverse impact surface for the proton and the neutron and
is consistent with AdS baryon normalization of equal L = 0 and L = 1 probability [11].
The onset of CT from spin-flip transitions is at 22 GeV2 since the Pauli FF is leading twist 4.
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To recapitulate, the proton is predicted to have a “two-stage” color transparency starting at
Q2 > 14 GeV2 for the twist-3 valence Fock state with L = 0 and at Q2 > 22 GeV2 for the
full onset of CT for proton’s L = 0 and L = 1 twist-4 components. In contrast, the neutron
only presents a “one-stage” color transparency onset at Q2 > 22 GeV2 due to its Pauli FF.

One can make a more quantitative estimate for the onset of color transparency for
the proton vs. the pion by using existing data for pion electroproduction [51,52]. In the
case of e12C→ eπX, measurements indicate that the transparency ratio, T, for pions rises
approximately 10% as Q2 increases from 3 to 4 GeV2; see Figure 14 of Ref. [3]. As shown in
Figure 2, the observation of CT in carbon in this range of Q2 requires that the transverse
surface 〈4σ(Q2)〉 of the pion (τ = 2) has contracted approximately to 0.22 fm2, indicated by
the dashed line in Figure 2. It is also clear from Figure 2 that one will obtain a similar size
〈4σ〉 ' 0.22 fm2 for the τ = 3 proton at Q2 ' 14 GeV2, and much higher Q2 ' 22 GeV2

for the τ = 4 proton component. However, since the proton is produced with approxi-
mately equal τ = 3 and τ = 4 components, one predicts only a small 5% increase of the
transparency, i.e., from T = 0.56 to T = 0.59, for e12C→ epX at Q2 = 14 GeV2. This small
variation in transparency is compatible with the recent measurement of proton electro-
production in carbon [10]. The effect of CT is, therefore, expected be larger in a heavier
nuclear target.

CT for the production of an intact deuteron nucleus in eA→ d + X(A−2) quasi-exclusive
reactions should be observed at Q2 ≥ 40 GeV2. This can be tested in ed→ ed elastic scatter-
ing in a nuclear background.

3.2. Effect of Quark Flavor on the Onset of Color Transparency

Another remarkable prediction of the result (14) is the strong dependence at low
energies of the specific quark current coupling to a hadron. To illustrate this property,
Figure 3 compares Q2-dependences of the transverse impact area, 〈4σ(Q2)〉, for the φ
meson and for the pion. The small transverse size and its slow fall-off for the ss̄ vector
meson reflects the heavier mass of the strange quark. One also sees that eA → eφX
electroproduction will show color transparency even at small Q2 and can provide an
important calibration tool for transparency measurements.
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in Fig. 2. It is also clear from Fig. 2 that one will obtain a similar size ⟨4σ⟩ ≃ 0.22 fm2
190

for the τ = 3 proton at Q2 ≃ 14 GeV2, and much higher Q2 ≃ 22 GeV2 for the τ = 4 191
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and τ = 4 components, one predicts only a small 5% increase of the transparency, i.e., 193
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Figure 3. Comparison of the transverse impact surface ⟨4 σ(t)⟩ as a function of Q2 = −t for the ϕ

meson (black) and pion (red). The small transverse size and the slow fall-off for the ss̄ vector meson
reflects the heavier mass of the strange quark. The figure inset represents the corresponding linear
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meson (black) and pion (red). The small transverse size and the slow fall-off for the ss̄ vector meson
reflects the heavier mass of the strange quark. The inset from Ref. [50] represents the corresponding
linear Regge trajectories for the ρ and φ vector mesons in Equation (14) for

√
λ = 0.534 GeV,

αρ(0) = 0.483, αφ(0) = 0.025.
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4. Conclusions and Outlook

Color transparency (CT) in one of the most striking properties of quantum chromody-
namics (QCD) phenomenology [1]: CT refers to the reduced absorption of a hadron as the
latter propagates through nuclear matter if produced at high transverse momentum in a
hard exclusive process. The nuclear absorption reflects the size of the color dipole moment
of the propagating hadron, i.e., the separation between its colored constituents.

The onset of CT predicted in this paper, is based on the nonperturbative analytic
structure of the hadron generalized parton distributions (GPDs), obtained in the framework
of holographic light-front (LF) QCD and valid in the full domain of the kinematic variables.
The GPDs incorporate the Regge behavior at small values of the longitudinal light front
momentum fraction, x, and more relevant for the present paper, the inclusive-exclusive
connection at large x.

A key quantity, which measures the transverse effective size of a scattered hadron in a
given Fock state is the impact parameter transverse distance, a⊥, the x-weighted transverse
position coordinate of the n− 1 spectators, Equation (3), which, as shown in Appendix A,
is the variable conjugate to the transverse momentum, q⊥. As such, a⊥ is the relevant
variable which controls the effective transverse distance of the hadron at large momenum
transverse squared, Q2: It leads to an effective transverse surface which has the expected
scaling properties and a crucial dependence on twist at high Q2. The transverse distance,
a⊥, also depends on the flavor of the quark current, which couples to a given hadron.

The hadronic size decreases inversely to Q2, and increases with the hadron’s twist, τ.
This corresponds physically to the fact that the momentum transfer, required to produce a
compact hadronic Fock state, increases with the number of its fundamental constituents.
An essential consequence is that at a given momentum transfer, the effective transverse
size for mesons with leading twist τ = 2 is smaller than for baryons with τ = 3 and 4,
corresponding to Fock states with the orbital LF angular momenta, L = 0 and L = 1, respec-
tively. Actually, the proton is predicted to have a “two-stage” CT onset with Q2 > 14 GeV2

for the twist-3 Fock state with orbital angular momentum L = 0, and at Q2 > 22 GeV2 for
the later full onset of CT for its combined L = 0 and L = 1 twist-4 components. In contrast,
the neutron is predicted to have a “one-stage” color transparency onset at Q2 > 22 GeV2

because of the dominance of its Pauli FF.
CT is predicted to occur at a significantly higher momentum transfer Q2 for baryons

(Q2 > 14 GeV2 for the proton and Q2 > 22 GeV2 for the neutron) as compared with
mesons (Q2 > 4 GeV2). Note that, it was already proposed in Ref. [47], by comparing with
nucleon-nucleon scattering, that CT effects should be more pronounced for a meson beam.
The predictions found here for the onset of CT are consistent with the findings at Jefferson
Laboratory (JLab), which have confirmed CT presence for the π and ρ mesons [3,9] and the
absence of CT for protons. These existing measurements are, however, limited to values
below the range of Q2 where the onset of proton CT is predicted to occur.
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Appendix A. Form Factors and Parton Distributions in Light-Front QCD

The light-front (LF) formalism provides an exact representation of current matrix
elements in terms of the overlap of frame-independent light-front wave functions (LFWFs)
in a LF Fock basis expansion with components ψn(xi, k⊥i, λi), where the internal partonic
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coordinates, the longitudinal momentum fraction, xi, and the transverse momentum, k⊥i,
obey the momentum conservation sum rules ∑n

i=1 xi = 1, and ∑n
i=1 k⊥i = 0. The LFWFs

also depend on λi, the projection of the constituent’s spin along the z direction.
The Drell-Yan-West (DYW) relation [37,53] provides a rigorous representation of the

electromagnetic form factors (FFs) of hadrons in terms of the overlap of their LFWFs in the
momentum space:

F(q2) = ∑
n

n

∏
i=1

∫
dxi

∫ d2k⊥i
2(2π)3 16π3 δ

(
1−

n

∑
j=1

xj

)
δ(2)
( n

∑
j=1

k⊥j

)
∑

j
ejψ
∗
n(xi, k′⊥i, λi)ψn(xi, k⊥i, λi), (A1)

where the variables of the LF Fock components in the final state are given by k′⊥i =
k⊥i + (1− xi) q⊥ for a struck constituent quark and k′⊥i = k⊥i − xi q⊥ for each spectator.
Equation (A1) represents an exact formula if the sum is taken over all Fock states, n.

The DYW expression for the FF can be expressed in the impact space by Fourier
transforming Equation (A1) in momentum space to impact transverse space [33]. This is a
convenient form to obtain the impact dependent representation of the generalized parton
distributions (GPDs) [34,35], but also for the holographic mapping of anti-de-Sitter (AdS)
results to LF physics, since the DYW FF can be expressed in terms of the product of LFWFS
with identical variables [36]. To this purpose, Equation (A1) is rewritten in terms of n−1
independent transverse impact variables, b⊥j, j = 1, 2, . . . , n− 1, conjugate to the relative
transverse momentum coordinate, k⊥j, and label by n the active charged parton which
interacts with the current. Using the Fourier expansion,

ψn(xj, k⊥j) = (4π)(n−1)/2
n−1

∏
j=1

∫
d2b⊥j exp

(
i

n−1

∑
k=1

b⊥k · k⊥k

)
ψn(xj, b⊥j), (A2)

one finds [33,36]:

F(q2) = ∑
n

n−1

∏
j=1

∫
dxj

∫
d2b⊥j exp

(
iq⊥ ·

n−1

∑
j=1

xjb⊥j

)∣∣ψn(xj, b⊥j)
∣∣2, (A3)

corresponding to a change of transverse momentum, xjq⊥, for each of the n−1 spectators.
The internal parton variables, the longitudinal momentum fraction xi and the transverse
impact coordinates b⊥i obey the sum rule: ∑n

i=1 xi = 1 and ∑n
i=1 b⊥i = 0.

The FF in LF quantization has an exact representation in terms of a single particle
density [33,36]:

F(q2) =
∫ 1

0
dx ρ(x, q⊥), (A4)

where ρ(x, q⊥) is given by

ρ(x, q⊥) = ∑
n

n−1

∏
j=1

∫
dxj

∫
d2b⊥j δ

(
1− x−

n−1

∑
j=1

xj

)
exp

(
iq⊥ ·

n−1

∑
j=1

xjb⊥j

)∣∣ψn(xj, b⊥j)
∣∣2. (A5)

The integration in Equation (A5) is over the coordinates of the n− 1 spectator partons,
and x = xn is the coordinate of the active charged quark.
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One can also express the FF (A4) in terms of a single-particle transverse distribution,
q(x, a⊥), in the transverse-impact parameter space [33]:

F(q2) =
∫ 1

0
dx
∫

d2a⊥eia⊥ · q⊥q(x, a⊥), (A6)

where a⊥ = ∑n−1
j=1 xjb⊥j is the x-weighted transverse position coordinate of the n−1

spectators. From Equation (A5), one obtains the corresponding transverse density:

q(x, a⊥) =
∫ d2q⊥

(2π)2 e−ia⊥ ·q⊥ρ(x, q⊥) (A7)

= ∑
n

n−1

∏
j=1

∫
dxj

∫
d2b⊥j δ

(
1− x−

n−1

∑
j=1

xj

)
δ(2)
( n−1

∑
j=1

xjb⊥j − a⊥
)∣∣ψn(xj, b⊥j)

∣∣2.

The procedure is valid for any Fock state n, and, thus, the results can be summed over
n to obtain an exact representation of the impact-parameter-dependent parton distribution,
introduced in Ref. [34,35]. Then, Equation (A7) gives the probability to find a quark with
longitudinal light front momentum fraction x at a transverse distance a⊥.

One can also compute the charge distribution of a hadron in the LF transverse plane
ρ(a⊥) by integrating Equation (A7). Using Equations (A4) and (A7), one finds:

ρ(a⊥) ≡
∫ 1

0
dx q(x, a⊥)

=
∫ d2q

(2π)2 e−ia⊥ ·q⊥F(q2)

=
∫ qdq

2π
J0(aq)F(q2), (A8)

with q2 = −Q2 = t. Note that Equation (A8) matches the expression, obtained in
Refs. [54,55], for the LF transverse charge density provided one identifies a⊥ with b⊥ here.
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