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Abstract: Some emerging concepts of nuclear structure are overviewed. (i) Background: the many-
body quantum structure of atomic nucleus, a complex system comprising protons and neutrons
(called nucleons collectively), has been studied largely based on the idea of the quantum liquid (à la
Landau), where nucleons are quasiparticles moving in a (mean) potential well, with weak “residual”
interactions between nucleons. The potential is rigid in general, although it can be anisotropic.
While this view was a good starting point, it is time to look into kaleidoscopic aspects of the nuclear
structure brought in by underlying dynamics and nuclear forces. (ii) Methods: exotic features
as well as classical issues are investigated from fresh viewpoints based on the shell model and
nucleon–nucleon interactions. The 70-year progress of the shell–model approach, including effective
nucleon–nucleon interactions, enables us to do this. (iii) Results: we go beyond the picture of the solid
potential well by activating the monopole interactions of the nuclear forces. This produces notable
consequences in key features such as the shell/magic structure, the shape deformation, the dripline,
etc. These consequences are understood with emerging concepts such as shell evolution (including
type-II), T-plot, self-organization (for collective bands), triaxial-shape dominance, new dripline
mechanism, etc. The resulting predictions and analyses agree with experiment. (iv) Conclusion:
atomic nuclei are surprisingly richer objects than initially thought.

Keywords: nuclear structure; shell model; exotic nuclei; shell evolution; type-II shell evolution;
nuclear shape; self-organization; dripline; monopole interaction; monopole-quadrupole interplay

1. Introduction

The atomic nucleus is in a unique position in physics in that it is an isolated object
but comprises many quantum ingredients. Some emerging concepts for the structure of
atomic nuclei are overviewed in this paper, focusing on the works in which the author
was involved. Obviously, those concepts have been found or clarified thanks to the great
progress of nuclear-structure physics over 70 years, including the shell model.

In fact, the understanding of nuclear structure is based, to a great extent, on the
shell model, which was introduced by Mayer [1] and Jensen [2] in 1949. Since then,
the shell model has been developed significantly in many ways: an initial phase as many-
body physics was presented, for instance, by Talmi in [3], in contrast to Mayer-Jensen’s
independent-particle model. The subsequent developments are reviewed, for instance
by Caurier et al. in [4] up to 2005, and in this volume up to date. I would like to sketch
emerging concepts of nuclear structure based on recent shell–model studies involving the
author, as many other studies are to be presented in other papers of the same volume.

The atomic nucleus comprises Z protons and N neutrons. Their sum is called the
mass number A = Z + N. Among atomic nuclei, stable nuclei are characterized by their
infinite or practically infinite life times and are characterized by rather balanced Z to N
ratios, with N/Z ranging from about 1 up to about 1.5. There are about 300 nuclear species
of this category. Other nuclei are called exotic (or unstable) nuclei. The total number

Physics 2022, 4, 258–285. https://doi.org/10.3390/physics4010018 https://www.mdpi.com/journal/physics

https://doi.org/10.3390/physics4010018
https://doi.org/10.3390/physics4010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/physics
https://www.mdpi.com
https://orcid.org/0000-0002-1593-5322
https://doi.org/10.3390/physics4010018
https://www.mdpi.com/journal/physics
https://www.mdpi.com/article/10.3390/physics4010018?type=check_update&version=3


Physics 2022, 4 259

of them is unknown but seems to be between 7000 and 10,000, providing a huge show
window of various features as well as the paths of nucleosynthesis in the cosmos (see,
for instance, [5–7]). The exotic nuclei decay, by β (i.e., weak) processes, to other nuclei
where Z and N are better balanced, as the β decay alters a neutron to a proton or vice versa.
This decay occurs successively, until the process terminates at a stable nucleus. Thus, only
stable nuclei exist on earth, while exotic nuclei do not, being exotic literally.

Some of the emerging concepts were conceived in the study of exotic nuclei, particu-
larly by looking at the shell structure and magic numbers of them. The obtained concepts
were found later not to be limited to exotic nuclei. In this way, after the initial trigger
by exotic nuclei, the overall picture of the nuclear shell structure has been renewed, and
Section 2 of this paper is devoted to a sketch of it with two major keywords, the monopole
interaction and the shell evolution.

We then focus on the deformation of the nuclear surface. The surface deformation from
the sphere has been a very important subject since the 1950s, as initiated by Rainwater [8]
and by Bohr and Mottelson in [9–13]. In particular, the shape coexistence phenomenon is
discussed as the crossroad between the shell evolution and the deformation, leading to the
concept of type-II shell evolution. Although I do not discuss extensively the methodology of
the shell model calculation in this paper because of the length limitation, the T-plot of the
Monte Carlo Shell Model (MCSM) is mentioned as an essential theoretical tool for many
physics cases of this paper. These are the main subjects of Section 3.

The in-depth clarification of the collective band is connected to the fundamental
question on the relation between the single-particle degrees of freedom and the collective
motion of nucleons. These two must be connected through nuclear forces. This question has
not been clarified enough as also addressed by G. E. Brown [14]. I shall focus, in Section 4,
on how this question may be understood more deeply, by introducing the self-organization
aspect of the collective bands and by raising the importance of the triaxiality of nuclear
shapes including the ground states.

The interplay between the monopole interaction and the quadrupole deformation
is shown to be a major mechanism of the determination of the neutron driplines. This
approach explains neutron driplines observed recently. We are led to two dripline mecha-
nisms: the traditional one with the single-particle origin and the present one. The monopole–
quadrupole interplay responsible for this new dripline mechanism is explained in detail
in Section 5. As an alternative case, spherical isotopes, such as Ca, Ni, Sn, and Pb, are
predicted to exhibit a different pattern.

The intention of this paper is to show the major flow of basic ideas and related results
without going into details. I hope that the reader can grasp this flow and could become
interested in watching further developments. The past 70 years are really great for the
shell model, but the coming years look equally or even more brilliant. I apologize for not
covering many of the major developments in the last 70 years, as such coverage is not
possible within this paper, but the other contributions of this volume are expected to help.

2. Shell Evolution Due to Monopole Interaction
2.1. Mayer–Jensen’s Shell Model and Observed Magic Numbers

Mayer [1] and Jensen [2] proposed, in 1949, the model of the shell structure and magic
numbers of atomic nuclei. This model provided major guides for a deeper and wider
understanding of the structure of atomic nuclei. While this is a similar situation to electrons
in atoms, there are some differences. Figure 1 depicts the basic idea and consequences of
the Mayer–Jensen’s scheme. We start with the nuclear matter composed of protons and
neutrons. This matter shows an almost constant density of nucleons (collective name of
protons and neutrons) inside the surface, which is a sphere as a natural assumption (see
Figure 1a). Because of the short-range character of nuclear forces, this constant density
results in a mean potential with a constant depth inside the surface, as shown in Figure 1b.
Let us assume that the density distribution is isotropic, producing an isotropic mean
potential. Figure 1b also suggests that the Harmonic Oscillator (HO) potential is a good
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approximation to this mean potential as long as the mean potential shows negative values
as a function of r, the radius from the center of the nucleus. We then switch from the mean
potential to the HO potential, which is analytically more tractable. Thus, the HO potential
can be introduced from the constant density (sometimes referred to as “density saturation”)
and the short-range attraction due to nuclear forces.

The eigenstates of the HO potential are single-particle states shown in the far-left
column of Figure 1c with associated magic numbers and HO quanta, N. These HO magic
numbers do not change by adding the minor correction of the `2 term, the scalar product of
the orbital angular momentum~l (see the second column from left in Figure 1c; for details
see [12]).

Figure 1. Schematic illustration of (a) density distribution of nucleons in atomic nuclei, (b) a mean
potential (solid line) produced by nucleons in atomic nuclei and an approximation by a Harmonic
Oscillator (HO) potential (dashed line). The abscissa, r, implies the radius from the center of the
nucleus. (c) The shell structure produced with resulting magic numbers in circles. Left column: only
the HO potential is taken with HO quanta shown as N = 0, N = 1, . . . (N here does not mean the
neutron number, N.) Middle column: the `2 term is aded to the HO potential, where the magic gaps
are shown in circles. The single-particle orbits are labeled in the standard way to the left. Right
column: the spin-orbit term, (~l ·~s), is included further, and magic gaps emerging from this term are
shown in red. The single-particle orbits are labeled to the right, including~j =~l +~s. The magic gaps
are classified as “HO” and “SO” for the HO potential and spin-orbit origins, respectively. Taken from
Figure 2 of [15], which was based on [16].

The crucial factor introduced by Mayer and Jensen was the spin-orbit (SO) term, (~l ·~s),
the effect of which is shown in the third column from the left in Figure 1c. The two orbits
with the same orbital angular momentum, `, and the same HO quanta are denoted as,

j> = `+ 1/2 and j< = `− 1/2, (1)

where 1/2 is due to the spin, s = 1/2. The notation of j> and j< is used frequently in this
paper. The spin-orbit term,

vls = f (~l ·~s), (2)

is added to the HO + `2 potential, where f is the strength parameter. With f < 0 as is the
case for nuclear forces, the j> state is lowered in energy, whereas the j< state is raised. The
value of f is known empirically to be about −20A−2/3 MeV (see Equation (2-132) of [12]).
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The final pattern of the single-particle energies (SPE) is shown schematically in
Figure 1c. The single-particle states are labeled in the standard way up to their j values,
and both HO and spin-orbit magic gaps are indicated in black and red, respectively. The
magic numbers have been considered to be Z, N = 2, 8, 20, 28, 50, 82, and 126, because the
effect of the spin-orbit term becomes stronger as j becomes larger. In fact, the magic num-
bers 28, 50, 82, and 126 are all due to this effect. Instead, the HO magic numbers beyond
20 were considered to be absent or show only minor effects. We shall look back on them,
from modern views of the nuclear structure covering stable and exotic nuclei.

We now investigate to what extent magic gaps in Figure 1c have been observed.
Figure 2 displays the observed excitation energies of the first 2+ states of even-even nuclei
as a function of N, where even-even stands for even-Z-even-N. These excitation energies
tend to be high at the magic numbers, because excitations across the relevant magic gap
are needed. The conventional magic numbers of Mayer and Jensen, N = 2, 8, 20, 28, . . . 126
are expected to arise, and we indeed see sharp spikes at these magic numbers in Figure 2a
where the excitation energies are shown for stable and long-lived (i.e., meta stable) nuclei.
Figure 2b includes all measured first 2+ excitation energies as of 2016. In addition to the
spikes in Figure 2a, one sees some new ones. One of them is at N = 40, which corresponds
to 68Ni40, representing a HO magic gap at N = 40. There are three others corresponding to
the nuclei, 24O16, 52Ca32, and 54Ca34, as marked in red. The 2+ excitation energies of these
nuclei are about a factor of two higher than the overall trend, suggesting that N = 16, 32
and 34 can be magic numbers, although none of them is present in Figure 1c.

These new possible magic numbers are consequences of what are missing in the
argument for deriving magic gaps in Figure 1c. We now turn to follow some passages
along which this subject has been studied.
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Figure 2. Systematics of the first 2+ excitation energies (Ex(2+1 ), for (a) stable and long-lived nuclei
and (b) all nuclei measured up to 2016, as functions of the neutron number. Peaks in (a) are labelled
by the neutron number (N), while the names of the nuclei are displayed for some new points in (b).
Taken from Figure 4 of [15].
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2.2. Monopole Interaction

The change from the Mayer–Jensen scheme is discussed from the viewpoint of the
nucleon-nucleon (NN) interaction. The Hamiltonian is written as,

Ĥ = Ĥ0 + V̂ , (3)

where Ĥ0 denotes the one-body term given by

Ĥ0 = Σj ε
p
0;j n̂p

j + Σj εn
0;j n̂n

j , (4)

and V̂ stands for the NN interaction. Here, n̂p,n
j means the proton- or neutron-number

operator for the orbit j, and ε
p,n
0;j implies proton or neutron SPE of the orbit j. This SPE is

composed of the kinetic energy of the orbit j and the binding energy on the orbit j generated
by all nucleons in the inert core. We note that the interaction V̂ in Equation (3) can be
any interaction between two nucleons in the following discussions but actually refers to
effective NN interactions between valence (i.e., active) nucleons.

The interaction V̂ can be decomposed, in general, into the two components: monopole
and multipole interactions [17], irrespectively of its origin, derivation, or parameters.
The monopole interaction, denoted as V̂mono, is expressed in terms of the monopole matrix
element, which is defined for single-particle orbits j and j′ as,

Vmono(j, j′) =
Σ(m,m′) 〈j, m ; j′, m′|V̂|j, m ; j′, m′〉

Σ(m,m′) 1
, (5)

where m and m′ are magnetic substates of j and j′, respectively, and the summation over
m, m′ is taken for all ordered pairs allowed by the Pauli principle. The monopole matrix
element represents, as displayed schematically in Figure 3, an orientation average for two
nucleons in the orbits j and j′. See [15] for more detailed descriptions.

� � �
✁ ✁ ✁ ✁vvv

� �
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ �✁ ✁ ✁ ✁

v v

number of matrix elements in the summation

✁ ✁ ✁ ✁
: magnetic substates of orbit j ✁ ✁ ✁ ✁ : magnetic substates of orbit j’

Monopole matrix element between orbits j and j’

Figure 3. Schematic illustration of the monopole matrix element for a two-body interaction v. See
text for details. Taken from Figure 7 of [15].

The monopole interaction between two neutrons is then given as

V̂mono
nn = Σj Vmono

nn (j, j)
1
2

n̂n
j (n̂

n
j − 1) + Σj<j′ V

mono
nn (j, j′) n̂n

j n̂n
j′ . (6)

The monopole interaction between two protons is given similarly. The monopole
interaction between a proton and a neutron can be given as

V̂mono
pn = Σ j 6= j′

1
2

{
Vmono

T=0 (j, j′) + Vmono
T=1 (j, j′)

}
n̂p

j n̂n
j′

+ Σj
1
2

{
Vmono

T=0 (j, j)
2j + 2
2j + 1

+ Vmono
T=1 (j, j)

2j
2j + 1

}
n̂p

j n̂n
j , (7)

where Vmono
T=0,1(j, j′) stands for the monopole matrix element for the isospin T = 0 or

1 channel, respectively, defined by Equation (5) including isospin-symmetry effects (see
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Sec. III A of Ref. [15] for details). Note that Vmono
T=1 (j, j′) implies Vmono

nn,pp (j, j′). The second
term on the right-hand-side (r.h.s.) of Equation (7) is slightly different from the first term on
the r.h.s. of Equation (7) due to the special isospin property for the cases of j = j′. Obviously,
V̂mono

pn can be rewritten as

V̂mono
pn = Σ j,j′ Ṽ

mono
pn (j, j′) n̂p

j n̂n
j′ , (8)

with Ṽmono
pn (j, j′) defined so as to reproduce Equation (7).

The functional forms in Equations (6) and (8) appear to be in accordance with the
intuition from the averaging over all orientations: no dependencies on angular properties
(e.g., coupled J values) between the two interacting nucleons and the sole dependence on
the number of particles in those orbits.

The (total) monopole interaction is written as

V̂mono = V̂mono
pp + V̂mono

nn + V̂mono
pn , (9)

and the monopole Hamiltonian is defined as,

Ĥmono = Ĥ0 + V̂mono = Σj ε
p
0;j n̂p

j + Σj εn
0;j n̂n

j + V̂mono . (10)

The multipole interaction is introduced as

V̂multi = V̂ − V̂mono , (11)

and the (total) Hamiltonian is written as Ĥ = Ĥmono + V̂multi. The multipole interaction
becomes crucial in many aspects of nuclear structure, for instance, the shape deformation,
as touched upon in later sections of this article. The monopole interaction has been studied
over decades with many works, for example, [17–20] (see [15] for more details).

We define the effective SPE (ESPE) of the proton (neutron) orbit j, denoted by ε̂
p
j (ε̂n

j ),

as the change of the monopole Hamiltonian, Ĥmono in Equation (10), due to the addition of
one proton (neutron) into the orbit j. This change is nothing but the difference, when np,n

j

is replaced by np,n
j +1. For instance, the first term on the r.h.s. of Equation (10) contributes

to ε̂
p
j by a constant, ε

p
0;j. As another example, the r.h.s. of Equation (8) contributes by

Σj′ Ṽmono
pn (j, j′){(n̂p

j + 1) n̂n
j′ − n̂p

j n̂n
j′} = Σj′ Ṽmono

pn (j, j′)n̂n
j′ . Combining all terms, the ESPE

of the proton orbit j is given as,

ε̂
p
j = ε

p
0;j + Σj′ V

mono
pp (j, j′) n̂p

j′ + Σj′ Ṽ
mono
pn (j, j′) n̂n

j′ . (12)

The second and third terms on the r.h.s. are obviously contributions from valence
protons and neutrons, respectively. The neutron ESPE is expressed similarly as

ε̂n
j = εn

0;j + Σj′ V
mono
nn (j, j′) n̂n

j′ + Σj′ Ṽ
mono
pn (j′, j) n̂p

j′ . (13)

In many practical cases, an appropriate expectation value of the ESPE operator is
also called the ESPE with an implicit reference to some state characterizing the structure,
e.g., the ground state.

The ESPE as an expectation value is often discussed in terms of the difference between
two states, e.g., Ψ and Ψ′. The states Ψ and Ψ′ may belong to the same nucleus or to
two different nuclei. We here show the formulas for this difference. First we introduce
the symbol ∆O for an operator Ô implying the difference, 〈Ψ |Ô|Ψ〉 − 〈Ψ′ |Ô|Ψ′〉. Such
differences of the ESPE values are expressed as,

∆ε
p
j = Σj′ V

mono
pp (j, j′)∆np

j′ + Σj′ Ṽ
mono
pn (j, j′) ∆nn

j′ , (14)
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and
∆εn

j = Σj′ V
mono
nn (j, j′)∆nn

j′ + Σj′ Ṽ
mono
pn (j′, j)∆np

j′ . (15)

If Ψ′ is a doubly closed shell and Ψ is an eigenstate with some valence protons and neutrons
on top of this closed shell, these quantities stand for the evolution of ESPEs as functions of
Z and N. One can thus see various physics cases represented by Ψ and Ψ′. Such ESPEs can
provide picturesque prospects and great help in intuitive understanding without resorting
to complicated numerical calculations. The notion of the ESPE has been well utilized,
for instance, in empirical studies in [6,21], in certain ways related to the present article.

The interaction V̂ can be decomposed into several parts according to some classifica-
tions. The discussions in this subsection can then be applied to each part separately: the
monopole interaction of a particular part of V̂ can be extracted, and its resulting ESPEs can
be evaluated. Examples are presented in the subsequent subsections.

We note that the definition of the ESPE can have certain variants with similar con-
sequences, for instance, the combination of np,n

j − 1/2 and np,n
j + 1/2 instead of np,n

j and

np,n
j + 1. Appendix A shows a note on the relation to Baranger’s ESPE.

2.3. Central, Two-Body Spin-Orbit and Tensor Parts of the NN Interaction

With these formulations, we can discuss a variety of subjects ranging from the shell
structure, to the collective bands, and to the driplines. Let us start with the shell structure.
While the discussions in Section 2.1 are based on basic nuclear properties, some aspects are
missing. One of them is the orbital dependencies of the monopole matrix element. This
dependence generally appears but shows up more crucially in certain cases.

As we shall see, some parts of the NN interaction, V̂, show characteristic and substan-
tial orbital dependencies. Such parts can be specified in terms of their spin properties, as the
NN interaction involves a spin operator, an axial vector ~σ of nucleon. We first take the
part where no spin operator is included or spin operators are coupled to scalar terms, like
(~σ1 ·~σ2) with~σ1,2 denoting the spin operator of the nucleon 1 or 2, and ( · ) being a scalar
product. This part is called the central force, and its effects are discussed in Section 2.4. In the
second part, spin operators are coupled to axial vectors. Such axial vectors must be coupled
with other axial vectors such as the orbital angular momentum. The two-body spin-orbit force
belongs to this case, and its effects are discussed in Section 2.8, while the effects remain
quite modest except for special orbital combinations. As presented in Section 2.5, significant
contributions arise from the tensor force, where spin operators are coupled to a (rank-2)
tensor, [~σ1 × ~σ2]

(2), where the last superscript means rank 2. This is a very complicated
coupling, and this term must be coupled, in the interaction, with another (rank-2) tensor
of the coordinates, in order to form a scalar. Similar terms appear in the electromagnetic
interaction, but their effects are minor. The tensor force is, however, crucial in the nuclear
case, because the pion exchange process produces it as its primary source. Section 2.5
presents monopole properties of the lowest-order contribution of the tensor force, while
higher-order contributions are largely included in the central force of the effective NN
interaction mentioned above.

2.4. Monopole Interaction of the Central Force

We now discuss the monopole interaction of the central-force component of NN
interactions. Because the NN interaction is characterized by intermediate-range (∼1 fm)
attraction after modifications or renormalizations, the monopole matrix elements gain
large magnitudes with a negative sign (i.e., attractive), if radial wave functions of the
single-particle orbits, j and j′ in Equation (5), are similar to each other. This similarity is
visible, if these orbits are spin-orbit partners (j = j> and j′ = j<) with the identical radial
wave functions (see Equation (1)), for instance 1 f7/2 and 1 f5/2. Another example is the
coupling between unique-parity orbits, such as 1g9/2 and 1h11/2, for which the radial wave
functions are similar because of no radial node. These types of strong correlations were
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pointed out by Federman and Pittel in [22], where the total effect of the 3S1 channel of the
NN interaction was discussed without the reference to the monopole interaction.

2.5. Monopole Interaction of the Tensor Force

Another important source of the monopole interaction with strong orbital dependences
is the tensor force. The tensor force produces very unique effects on the ESPE. This is shown
in Figure 4: the intuitive argument in [15,23] proves that the monopole interaction of the
tensor force is attractive between a nucleon in an orbit j< and another nucleon in an orbit
j′>, whereas it becomes repulsive for combinations, (j>, j′>) or (j<, j′<). The magnitude of
such monopole interaction varies also. For example, it is strong in magnitude between
spin-orbit partners or between unique-parity orbits, etc. [15].

wave function of relative motionspin
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>
’
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Figure 4. Monopole interaction of the tensor force for (a) between the orbits j< and j′>, and (b) between
the orbits j> and j′>. See Equation (1) for the definitions of the orbits j> and j<. See text for more
details. Taken from [23].

The ESPE is shifted in very specific ways as exemplified in Figure 5b: if neutrons
occupy a j′> orbit, the ESPE of the proton orbit j> is raised, whereas that of the proton
orbit j< is lowered. This is nothing but a reduction in a proton spin-orbit splitting due to
a specific neutron configuration. The amount of the shift is proportional to the number
of neutrons in this configuration, as shown in Equation (14) and in Figure 5c. Other cases
follow the same rule shown in Figure 4. These general features have been pointed out
in [23] with an analytic formula and an intuitive description of its origin.
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2.6. Monopole-Interaction Effects from the Central and Tensor Forces Combined

The combined effects of the central and tensor forces were discussed in [25] in terms of
realistic shell–model interactions, USD [26], and GXPF1A [27]. These interactions were ob-
tained in two steps: the starting point was given by microscopic G-matrix NN interactions
proposed initially by Kuo and Brown [28,29], and as the second step, certain phenomeno-
logical improvements were made by the fit to large numbers of experimental energy levels.
It is mentioned that some main features, for instance, the tensor-force component, remain
unchanged by this fit [25]. Many other valuable shell–model interactions, for instance,
KB3 [17], Kuo-Herling [30], sn100pn [31], and LNPS [32] interactions, have been constructed
from the G-matrix interactions sometimes with refinements like monopole adjustments.
It should be noticed that these shell–model interactions are derived microscopically to
a large extent and that they should be distinguished from purely phenomenological in-
teractions in earlier times, e.g., [33]. The M3Y interaction [34] is related to the G-matrix,
too. We appreciate the original contribution of the G-matrix approach to the effective NN
interaction [28,29].

The VMU interaction was then introduced as a general and simple shell–model NN in-
teraction. Its central part consists of Gaussian interactions with spin/isospin dependencies,
and their strength parameters are determined so as to simulate the overall features of the
monopole matrix elements of the central part of USD [26] and GXPF1A [27] interactions. Its
tensor part is taken from the standard π- and ρ-meson exchange potentials [23,35,36]. Thus,
the VMU interaction is defined as a function of the relative distance of two nucleons with
spin/isospin dependences, which enables us to use it in a variety of regions of the nuclear
chart, as we shall see. A wide model space, typically a HO shell or more, is required in
order to obtain reasonable results, though.

Figure 6 depicts some examples: Figure 6a displays the transition from a standard (à
la Mayer–Jensen) N = 20 magic gap to an exotic N = 16 magic gap by plotting 〈ε̂n

j 〉 within
the filling scheme (see Equation (13)), as Z decreases from 20 to 8. The tensor monopole
interaction between the proton d5/2 and the neutron d3/2 orbits plays an important role.
The small N = 20 magic gap for Z = 8–12 is consistent with the island of inversion picture
(see reviews, e.g., [4,15]). Figure 6b depicts the inversion between the proton f5/2 and p3/2
orbits as N increases in Ni isotopes, by showing 〈ε̂p

j 〉 (see Equation (12)). The figure exhibits
exotically ordered single-particle orbits for N > 44. The tensor monopole interactions
between the proton f7/2,5/2 and the neutron g9/2 orbits produce crucial effects. Figure 6c
shows significant changes in the neutron single-particle levels from 90Zr to 100Sn, in terms
of 〈ε̂n

j 〉. Without the tensor force, the approximate degeneracy of g7/2 and d5/2 orbits in
100Sn does not show up.
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Figure 6. ESPEs calculated by the VMU interaction. The dashed lines are obtained by the central force
only, while the solid lines include both the central-force and the tensor-force contributions. See text
for more details. Taken from [25].

These changes in the shell structure as a function of Z and/or N were collectively called
shell evolution in [23]. The splitting between proton g7/2 and h11/2 in Sb isotopes shows
a substantial widening as N increases from 64 to 82 as pointed out by Schiffer et al. [37],
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which was one of the first experimental supports to the shell evolution partly because this
was not explained otherwise. Note that while the origin of the shell evolution can be any
part of the NN interaction, its appearance is exemplified graphically in Figure 5a–c for
the tensor force. The shell-evolution trend depicted in Figure 6 appears to be consistent
with experiment [15,25,38–42]. The monopole properties discussed in this subsection are
consistent with the results shown by Smirnova et al. [43] obtained through the spin-tensor
decomposition (see e.g., [15] for some account) for the “well-fitted realistic interaction for
the sdpf shell–model space” [43].

2.7. N = 34 New Magic Number as a Consequence of the Shell Evolution

Among various cases of shell evolution, a notable impact was made by predicting a
new magic number N = 34. Figure 7 displays the shell evolution of some neutron orbits
from Ni back to Ca isotopes, as Z decreases from 28 to 20. The 1 f5/2 orbit is between the
2p3/2 and 2p1/2 in Mayer–Jensen’s shell model (see Figure 1). By loosing eight protons
lying in the 1 f7/2 orbit of Ni isotopes (blue circles in Figure 7 left), this canonical shell
structure is destroyed as the 1 f5/2 orbit moves up above the 2p1/2 orbit. This movement of
1 f5/2 orbit creates the N = 32 gap as a byproduct [44]. The energy shift in the 1 f5/2 orbit is
due to the central and tensor forces by almost equal amounts. We mention that the N = 34
magic gap would not appear, if the Mayer–Jensen scheme holds, as expected, in Ni isotopes
but this shift did not occur. The appearance of the N = 34 magic number was predicted as a
result of a spin–isospin interaction in [45]. However, 12 years were required [46] until the
experimental verification became feasible [47] (see Figure 7 right). The measured 2+ energy
levels are included in Figure 2b. More details are presented in [15]. Further evidences have
been obtained recently by different experimental probes as reported in [48,49].
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Figure 7. Left: Schematic illustration of the shell evolution from Ni back to Ca for neutron orbits.
Blue circles denote protons. The wavy line is the interaction between the proton 1 f7/2 orbit and the
neutron 1 f5/2 orbit. The numbers in circles indicate magic numbers. Taken from Figure 3 of [24].
Right: Observed excitation energies of the 2+1 states. Taken from Figure 2c of [47].

2.8. Monopole Interaction of the Two-Body Spin-Orbit Force

It is a natural question what effect can be expected from the two-body spin-orbit
force of the NN interaction. This force can be well described by the M3Y interaction, and
the monopole effects of the two-body spin-orbit force were described in detail in [15],
particularly in its supplementary document. Although the monopole effects of this force
contributes to the spin-orbit splitting [15], the effect is much weaker than the tensor force
in most cases, as also discussed in the article by Utsuno in this volume.

An interesting case is found in the coupling between an s orbit and p3/2,1/2 orbits.
There is no monopole effect from the tensor force, if an s orbit is involved. Instead, the s-p
coupling due to the two-body spin-orbit force can be exceptionally strong as intuitively
stressed in [15]. Figure 8 shows that the possible significant change in the neutron 2p3/2-
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2p1/2 gap between 35Si and 37S is explained to a good extent by the shell evolution due to
the two-body spin-orbit force.
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(blue dashed line) and is compared to the curved dependence that results from the proximity of
the continuum. The dashed line is for the 2p3/2 orbit, and the loose-binding contribution to the
present splitting appears to be 0.06 MeV against 1.5 MeV splitting itself. Taken from Figure 8 of
Supplementary Material of [15].

2.9. Monopole Interaction from the Three-Nucleon Force

The three-nucleon force (3NF) is currently of intense interest (see, for instance, a re-
view [53]). Among various aspects, we showed [54] the characteristic feature of the
monopole interaction of the effective NN interaction derived from the Fujita–Miyazawa
3NF [55]. Figure 9a displays the effect of the ∆ excitation in nucleon–nucleon interac-
tion. The ∆-hole excitation from the inert core changes the SPE of the orbit j as shown in
Figure 9b, where m is one of the magnetic substates of the orbit j, and m′ means any state.
This diagram renormalizes the SPE, and observed SPE should include this contribution.
If there is a valence nucleon in the state m′ as in Figure 9c, the process in Figure 9b is
Pauli-forbidden. However, in the shell–model and other nuclear-structure calculations,
the SPE containing the effect of Figure 9b is used. One has to somehow incorporate the
Pauli effect of Figure 9c, and a solution is the introduction of the process in Figure 9d.
In this process, the state m′ doubly appears in the intermediate state, but one can evaluate
the Pauli effect by including Figure 9b,d consistently. This is a usual mathematical trick
and enables us to correctly treat the Pauli principle within the simple framework. Figure 9d
is equivalent to Figure 9e, which is nothing but the Fujita–Miyazawa 3NF, where the state
m′ appears in double. Similar treatment is carried out in the chiral Effective Field Theory
(EFT) framework. Figure 9f corresponds to Figure 9e, but the violation of the Pauli principle
is slightly hidden, because of a vertex in the middle (depicted by a square) instead of the
∆-hole excitation.
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In this argument, the 3NF produces a repulsive monopole NN interaction in the
valence space, after the summation over the hole states of the inert core (see Figure 9
bottom right), which corresponds to the normal ordering in other works.

The plot Figure 9 top right indicates an example of the repulsive effect on the ground-
state energy of oxygen isotopes, locating the oxygen dripline at the right place or solving
the oxygen anomaly [54]. This is rather strong repulsive monopole interaction, which is a
consequence of the inert core. This means that the present case is irrelevant to the no-core
shell model or other many-body approaches without the inert core (e.g., Green’s Function
Monte Carlo calculation [56]). This feature has caused some confusions in the past, but the
difference is clear. The present repulsive monopole effect is much stronger than the other
effects of the 3NF [57], and the latter will be better clarified by further developments of the
chiral EFT for 3NF in the future. I note that the repulsive T = 1 NN effect was empirically
noticed by Talmi in the 1960s [3].
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Figure 9. Schematic illustration of the three-nucleon force (3NF). Left: The diagrams (a–e) show how
∆-hole excitation effects are incorporated in accordance with Pauli principles, with the final form
shown in (e), as described in the text. The diagrams in (f–h) represent three contributions from 3NF
obtained in the chiral Effective Field Theory. Top right: the ground-state energy of oxygen isotopes,
calculated with and without the 3NF and observed experimentally. Bottom right: the intuitive
explanation of the diagrams in (d,e) of the left panel with the 16O inert core. Based on Figures 3 and 4
of [54].

2.10. Short Summary of This Section

The shell evolution phenomena are seen in many isotopic and isotonic chains and some-
times result in the formation of new magic gaps or the vanishing of old ones. Figure 2b
displays the emergence of such new magic numbers N = 16, 32, and 34, whereas the low-
ering of some 2+ levels can mean the weakening of some magic numbers. More changes
may appear in the future studies. Thus, the characteristic monopole features of the central,
tensor, two-body LS, and 3NF-based NN interactions and the resulting shell evolution
are among the emerging concepts of the nuclear structure. Interestingly, these findings
are neither isolated nor limited to particular aspects but are related to other aspects of the
nuclear structure. We now move on to such a case.
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3. Type-II Shell Evolution and Shape Coexistence
3.1. Type-II Shell Evolution

The shell evolution shown in Figure 5b,c are due to the addition of two or four
neutrons into the orbit j′>, respectively. Instead of adding, one can put neutrons into the
orbit j′> by taking the neutrons from some orbits below j′>, or equivalently by creating
holes there, as shown in Figure 5d. If such a lower orbit happens to be the j′′< orbit as in
Figure 5d, its monopole matrix elements show just the opposite trends compared to the j′>
orbit. However, because holes are created in j′′<, the sign of the monopole-interaction effect
is reversed, and the final effect has the same sign as the monopole effect form the orbit
j′> (see Figure 5d). Thus, the particle–hole (ph) excitation of the two neutrons Figure 5d
reduces the proton j>-j< splitting even more than in Figure 5b. This reduction becomes
stronger with the ph excitations of four neutrons, as depicted in panel Figure 5e. Such
strong reduction in the spin-orbit splitting produces interesting consequences beyond
shell-structure changes. This type of the shell-structure change within the same nucleus is
called type-II shell evolution.

3.2. A Doubly-Closed Nucleus 68Ni

The Type-II shell evolution was first discussed in [58] for 68Ni as an example. Figure 10
shows its theoretical and experimental energy levels. The theoretical results were obtained
for the A3DA-m interaction by the MCSM [59–62], which is a powerful methodology for
the shell model calculation but is not discussed in this article due to the length limitation.
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Figure 10. Level scheme of 68Ni. Taken from Figure 2 of [58].

Because Z = 28 is an SO magic number and N = 40 is an HO magic number (see
Figure 1), the ground state of 68Ni is primarily a doubly closed shell. Indeed, in the theoret-
ical ground state, the occupation of the neutron g9/2 orbit is negligibly small. In contrast,
the 0+3 state located at the excitation energy, Ex∼3 MeV, is the band head of a rotational
band of an ellipsoidal shape, and its neutron g9/2 occupation number is as large as ∼4.
The mechanism shown in Figure 5e is then switched on, reducing the proton f5/2– f7/2
splitting. A reduced splitting facilitates more configuration mixing between these two
orbits, which can produce notable effects on the quadrupole deformation as stated below.
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3.3. Coexistence between Spherical and Deformed Shapes

We here quickly overview the quadrupole deformation or the shape deformation from
a sphere to an ellipsoid [13]. The quadrupole deformation is driven by the quadrupole
interaction, a part of the multipole interaction in Equation (11). The quadrupole interaction
is a somewhat vague idea because of a certain mathematical complication, but its main
effects can be simulated by the (scalar) coupling of the quadrupole moment operators.
If the quadrupole moments are larger, i.e., a stronger quadrupole deformation occurs,
the nucleus gains more binding energy from the quadrupole interaction. This is a very
general phenomenon, and because of this the ground states of many nuclei are deformed,
although 68Ni is not among them.

The energy of 68Ni (intrinsic state) is graphically illustrated in Figure 11 left for various
ellipsoidal shapes, spherical, prolate, oblate and in between (called triaxial). The energy is
calculated by the constraint Hartree–Fock (CHF) calculation with the same shell–model
Hamiltonian as in Figure 10. The imposed constraints are given by the quadrupole moments
in the intrinsic (body-fixed) frame, represented usually by Q0 and Q2 [13]. This plot is
usually called the Potential Energy Surface (PES). The minimum energy occurs at the
spherical shape (red sphere), with Q0 = Q2 = 0. The constraints are changed to a more
prolate deformed ellipsoid (blue object) along the upper-right axis (“prolate deformation”
in the figure), where Q0 increases but Q2 = 0. (Between two axes in Figure 11, Q2 6= 0. We
come back to this point below.) The energy relative to the minimum energy climbs up by
6 MeV first. This is because protons and neutrons must be excited across the magic gaps
from the doubly closed shell in order to create states of deformed shapes (see Figure 1).
The energy then starts to come down, as the quadrupole moments increase, thanks to the
quadrupole interaction. It is lowered by 3 MeV from the local peak to the local minimum.
Beyond the local-minimum area, the effect of the quadrupole interaction is saturated, and it
cannot compete with the energy needed for exciting more protons and neutrons across
the gaps required by the constraints. This energy variation appears as the basin in the
three-dimensional PES. This is the usual explanation of the local deformed minimum.
The appearance of two (or more) different shapes with a rather small energy difference
is one of the phenomena frequently seen and is called the shape coexistence [63]. The
quadrupole interaction is undoubtedly among the essential factors of the shape coexistence.
However, this may not be a full story.
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68Ni with axially symmetric shapes. The solid line shows the PES of the full Hamiltonian, whereas
the dashed line is the PES with practically no tensor-force contribution. Taken from Figure 6 of [24].
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Figure 11 right exhibits the same energy along the axis lines of Figure 11 left, where Q0
is varied from −400 fm2 to 400 fm2 while Q2 = 0 is kept. The positive (intrinsic) quadrupole
moments (Q0 > 0) imply prolate shapes (blue object in Figure 11 left), whereas the negative
ones imply (Q0 < 0) oblate shapes (green object). The red solid line shows the CHF results of
the full Hamiltonian, whereas for the dashed line, the tensor monopole interactions between
the neutron g9/2 orbit and the proton f5/2,7/2 orbits are practically removed. This removal
means no effects depicted in Figure 5d,e. The dashed line displays a less-pronounced prolate
local minimum at weaker deformation with much higher excitation energy. The significant
difference between the solid and dashed lines suggests that the monopole effects are crucial to
lower this local minimum and stabilize it. We now discuss the mechanism for this difference.
With the tensor monopole interaction, once sufficient neutrons are in g9/2, the proton f5/2– f7/2
splitting is reduced, and this reduced splitting facilitates the mixing between these two orbits
driven by the quadrupole interaction. The resulting deformation is stronger compared to no
tensor-force case. In parallel to this, the tensor monopole interaction involving the neutron
g9/2 orbit produces extra binding energy, if more protons are in f5/2 and less are in f7/2. This
extra binding energy lowers the deformed states, otherwise they are high in energy because
of the energy cost for promoting neutrons from the p f shell to g9/2. Thus, a strong interplay
emerges between the monopole interaction and the quadrupole interaction, and type-II shell
evolution materializes this interplay in the present case. It enhances the deformation and
lowers the energy of deformed states. Without this interplay, as indicated by blue dashed line
in Figure 11 right, the rotational band corresponding to the local minimum is pushed up by
4 MeV and may be dissolved into the sea of many other states. It is obvious that this interplay
mechanism works self-consistently.

3.4. T-Plot Analysis

The T-plot was introduced in the same Ref. [58], in order to clarify what shapes are
more relevant to individual eigenstates of the shell–model calculation. Let us take an
example. Figure 12 [64] depicts the PES of 66Ni with the same Hamiltonian as in Figure 10.
The small circles on the PES are the T-plot. The T-plot is obtained from MCSM eigenstate.
We therefore briefly explain the MCSM eigenstate. An MCSM eigenstate, Ψ, is written,
with the ortho-normalization, as

Ψ = ∑
k

fk P̂Jπ φk , (16)

where fk denotes amplitude; P̂Jπ means the projection operator on to the spin/parity Jπ

(this part is more complicated in practice); and φk stands for a Slater determinant called
(k-th) MCSM basis vector: φk = Πi c(k)†i |0〉. Here, |0〉 is the inert core (closed shell); c(k)†i
refers to a superposition of usual single-particle states,

c(k)†i = ∑
n

D(k)
i,n a†

n , (17)

with a†
n being the creation operator of a usual single-particle state, for instance, that of the

HO potential, and D(k)
i,n denoting a matrix element. By choosing an optimum matrix D(k),

we can select φk so that such φk better contributes to the lowering of the corresponding
energy eigenvalue. Thus, the determination of D(k) is the core of the MCSM calculation.
The index k runs up to 50–100 but sometimes to 300 at maximum. These are much smaller
than the dimension of the many-body Hilbert space.
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Figure 12. PES and T-plot for 66Ni. Taken from Figure 1 of [64].

Each φk has intrinsic quadrupole moments (〈φk|Q̂0|φk〉 and 〈φk|Q̂2|φk〉), where Q̂0,2
imply the operators for Q0,2 mentioned above. The T-plot circle for φk is placed according
to those values on the PES with its area proportional to the overlap probability with
the corresponding eigenstate, i.e., Ψ in Equation (16). Such T-plot circles are shown in
Figure 12. The white circles represent the MCSM basis vectors for the ground state, while
the red circles indicate the MCSM basis vectors for the 0+4 state, which is strongly deformed.
Although there is no local minimum for oblate shape, the 0+2 state is shown to be moderately
oblate deformed. The T-plot can thus give partial labeling to fully correlated eigenstates for
mean values as well as fluctuations with respect to their quadrupole shapes. The advantages
of mean-field approaches are now nicely incorporated into the shell model.

3.5. Short Summary of This Section

Type-II shell evolution occurs in various cases, especially in a number of shape co-
existence cases, providing deformed states with stronger deformation, lower excitation
energies, and more stabilities. It is an appearance of the monopole–quadrupole interplay
and plays crucial roles in various phenomena including the first-order quantum phase tran-
sition (Zr isotopes [65–67]), the second-order quantum phase transition (Sn isotopes [68]),
the multiple even-odd quantum phase transitions (Hg isotopes [69]), as well as the rais-
ing of the intruder band due to the suppression of the type-II shell evolution (lighter Ni
isotopes [64,70]). As the involvement of the monopole interaction in this manner had not
been recognized, type-II shell evolution appears to be among the emerging concepts of
nuclear structure. The type-II shell evolution has been clarified by the T-plot in many cases.
Including other contributions, the T-plot is undoubtedly one of the emerging concepts of
nuclear structure, apart from its impact on the computational methodology.

4. Self-Organization and Collective Bands in Heavy Nuclei

We now proceed to more general cases of the monopole–quadrupole interplay. This
interplay leads to unexpected consequences in the underlying mechanism of collective
bands of heavy nuclei [71], beyond the standard textbooks.

The MCSM has become powerful enough [62] to reproduce collective bands of heavy
nuclei such as 154Sm and 166Er, with one and half HO major shells [71]. We sketch the new
findings by using the results of such most-advanced MCSM calculations.

4.1. Shape Coexistence in 154Sm

Figure 13 shows low-lying energy levels of 154Sm. The present MCSM calculation
can describe the four low-lying bands including the negative-parity one. The agreement
between the experimental levels in Figure 13a and the theoretical levels in Figure 13b is
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rather good. Although the importance of the quadrupole interaction is evident for the
formation of deformed rotational bands, one can investigate to what extent the monopole
interaction is involved. The monopole interaction here was obtained from the shell–model
interactions, comprising the central, tensor, and other components.
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The monopole interaction is an operator, but we “freeze” it now: its ESPE expectation
values 〈ε̂p,n

j 〉 are calculated for the state to be specified, and the obtained values are adopted

as the SPEs, ε
p,n
0;j in Equation (4), with the monopole interaction removed. We then perform

the shell-model calculation and draw the PES. This toy game is called the “monopole-
frozen” analysis [71], as the monopole properties are included only through the specified
state. Figure 13c exhibits the energy levels obtained by the monopole-frozen analysis
referring to the ground state. The band built on the 0+2 state (often called the β band) is
lifted up by 0.5 MeV (∼50% of the original excitation energy), suggesting that the active
monopole interaction produces a substantial lowering of this state. Figure 13d shows the
monopole-frozen analysis referring to the spherical HF state: the ground state is no longer
prolate, but triaxial, with the wave function close to the 0+2 state of the original Hamiltonian.
Thus, the crucial effect of the monopole interaction is verified.

Figure 13 right shows the actual values of 〈ε̂p,n
j 〉 for the 0+1 and 0+2 states. This figure

demonstrates the significant differences between two sets of the ESPE values. The occupa-
tion numbers are also different: there are more half-filled orbits for the 0+2 state, which is
indicative of its triaxial nature. The smaller occupation numbers of unique-parity orbits are
also consistent with the tendency away from the prolate shape.

We now introduce the deformation parameters β2 and γ [13], and their meanings
are sketched in Figure 14a. The parameter β2 represents the magnitude of the ellipsoidal
deformation from sphere. The ellipsoid has three axes: the longest, middle, and short-
est. The parameter γ is an angle between 0◦ and 60◦ and represents mutual relations
among the lengths of these axes: γ = 0◦ means that the middle and shortest axes have
the same length (prolate); γ = 60◦ implies that the longest and the middle ones have the
same length (oblate); and γ values in between stand for intermediate situations, called
triaxial. Figures 11 and 12 include them. The β2 and γ parameters can be obtained, in some
approximation, from intrinsic quadrupole moments through the formulas [72],

β2 =
√

5/16π {(e + e′p + e′n)/e} (4π/3R2
0 A5/3)

√
(Q0)2 + 2(Q2)2 , (18)

and
γ = arctan (

√
2Q2/Q0), (19)
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where e is the unit charge; e′p (e′n) denotes proton (neutron) effective charge induced by in-
medium (or core-polarization) effects; and R0 stands for the radius parameter of the droplet
model (spherical background) (see [73] for some detailed explanation). The relations in
Equations (18) and (19) worked very well in many works, for instance [64,69–71].

Figure 14c,d shows the T-plot for the original interaction, where the PES is shown
by using β2 and γ as coordinates (see Figure 14a). Figure 14e,f depicts the T-plot for the
monopole-frozen interaction obtained with the spherical HF state. The T-plot patterns are
consistent with the above features suggested by the shell–model diagonalization. The cut
of the PES shown in Figure 14b suggests that the local minimum is raised by the monopole-
frozen process referring to the ground state.

Figure 14c,d depict a valley of the PES with a local minimum around γ = 15◦. Similar
valleys are seen in the PES obtained by the mean-field calculations [74,75], implying that
this valley likely has a common origin. On the other hand, one can state that the present
monopole effect results in not only the valley but also the local minimum, and the latter
plays essential roles in the formation and stability of the side bands. It is of interest to refine
the monopole interaction in mean-field models.

Regarding the β vibration picture of the 0+2 state, the present view is opposed to
such a conventional view. The triaxial deformation is shared by the members not only of
the 0+2 band but also of the 2+3 band (usually called γ band), as can be verified by their
T-plots. Namely, the 0+2 state is the “ground” state of the triaxial states to which both
the 0+2 and 2+3 bands belong. In short, this is a shape coexistence between the prolate
and triaxial shapes assisted by the interplay between the monopole interaction and the
quadrupole deformation. It is noted that the β vibration picture of the 0+2 states has been
investigated from experimental viewpoints [76,77].
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4.2. Collective Bands and γ Vibration in 166Er

The features of the collective motion in 166Er have been studied by the MCSM similarly
well (see Figure 15a). Among rotational nuclei, 166Er is characterized by particularly low-
lying 2+2 state and the γ band built on it. Aage Bohr stressed that this 2+2 state was a
γ vibration from the prolate ground state [9–11,13]. The relatively strong 2+2 → 0+1 E2
transition (B(E2)∼5 W.u., see Figure 15a, was ascribed to the annihilation of one γ phonon
in the 2+2 state. This was one of the major points of the Nobel lecture by Aage Bohr and has
been a common sense as stated in many textbooks of nuclear physics. We now challenge
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this traditional belief, by utilizing the recent MCSM calculation. It is reminded that no
firm experimental evidence to uniquely pin down the γ-vibration nature of 166Er has been
reported and also that in a systematic calculation of many heavy nuclei [78], the excitation
energies of the 2+2 states in the γ band appeared to be about twice higher than the observed
values, despite much better description of those of the 2+1 state in the ground band.
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Figure 15b shows the calculated PES, which shows the minimum not at γ = 0◦ but
around γ = 9◦ (see also [80]). The T-plot is shown for the 0+1 and 2+2 states in Figure 15c
and Figure 15d, respectively. The patterns of the T-plot circles are nearly identical between
these two panels. This is consistent with a (rigid) triaxial interpretation, and indeed E2
transition strengths follow the predictions of the Davydov triaxial model [81,82] with
γ = 9◦. Certainly, a pure rigid triaxiality is not the correct picture, and there are quantum
fluctuations, as evident from Figure 15c,d [80]. After all, the displacement from the γ = 0◦

is obvious. The triaxiality of 166Er is also suggested by the triaxial projected shell model,
although the rigid-triaxiality is not an outcome but an assumption [83,84].

The experimentally known Jπ = 4+ state around 2 MeV excitation energy provides a
long-standing puzzle [85,86]: the observed relatively strong E2 transition from this state
to the 2+2 state looks like a sign that the 2+2 state and this Jπ = 4+ states are the single-
and double-phonon states in the γ vibration picture (à la A. Bohr [9,10]), respectively,
but the excitation energy of this Jπ = 4+ state is too high for a double-phonon excitation.
The present calculation, on the other hand, reproduces both the excitation energy and
the E2 transition strength, and this Jπ = 4+ state appears as the Kπ = 4+ member of the
triaxial states including the 0+1 and 2+1,2 states (see Figure 15c,d) [71,80]. Thus, the triaxiality
is shown to be one of the key aspects for understanding/predicting the shapes of heavy
nuclei.

The monopole-frozen analysis referring to the spherical CHF state shows that the
ground state moves to γ = 0◦, confirming the important role of the monopole interaction
activated. The triaxial ground states are now shown to appear in a large number of nuclei
in the nuclear chart, besides the known triaxial domain [87].
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4.3. A Historical Touch and a Short Summary of This Section

The collective bands in heavy nuclei have traditionally been understood in terms
of the ground band with axially symmetric prolate shape and the side bands with the
β or γ vibrational excitations from the ground state. This picture is consistent with the
Nilsson model [88] and was confirmed by the Pairing + Quadrupole-Quadrupole (P+QQ)
model [89,90], where the monopole interaction is not included, however. It has been shown
in this section that the monopole interaction is crucial also for the collective bands in heavy
nuclei. We just note that in lighter nuclei, the situation can be different mainly because of
small model spaces comprising single or a few active orbits, where the rotational motion
has been nicely described by symmetry-based approaches, e.g., SU(3) model of Elliott for
the sd shell [91,92], and by realistic calculations, e.g., on 48Cr [93].

Regarding heavy nuclei, for individual rotational bands, the monopole interaction
contributes differently, and the intrinsic structure is determined not only by the quadrupole
interaction but also by the monopole interaction, as verified by the monopole-frozen
analyses. Thus, the monopole–quadrupole interplay arises. The monopole interaction
does not directly drive the deformation but optimizes the ESPEs so that more binding
energy is gained. This gain is state-dependent and even can alter the ordering of bands as
mentioned above. The present monopole–quadrupole interplay can be described also from
the viewpoint of the self-organization [71]: the nucleus is changed from a disorder (original
SPEs) to an order (ESPEs tailored to the shape of interest) by activating the monopole
interaction. As this occurs “purposely” towards certain shapes with positive feedback,
particularly between the monopole and quadrupole effects, the whole picture fits well the
(quantal) self-organization [71]. The self-organization for collective bands is among the
emerging concepts of nuclear structure, showing novel consequences. For example, the
dominant fraction of the ground states of heavy nuclei are expected to show triaxial shapes,
as another emerging concept of nuclear structure, in contrast to the traditional view of the
prolate shape dominance in those states.

Appendix B presents a possible extension or generalization of the current idea to
“many-ingredient” systems outside nuclear physics.

5. Dripline Mechanism
5.1. Traditional View

Figure 16a shows the left-lower part of the nuclear chart (Segrè chart) for Z ≤ 16. The
black squares represent stable nuclei while the orange ones exotic nuclei (see Section 1).
An isotopic chain is a horizontal belt, and its neutron-rich end is called neutron dripline.
The location of the dripline in the nuclear chart implies the extent of the isotopes and is of
fundamental importance to nuclear science. The experimental determination of the dripline
is a very difficult task. Very recently, as shown by red squares in Figure 16a, the driplines
of F and Ne isotopes and its candidate of Na isotope were reported [94].

The traditional view of the dripline is shown in Figure 16b: all bound single-particle
orbits are occupied, and the next neutron goes away. It is an open question whether this
view is valid for all nuclei or not. We look into this question now [57].

The structure of neutron-rich exotic isotopes of F, Ne, Na, and Mg can be well described
by the shell–model calculation with the full sd+p f shells and the EEdf1 interaction [95].
This interaction was derived from the chiral EFT interaction of Machleidt and Entem [96],
first processed by the Vlow-k method [97,98] and then processed by the EKK (Extended
Krenciglowa-Kuo) method [99–101]. The Vlow-k method is used to transform the nuclear
forces in the free space into a tractable form for further treatments. The Vlow-k method has
been adopted for the derivation of other modern shell–model interactions, for instance,
the one by Coraggio et al. for Sn and Cr-Fe regions [102,103].



Physics 2022, 4 278

b. traditional view

E
n

e
rg

y

not bound

Figure 16. (a) Left-lower part of the nuclear chart with stable (black square), exotic (orange) and
(confirmed) unbound (blank) nuclei as well as dripline nuclei (red, and purple). (b) Schematic
illustration of the traditional view of the dripline. Based on Figure 2 of [57].

The present work is unique in the usage of the EKK method, which enlarges the scope
of the approaches based on the many-body perturbation theory (MBPT) [29]. The MBPT
produced the G-matrix interactions in its early formulations [28], from which many useful
shell–model interactions have been constructed (see Section 2.6). However, the resulting
G-matrix interaction shows a limitation that if two major shells are merged, the results
may diverge [101]. As the gap between two shells often vanishes or becomes smaller in
exotic nuclei, this difficulty can be fatal there, although it is irrelevant to one-major-shell
calculations. The EKK method nicely avoids this difficulty besides other merits.

Here, I present a very quick sketch of the formal aspect of the EKK method focusing on
the logical flow based on Refs. [99–101] particularly the last one. This paragraph is not so
relevant for understanding later parts of the article and can be skipped. In this paragraph,
the symbol ˆ for operators is omitted for clarity. The EKK method starts from the separation
of the Hamiltonian H with a parameter ξ as

H =

(
ξ 0
0 QH0Q

)
+

(
P(H − ξ )P PVQ

QVP QVQ

)
, (20)

where P stands for the projection onto the Hilbert space explicitly treated (called P space
usually), and Q = 1− P. From this equation, we obtain the effective Hamiltonian for the P
space at the n-th stage of the successive process,

H̃(n)
eff = H̃BH(ξ) +

∞

∑
k=1

Qk(ξ){H̃(n−1)
eff }k, (21)

where Õ means O− ξ for any operator O, e.g., H̃BH(ξ) = HBH(ξ)− ξ. Here, the Bloch–
Horowitz Hamiltonian is written as,

HBH(ξ) = PHP + PVQ
1

ξ −QHQ
QVP , (22)

where the second term on the r.h.s. is called the Q-box. The quantity Qk in Equation (21)
represents its k-th derivative with respect to ξ. Provided that H̃(n)

eff ≈ H̃(n−1)
eff is achieved,

we can regard and use them as the effective Hamiltonian, H̃eff. The effective interaction,
like the EEdf1 interaction, is obtained as Veff = Heff− PH0P with H0 being the unperturbed
Hamiltonian (usually the SPEs). The solution of the given many-body problem remains
(almost) unchanged within a certain range of ξ. In fact, the ξ parameter can be interpreted
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as the origin point of a Tayler expansion in a generalized sense. The divergence due to the
energy denominator does not occur if the adopted ξ values are far from the poles causing
the divergence. I would like to stress that by construction, this effective Hamiltonian
produces the exact solutions, once the convergence is achieved. This sketch is expected
to depict that the EKK method is an expansion but not a perturbation one. This can be
exemplified by the feature that the final result is independent of the ξ parameter, in contrast
to the perturbation expansion.

The EEdf1 interaction has thus been derived in an ab initio way by the Vlow-k and
EKK methods from the chiral EFT interaction of Machleidt and Entem [96]. Some effects
of 3NF are included in terms of the effective NN interaction by averaging over the hole
states in the inert core, of which the monopole part is discussed in Section 2.9. While the
Fujita–Miyazawa 3NF was used so far, other 3NF can be taken [57]. The EEdf1 interaction
describes the properties of the ground and low-lying states of F, Ne, Na, and Mg isotopes
quite well [57,95].

5.2. Monopole–Quadrupole Interplay for the Driplines

Figure 17 shows the ground-state energies of F, Ne, Na, and Mg isotopes as functions
of the neutron number N. These energies are decomposed into several pieces according
to their origins: SPE (on top of the 16O inert core), monopole, pairing, and rest terms.
The Coulomb contribution is ignored in the following discussion, because it is of virtually
no relevance. Here, the multipole interaction is divided into the pairing and rest terms.
The pairing is the BCS-type pairing interaction acting on two neutrons coupled to Jπ = 0+

and on two protons coupled to Jπ = 0+. The rest term means the multipole interaction
subtracted by the pairing term. Although the rest term contains many different pieces, its
major effects in the present discussion is simulated by the quadrupole interaction. This is
the reason why the rest term is associated with “(quadrupole etc)” in the figure.

The lower edges of the red areas exhibit the ground-state energies as functions of
the neutron number N, while only even N values are taken. These values show a good
agreement with measured values shown by black dots. As long as the ground-state energy
becomes lower as N increases, the isotope gains more binding energy by having more
neutrons, and the isotope chain is stretched. However, if the ground-state energy is not
lowered, there is no gain in the binding energy by having these extra neutrons; these extra
neutrons are emitted, and the neutron dripline implies the nucleus with the lowest ground-
state energy. The driplines obtained by the present calculation are shown by red arrows for
each isotopic chain, reproducing experimental driplines for F, Ne, and Na isotopes [94].

We focus on the lower edge of the green areas in Figure 17. This represents the
monopole contributions comprising the SPE and the monopole interaction. For Ne, Na,
and Mg isotopes, this edge is lowered almost linearly as N increases from N = 16 to each
dripline. We then fit the edge with pink dashed, purple dotted, and black solid lines for
Ne, Na, and Mg isotopes, respectively. The lines of Ne and Na isotopes are copied to the
panel for Mg, with their positions adjusted at a certain N. It is evident that the lines become
steeper almost linearly as Z increases. This edge is almost flat for F isotopes for N ≥ 16,
and this feature is discussed below.

Figure 17 indicates that the effect of the pairing term shows small variations. In
contrast, the rest term changes more, which is largely due to the quadrupole interaction.
Figure 18a schematically indicates the variation of the effect of the quadrupole interaction:
The effect is small at the far-left position with a spherical shape. As some neutrons are added,
the shape is deformed, and the ground-state energy is lowered due to the quadrupole
interaction. This trend continues but becomes its maximum at a certain value of N (red
object in the figure). However, the dripline is not determined just by this maximum point.



Physics 2022, 4 280

E
n

e
rg

y
 (

M
e

V
)

a

b

d

c

8 322824201612

pairing

      rest 

   (quadrupole etc) 

Coulomb

bare SPE

monopole

total

Exp.

Ne

Na
Mg

Figure 17. Ground-state energies of even-N isotopes of (a) F, (b) Ne, (c) Na and (d) Mg, relative to the
16O value. Colored segments exhibit decompositions into various effects from the monopole (green),
pairing (blue) and rest (such as quadrupole) (red) components of the effective nucleon–nucleon
interaction as well as those from Coulomb interaction (black) and single-particle energies (bare SPE;
grey). The monopole effect grows steadily as a function of N in all cases, as highlighted by straight
lines: dashed (Ne), dotted (Na) and solid (Mg). The experimental values are indicated by black
circles [42]. The theoretical driplines indicated by red arrows. Modified from Figure 4 of [57].

0

b.   Contribution of rest

(quadrupole etc) interaction 

dripline

monopole displacement  

a. proposed mechanism

N

E
n

e
rg

y

dripline

m
ore bound

not bound

monopole displacement

max

deformation

Figure 18. (a) Presently proposed mechanism based on shape evolution and the resulting change in
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Figure 18b depicts the actual effect of the rest term. It follows the trend illustrated in
Figure 18a, with the maximum effect at N = 22 in all four chains. However, the driplines
are different among these four. This is due to the monopole interaction. Let me explain it
by taking the Mg isotopes as an example. The black straight line of the monopole effect in
Figure 17d depicts about 3 MeV lowering per additional neutron, implying about 6 MeV
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for an additional two neutrons. After N = 22, the rest effect loses its magnitude. If the loss
is less than the monopole gain (∼6 MeV), this loss is compensated by the monopole effect.
However, the loss becomes larger for N larger, and at a certain point, the loss exceeds the
monopole compensation. The dripline thus arises with the “monopole displacement” from
N = 22 to N = 30 as shown in Figure 18b (and also in Figure 18a schematically).

The monopole effect depends directly on the number of protons, as visualized by three
straight lines in Figure 17. Consequently, the monopole displacement is ∆N = 2 (6) for Ne
(Na) isotopes. For F isotopes, the monopole effect is negligibly small for N ≥ 16, and the
dripline is located at the maximum rest (quadrupole etc.) effect.

5.3. Stability of Spherical Isotopes and the Monopole-Quadrupole Interplay

An immediate lemma of the present dripline mechanism is that the driplines of
spherical nuclei, such as Ca, Sn, and Pb isotopes, can be further away from the stability line
than other elements. One can assume a basically constant pairing contribution and a minor
rest-term contribution. These two are thus irrelevant to the driplines of these isotopes.
The remaining monopole effect gradually changes, pushing the driplines away.

5.4. A Short Summary of This Section

The present new dripline mechanism [57] involves the monopole–quadrupole in-
terplay and is one of the emerging concepts. It definitely differs from the traditional
mechanism of the single-particle origin, where a neutron halo arises at extremes [104,105].
In the new mechanism, the coupling to continuum may be visible if the monopole effect
vanishes like heavy F isotopes [57]. As Z changes, two dripline mechanisms may appear
alternatively, but the present one may be more relevant to heavier nuclei where the defor-
mation develops more. Finally, I would like to point out that the Bethe–Weizäcker mass
formula does not include a deformation energy term, at least, explicitly .

6. Prospect

As this article is a kind of summary, I am afraid that a summary section may be
redundant. I state some prospects. First of all, ab initio no-core Monte Carlo shell–model
calculations became feasible recently up to 12C and beyond [106], and as an example, we
can look into α clustering in light nuclei, e.g., the Hoyle state, with correlations produced by
nuclear forces [107]. This direction will produce a major outcome from the shell model. This
includes clarifications of α decay, α knockout, etc. Another major frontier is the quest for
fission dynamics and superheavy elements, with (almost) full inclusion of the correlations
due to nuclear forces.

Although more computer power and further advancements in computational method-
ology are needed also, the perspectives of the shell model look unlimited, to me. May the
(nuclear) force be with you.
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Appendix A. Note on the Relation between the Present ESPE and the Baranger’s ESPE

This is a short note on the the relation between the present ESPE and Baranger’s
ESPE [19] discussed in [15]. A possible problem was pointed out by Y. Tsunoda. Al-
though the relevant arguments and results in [15] are basically correct, the following term is
found to be added to Equation (43) of [15]: −1/(2j + 1)Vm(j, j)〈0|n̂j |0〉, where j includes
the index, proton, or neutron. So, this is the contribution from the interaction between
a neutron orbit j and the same neutron orbit j (or between protons similarly), of which
the monopole interaction is known to be weak. In addition, the factor 1/(2j + 1) reduces
this quantity. Because of all these factors combined, the correction is quite minor. This
correction does not change the basic equivalence relation between the two schemes.

Appendix B. Self-Organization and Its Extension to Other “Many-Body” Systems

We here discuss briefly how the present self-organization mechanism may be applied
to other systems comprising many constituents, including human societies. One of the
essential points is two interactions with different characters: one drives the system into
specific modes, as denoted by the mode-driving force. The mode here generally refers
to a collective phenomenon involving many constituents, like the shape of an atomic
nucleus. A certain resistance usually exists against the mode development. The other
interaction is to control the resistance, called the resistance-control force. The monopole
interaction in this work is an example. The resistance-control force does not create any
mode, being neutral. However, it can change the disorder in the original environment
(=original SPE in this work) to the order where the resistance is weakened for certain
modes (ESPE tailored to the shape). This order thus gives extra stability to the system,
to varying degrees depending on the modes. Thus, the resistance-control force can be
a crucial factor in determining which mode gains the maximum stability (i.e., binding
energy). Obviously, in many systems, only the maximum-stability mode matters, which
may not be the one most favored by the driving force. If this general idea can be applied to
various problems, including social/economical issues, it is of great interest. While the mode
varies over different systems, the mode-driving force may be visible. The resistance-control
force, however, may not be so, because it exhibits less characteristics (like the monopole
interaction in atomic nuclei). Studies in this direction can be of interest. What are the
resistance and its control force in human societies?
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75. Li, Z.P.; Nikšić, T.; Vretenar, D.; Meng, J.; Lalazissis, G.A.; Ring, P. Microscopic analysis of nuclear quantum phase transitions in

the N ≈ 90 region. Phys. Rev. C 2009, 79, 054301. [CrossRef]
76. Garrett, P. E. Characterization of the β vibration and 0+2 states in deformed nuclei. J. Phys. G 2001, 27, R1. [CrossRef]
77. Sharpey-Schafer, J.F.; Bark, R.A.; Bvumbi, S.P.; Dinoko, T.R.S.; Majola, S.N.T. “Stiff” deformed nuclei, configuration dependent

pairing and the β and γ degrees of freedom. Eur. Phys. J. A 2019, 55, 15. [CrossRef]
78. Delaroche, J.-P.; Girod, M.; Libert, J.; Goutte, H.; Hilaire, S.; Péru, S.; Pillet, N.; Bertsch, G.F. Structure of even-even nuclei using a

mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 2010, 81, 104303. [CrossRef]
79. Stone, N.J. Table of nuclear electric quadrupole moments. At. Data Nucl. Data Tables 2016, 11–112, 1–28. [CrossRef]
80. Tsunoda, Y.; Otsuka, T. Triaxial rigidity of 166Er and its Bohr-model realization. Phys. Rev. C 2021, 103, L021303. [CrossRef]
81. Davydov, A.S.; Filippov, G.F. Rotational states in even atomic nuclei. Nucl. Phys. 1958, 8, 237–249. [CrossRef]
82. Davydov, A.S.; Rostovsky, V.S. Relative transition probabilities between rotational levels of non-axial nuclei. Nucl. Phys. 1959, 12,

58–68. [CrossRef]
83. Sun, Y.; Hara, K.; Sheikh, J.A.; Hirsch, J.G.; Velázquez, V.; Guidry, M. Multiphonon γ-vibrational bands and the triaxial projected

shell model. Phys. Rev. C 2000, 61, 064323. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.112.042502
http://dx.doi.org/10.1103/RevModPhys.85.197
http://dx.doi.org/10.1103/PhysRevLett.105.032501
http://dx.doi.org/10.1143/PTP.17.360
http://dx.doi.org/10.1103/RevModPhys.87.1067
http://dx.doi.org/10.1038/s41586-020-2848-x
http://www.ncbi.nlm.nih.gov/pubmed/33149291
http://dx.doi.org/10.1103/PhysRevC.89.031301
http://dx.doi.org/10.1103/PhysRevLett.75.1284
http://www.ncbi.nlm.nih.gov/pubmed/10060254
http://dx.doi.org/10.1103/PhysRevLett.81.1588
http://dx.doi.org/10.1016/S0146-6410(01)00157-0
http://dx.doi.org/10.1093/ptep/pts012
http://dx.doi.org/10.1103/RevModPhys.83.1467
http://dx.doi.org/10.1103/PhysRevLett.118.162502
http://www.ncbi.nlm.nih.gov/pubmed/28474931
http://dx.doi.org/10.1103/PhysRevLett.117.172502
http://dx.doi.org/10.1103/PhysRevLett.117.172503
http://dx.doi.org/10.1103/PhysRevLett.121.192501
http://www.ncbi.nlm.nih.gov/pubmed/30468600
http://dx.doi.org/10.1103/PhysRevLett.121.062501
http://dx.doi.org/10.1038/s41567-018-0292-8
http://dx.doi.org/10.1103/PhysRevLett.125.102502
http://www.ncbi.nlm.nih.gov/pubmed/32955302
http://dx.doi.org/10.1103/PhysRevLett.123.222502
http://dx.doi.org/10.1103/PhysRevLett.114.032501
http://dx.doi.org/10.1103/PhysRevC.105.014319
http://dx.doi.org/10.1103/PhysRevC.78.034314
http://dx.doi.org/10.1103/PhysRevC.79.054301
http://dx.doi.org/10.1088/0954-3899/27/1/201
http://dx.doi.org/10.1140/epja/i2019-12665-x
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1016/j.adt.2015.12.002
http://dx.doi.org/10.1103/PhysRevC.103.L021303
http://dx.doi.org/10.1016/0029-5582(58)90153-6
http://dx.doi.org/10.1016/0029-5582(59)90127-0
http://dx.doi.org/10.1103/PhysRevC.61.064323


Physics 2022, 4 285

84. Boutachkov, P.; Aprahamian, A.; Sun, Y.; Sheikh, J.A.; Frauendorf, S. In-band and inter-band B(E2) values within the Triaxial
Projected Shell Model. Eur. Phys. J. A 2002, 15, 455. [CrossRef]

85. Fahlander, C.; Axelsson, A.; Heinebrodt, M.; Hartlein, T.; Schwalm, D. Two-phonon γ-vibrational states in 166Er. Phys. Lett. B
1996, 388, 475. [CrossRef]

86. Garrett, P.E.; Kadi, M.; Li, M.; McGrath, C.A.; Sorokin, V.; Yeh, M.; Yates, S.W. Kπ = 0+ and 4+ two-phonon γ-vibrational states in
166Er. Phys. Rev. Lett. 1997, 78, 4545. [CrossRef]

87. Hayashi, A.; Hara, K.; Ring, P. Existence of triaxial shapes in transitional nuclei. Phys. Rev. Lett. 1984, 53, 337–340. [CrossRef]
88. Nilsson, S.G. Binding states of individual nucleons in strongly deformed nuclei. Dan. Mat. Fys. Medd. 1955, 29, 16.
89. Kumar, K.; Baranger, M. Nuclear deformations in the pairing-plus-quadrupole model (III). Static nuclear shapes in the rare-earth

region. Nucl. Phys. A 1968, 110, 529–554. [CrossRef]
90. Bes, D.R.; Sorensen, R.A. The Pairing-Plus-Quadrupole Model. In Advances in Nuclear Physics; Baranger, M., Vogt, E., Eds.; Plenum

Press, New York, NY, USA, 1969. [CrossRef]
91. Elliott, J.P. Collective motion in the nuclear shell model I. Classification schemes for states of mixed configurations. Proc. R. Soc.

Lond. Ser. A 1958, 245, 128–145.
92. Elliott, J.P. Collective motion in the nuclear shell model II. The introduction of intrinsic wave-functions. Proc. R. Soc. Lond. Ser. A

1958, 245, 562–581.
93. Caurier, E.; Zuker, A.; Poves, A.; Martiínez-Pinedo, G. Full Pf Shell Model Study A = 48 Nuclei. Phys. Rev. C 1994, 50, 225–236.

[CrossRef]
94. Ahn, D.S.; Fukuda, N.; Geissel, H.; Inabe, N.; Iwasa, N.; Kubo, T. Location of the neutron dripline at fluorine and neon. Phys. Rev.

Lett. 2019, 123, 212501. [CrossRef]
95. Tsunoda, N.; Otsuka, T.; Shimizu, N.; Hjorth-Jensen, M.; Takayanagi, K.; Suzuki, T. Exotic neutron-rich medium-mass nuclei with

realistic nuclear forces. Phys. Rev. C 2017, 95, 021304(R). [CrossRef]
96. Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rep. 2011, 503, 1–75. [CrossRef]
97. Bogner, S.; Kuo, T.T.S.; Coraggio, L.; Covello, A.; Itaco, N. Low momentum nucleon-nucleon potential and shell model effective

interactions. Phys. Rev. C 2002, 65, 051301. [CrossRef]
98. Nogga, A.; Bogner, S.K.; Schwenk, A. Low-momentum interaction in few-nucleon systems. Phys. Rev. C 2004, 70, 061002.

[CrossRef]
99. Takayanagi, K. Effective interaction in non-degenerate model space. Nucl. Phys. A 2011, 852, 61–81. [CrossRef]
100. Takayanagi, K. Effective Hamiltonian in the extended Krenciglowa-Kuo method. Nucl. Phys. A 2011, 864, 91–112. [CrossRef]
101. Tsunoda, N.; Takayanagi, K.; Hjorth-Jensen, M.; Otsuka, T. Multi-shell effective interactions. Phys. Rev. C 2014, 89, 024313.

[CrossRef]
102. Coraggio, L.; Covello, A.; Gargano, A.; Itaco, N. Similarity of nuclear structure in the 132Sn and 208Pb regions: Proton-neutron

multiplets. Phys. Rev. C 2009, 80, 021305. [CrossRef]
103. Arnswald, K.; Braunroth, T.; Seidlitz, M.; Coraggio, L.; Reiter, P.; Birkenbach, B. Enhanced collectivity along the N=Z line:

Lifetime measurements in 44Ti, 48Cr, and 52Fe. Phys. Lett. B 2017, 772, 599–606. [CrossRef]
104. Tanihata, I.; Hamagaki, H.; Hashimoto, O.; Shida, Y.; Yoshikawa, N.; Sugimoto, K. Measurements of interaction cross sections and

nuclear radii in the light p-shell region. Phys. Rev. Lett. 1985, 55, 2676–2679. [CrossRef]
105. Hansen, P.G.; Jonson, B. The neutron halo of extremely neutron-rich nuclei. Europhys. Lett. 1987, 4, 409–414. [CrossRef]
106. Abe, T.; Maris, P.; Otsuka, T.; Shimizu, N.; Utsuno, Y.; Vary, J.P. Ground-state properties of light 4n self-conjugate nuclei in ab initio

no-core Monte Carlo shell model calculations with nonlocal NN interactions. Phys. Rev. C 2021, 104, 054315. [CrossRef]
107. Otsuka, T.; Abe, T.; Yoshida, T.; Tsunoda, Y.; Shimizu, N.; Itagaki, N.; Utsuno, Y.; Vary, J.; Maris, P.; Ueno, H. This Material Belongs

to the Field of Nuclear Physics. 2022, Unpublished work.

http://dx.doi.org/10.1140/epja/i2002-10051-7
http://dx.doi.org/10.1016/S0370-2693(96)01203-8
http://dx.doi.org/10.1103/PhysRevLett.78.4545
http://dx.doi.org/10.1103/PhysRevLett.53.337
http://dx.doi.org/10.1016/0375-9474(68)90371-0
http://dx.doi.org/10.1007/978-1-4684-8343-7_3
http://dx.doi.org/10.1103/PhysRevC.50.225
http://dx.doi.org/10.1103/PhysRevLett.123.212501
http://dx.doi.org/10.1103/PhysRevC.95.021304
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1103/PhysRevC.65.051301
http://dx.doi.org/10.1103/PhysRevC.70.061002
http://dx.doi.org/10.1016/j.nuclphysa.2011.01.003
http://dx.doi.org/10.1016/j.nuclphysa.2011.06.025
http://dx.doi.org/10.1103/PhysRevC.89.024313
http://dx.doi.org/10.1103/PhysRevC.80.021305
http://dx.doi.org/10.1016/j.physletb.2017.07.032
http://dx.doi.org/10.1103/PhysRevLett.55.2676
http://dx.doi.org/10.1209/0295-5075/4/4/005
http://dx.doi.org/10.1103/PhysRevC.104.054315

	Introduction 
	Shell Evolution Due to Monopole Interaction 
	Mayer–Jensen's Shell Model and Observed Magic Numbers 
	Monopole Interaction
	Central, Two-Body Spin-Orbit and Tensor Parts of the NN Interaction
	Monopole Interaction of the Central Force
	Monopole Interaction of the Tensor Force
	Monopole-Interaction Effects from the Central and Tensor Forces Combined 
	N = 34 New Magic Number as a Consequence of the Shell Evolution
	Monopole Interaction of the Two-Body Spin-Orbit Force
	Monopole Interaction from the Three-Nucleon Force
	Short Summary of This Section

	Type-II Shell Evolution and Shape Coexistence 
	Type-II Shell Evolution
	A Doubly-Closed Nucleus 68Ni
	Coexistence between Spherical and Deformed Shapes 
	T-Plot Analysis
	Short Summary of This Section

	Self-Organization and Collective Bands in Heavy Nuclei 
	Shape Coexistence in 154Sm
	Collective Bands and  Vibration in 166Er 
	A Historical Touch and a Short Summary of This Section

	Dripline Mechanism 
	Traditional View
	Monopole–Quadrupole Interplay for the Driplines
	Stability of Spherical Isotopes and the Monopole-Quadrupole Interplay
	A Short Summary of This Section

	Prospect 
	Appendix A. Note on the Relation between the Present ESPE and the Baranger's ESPE
	Appendix B. Self-Organization and Its Extension to Other ``Many-Body'' Systems
	References

