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Abstract: The Gamow shell model (GSM) is a powerful method for the description of the exotic
properties of drip line nuclei. Internucleon correlations are included via a configuration interaction
framework. Continuum coupling is directly included at basis level by using the Berggren basis, in
which, bound, resonance, and continuum single-particle states are treated on an equal footing in the
complex momentum plane. Two different types of Gamow shell models have been developed: its
first embodiment is that of the GSM defined with phenomenological nuclear interactions, whereas
the GSM using realistic nuclear interactions, called the realistic Gamow shell model, was introduced
later. The present review focuses on the recent applications of the GSM to drip line nuclei.

Keywords: Gamow shell model; realistic nuclear forces; phenomenological interactions; resonance;
continuum; drip line nuclei

1. Introduction

Exotic nuclei have been studied for many years using a new generation of accelerators,
which are now able to reach nuclear drip lines [1–4]. Contrary to well-bound nuclei, which
are closed quantum systems, drip line nuclei can be seen as open quantum systems, as they
are either weakly bound or unbound with respect to the particle emission threshold [5].
Many interesting phenomena appear at drip lines, such as a halo structure [1,6,7] and
particle emission in resonance states [4,8]. Continuum coupling plays an important role in
these loosely bound and unbound nuclear systems [5]. The proper description of nuclei at
drip lines is one of the main challenges of nuclear theory, which was mostly developed to
account for the structure of well-bound nuclei [5,6].

A clear consequence of the strong intertwinings of the continuum degrees of freedom
and internucleon correlations at drip lines consists of the odd–even staggering found
in the helium chain [9,10]. Indeed, odd helium isotopes (except 3He) are all resonances
and bear widths of several hundreds of keV [10–12]. Conversely, the even–even helium
isotopes 4,6,8He are bound, with 6,8He both exhibiting halo properties [13–15]. To accurately
reproduce nuclear halos, many-body wave functions in asymptotic regions must be treated
properly, which demands to take into account continuum coupling [1,6,7,16–19]. Adding
to that, these weakly bound and unbound drip line nuclei also provide good laboratories
to understand the single-particle structure, continuum coupling, internucleon correlations,
and nucleon-nucleon (NN) interactions, which are not well understood in these regions.

Most present nuclear models, such as the no-core shell model (NCSM) [20], self-
consistent Green’s function [21], coupled-cluster (CC) [22,23], in-medium similarity renor-
malization group (IM-SRG) [24], and standard shell model (SM) [25,26] have been devel-
oped for the study of well-bound nuclei, whereby continuum coupling is absent. Only few
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models explicitly include continuum coupling. The main models including both internu-
cleon correlations and continuum coupling in a unified picture are the no-core Gamow
shell model (NCGSM) [27–29], the no-core shell model with continuum (NCSMC) [30], the
complex CC [31,32], the Gamow IMSRG (Gamow-IMSRG) [33], continuum shell model
(CSM) [34,35], and the Gamow shell model (GSM) [19,36–39], which are extensions of
the NCSM, CC, IM-SRG, and SM, respectively. However, due to their huge model space
dimensions, the NCGSM and NCSMC can only be used to describe light nuclei [27,28,30].
Furthermore, only nuclei in the vicinity of closed-shell nuclear systems can be investigated
by the complex-CC and Gamow-IMSRG methods [31–33]. CSM [34,35] takes into account
the continuum effect by projecting the model space onto the subspaces of bound and
scattering states in a real-energy basis, in which, resonance states are not included. Within
GSM, continuum coupling is treated at basis level by way of the Berggren basis [36–38]. The
latter comprises bound, resonance, and continuum scattering states, with all of these states
treated on an equal footing within the Berggren ensemble [40]. Internucleon correlations in
GSM are induced by configuration mixing, similarly to conventional SM. GSM has been
seen to successfully reproduce many situations of physical interest [5,38]; for example, the
resonances of oxygen drip line nuclei [38,41,42] and the neutron halo structure of 31F [18].

The GSM was introduced in nuclear physics in 2002 [36,37], where only simple phe-
nomenological nuclear potentials were used, while calculations were limited to only two
valence neutrons outside of the inner core. After that, the GSM was extended to many
valence particle systems, such as 8He [17] and psd-shell nuclei [43]. The realistic Gamow
shell model was proposed in Refs. [44,45], with which, two- or three-particle systems could
be investigated. An effective Hamiltonian based on realistic interactions was constructed
by using the degenerate Q̂-box approach; however, folded diagrams are neglected [45]. A
folded diagram sums up the subset of diagrams to infinite order so as to include high-order
effects. In 2017, we developed the realistic GSM method with the full Q̂-box folded-
diagram method using the nondegenerate Berggren basis [38]. We applied it to the case of
the neutron-rich oxygen isotopes up to the neutron drip line. After that, many extensions
of the realistic GSM were developed, such as performing the realistic GSM in the Gamow
Hartree-Fock basis (GHF) [41].

In the present review, the framework of the two types of GSM (realistic GSM and phe-
nomenological GSM) is first introduced in Section 2. Then, we review our recent applications of
GSM, including the calculations of neutron-rich oxygen and fluorine isotopes [38,39,41,42,46],
neutron-rich calcium isotopes [47], and proton decays in 16Ne and 18Mg [48]. Finally, a short
summary of the review and the future challenges of the next GSM calculations are given.

2. Method

GSM is built within a configuration interaction framework based on the one-body
Berggren basis [5,36–38]. The Berggren basis [40,49] is generated by a finite-range potential,
which can be written as the solutions of the one-body Schröndinger equation in the complex
momentum space, which reads

d2u(k, r)
dr2 =

[
l(l + 1)

r2 +
2m
h̄2 U(r)− k2

]
u(k, r), (1)

where l is the orbital angular momentum of the nucleon motion, m is the mass of the
nucleon, r stands for the radius, and h̄ is the reduced Planck constant. The momentum k
and wave function u(k, r) can be complex. U(r) is the finite-range potential, which is, in
practice, a Woods–Saxon (WS) [50] or GHF potential [33,44]. When considering protons,
the Coulomb potential must be included in U(r). Bound, resonance, and scattering states
can then be generated. The eigenenergy of single-particle states in the above equation is
complex in general, and reads ẽn = k2/2m = en − iγn/2, where n denotes the state [40,49].
en stands for the energy, whereas γn represents the particle decay width, so that γn = 0
for bound states and γn > 0 for resonance states. A schematic Berggren basis set of states
in the complex k-plane is illustrated in Figure 1. The wave function of a resonance state
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is not square-integrable, as its exponential increase in modulus implies that the wave
function of a resonance state cannot be normalized with conventional techniques [40,49].
Consequently, one has to rely on the complex scaling method, which has been seen to
properly account for the normalization of resonance states [51].

The completeness relation borne by Berggren basis states [40,49] reads

∑
n
|n〉〈n|+

∫
L+

|k〉〈k|dk = 1, (2)

where |n〉 states are bound states and resonance states inside the L+ contour of Figure 1.
These states are called pole states, as they are the S-matrix poles of the finite-range potential.
|k〉 states are scattering states and follow the L+ contours in the complex k-plane, starting
from k = 0 and going to k→ +∞, as shown in Figure 1. Scattering states initially form a
continuum. Hence, in order to be used in numerical applications, the scattering states along
the L+ contour must be discretized with a Gauss–Legendre quadrature [5,49]. It has been
checked that 10–45 states per contour are necessary to have converged results [5,38]. Once
discretized, the Berggren basis is, in effect, the same as that of the harmonic-oscillator (HO)
states within the standard SM [5,49]. Concerning resonance states, only narrow resonance
states contribute to the physical states, and thus are included in the real calculations,
whereas broad resonance states are not included, as they lie below the L+ contour.

Figure 1. Depiction of the Berggren basis in the complex-momentum-k plane for a fixed partial wave.
Typical complex momenta of bound, narrow, and broad-resonance states, i.e., S-matrix pole, are
provided. The L+ contour of scattering states encompasses the S-matrix poles of interest.

In fact, the Berggren basis is the complex extension of the real-energy completeness
relation of Newton [52], which consists of bound states and of a continuum of real-energy
scattering states. Contrary to the Newton completeness relation [52], with which, only
localized states can be expanded, the Berggren basis can expand unbound resonance
states [40,49]. The many-body completeness relation is obtained by constructing Slater
determinants from the one-body Berggren basis, which contains bound, resonance, and
scattering states [5,49]. In the GSM, the Hamiltonian is represented by a complex symmetric
matrix when using the one-body Berggren basis, which has to be diagonalized [5,49].
This process can be handled efficiently by using the complex symmetric extension of the
Jacobi-Davidson method [49,53], where one can take advantage of the relatively small
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coupling to continuum states in order to have a fast convergence of calculations [5]. The
full configuration space is extremely large due to the many scattering states within the
model space. In practical calculations, however, we often truncate basis model spaces
so that only two particles can occupy scattering states. It has been checked that this is
sufficient to obtain converged results for both the energy and decay width of many-body
states [5,38,54].

In GSM calculations, an effective Hamiltonian must be constructed. There are two
main methods to build the effective Hamiltonian in GSM calculations. One is to construct
an effective Hamiltonian based on realistic nuclear force [38,39,41], and hence in the frame
of the realistic GSM, whereas the other one consists of using an effective phenomenological
nuclear potential [5,36,37,49], in which, the parameters of the potential are optimized to
reproduce experimental data. In the following, we give details about these two versions
of GSM.

2.1. Realistic Gamow Shell Model Calculations

Within realistic GSM, one starts from the intrinsic Hamiltonian of an A-body system,
which reads

H =
A

∑
i=1

pi
2

2m
+

A

∑
i<j

Vij
NN −

P2

2Am
, (3)

where pi is the nucleon momentum in laboratory frame, P = ∑A
i=1 pi is the center-of-

mass (CoM) momentum of the system, and V(ij)
NN is the realistic NN interaction, such as

CD-Bonn [55] and N3LO [56] interaction. In the above Hamiltonian, the CoM energy is
removed. In order to construct the effective Hamiltonian to be used in GSM calculations,
an auxiliary potential is usually introduced [38,57,58], so that the Hamiltonian can be
rewritten as,

H =
A

∑
i=1

(
p2

i
2m

+ U) +
A

∑
i<j

(V(ij)
NN −U −

p2
i

2Am
−

pi · pj

Am
)

= H0 + H1, (4)

where H0 = ∑A
i=1(

p2
i

2m + U) has a one-body form, and H1 = ∑A
i<j(V

(ij)
NN −U − p2

i
2Am −

pi ·pj
Am )

is the residual two-body interaction, including the correction issued from the CoM motion.
For the auxiliary potential U, we usually take a WS finite-range potential. To speed up
the convergence of many-body calculations, the bare force is often softened by a similarity
renormalization group method [59], such as the similarity renormalization group (SRG)
and Vlow-k,in order to remove the strong short-range repulsive core.

The realistic NN interaction is firstly defined in a relative momentum space. However,
the many-body problem is usually solved in the laboratory frame (with, e.g., the HO basis),
so that a transformation from relative and CoM coordinates to the laboratory frame is
necessary. This procedure can be conveniently carried out in the HO basis via Brody–
Moshinsky brackets [60]. In the HO basis, the two-body completeness relation reads

∑
α≤β

|αβ〉〈αβ| = 1, (5)

where |αβ〉 is the two-particle state of the HO basis. The two-body interaction in the HO
basis is given by

VHO =
Nshell

∑
α≤β

Nshell

∑
γ≤δ

|αβ〉〈αβ|Vlow−k|γδ〉〈γδ|, (6)

where Nshell = 2n + l, indicates that a finite summation is performed up to Nshell. The
GSM calculations are carried out in the Berggren basis, so that the transformation of the
interaction matrix elements from the HO basis to the Berggren basis needs to be carried
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out. This is achieved, in practice, by computing the overlaps between the Berggren and
HO basis wave functions,

〈ab|V|cd〉 ≈
Nshell

∑
α≤β

Nshell

∑
γ≤δ

〈ab|αβ〉〈αβ|Vlow−k|γδ〉〈γδ|cd〉, (7)

where |ab〉 (|cd〉) is a two-particle state of the Berggren basis. For identical particles (proton–
proton or neutron–neutron), the overlap of the two-body state reads

〈ab|αβ〉 = 〈a|α〉〈b|β〉 − (−1)J−jα−jβ〈a|β〉〈b|α〉√
(1 + δab)(1 + δαβ)

, (8)

where J is the total angular momentum of the two-particle state, and j is the angular
momentum of a single-particle basis state. The 〈a|α〉(〈b|β〉) is the overlap of the one-body
basis state, and δαβ is the Kronecker delta. For the proton–neutron coupling, the overlap of
the two-body state is simply given by

〈ab|αβ〉 = 〈a|α〉〈b|β〉. (9)

The overlaps of one-body basis states are directly obtained from an integration
in r-space

〈a|α〉 =
∫

drr2ua(r)Rα(r)δla lα δja jα δtatα , (10)

where u(r) and R(r) are the radial parts of the single-particle Berggren and HO basis wave
functions, with l, j, and t being the orbital, total angular momentum, and isospin quantum
number, respectively. The single-particle wave functions of resonance and continuum
states are not localized and hence are not square-integrable. The transformation defined by
Equation (7), in fact, utilizes the short-range nature of nuclear force. Indeed, the Gaussian
fall-off of the HO wave function renders the overlaps integrable, even when one considers
resonances or scattering states of complex energy. For long-range operators, such as
the one-body kinetic energy and Coulomb potential, using Equation (7) is not suitable
in practice. In this case, we use the exterior complex scaling technique [51] to treat the
kinetic and Coulomb operator, i.e., terms proportional to p2 and 1/r, respectively, with the
Berggren basis.

The obtained interaction matrix elements in the Berggren basis are complex, and
associated operators are non-Hermitian. The many-body perturbation theory (MBPT),
named the full Q̂-box folded-diagram method [61], is employed to construct the realistic
complex effective Hamiltonian in the defined model space for GSM calculations. The
complex-k Berggren basis states in the model space are non-degenerate; therefore a non-
degenerate Q̂-box folded-diagram perturbation, i.e., the extended Kuo–Krenciglowa (EKK)
method [62], has been used. For this, we first calculate the Q̂-box using MBPT in the
Berggren complex-k basis,

Q̂(E) = PVP + PVQ
Q

E−QHQ
QVP

= PVP + PVQ
Q

E−QH0Q
QVP + . . . , (11)

where E is starting energy, P and Q represent the model space and the excluded space,
respectively, with P + Q = 1. The Q̂-box is composed of irreducible valence-linked
diagrams [57,58], which can be built order-by-order. V and H are the two-body interaction
and two-body Hamiltonian, respectively, and H0 is the unperturbed one-body Hamiltonian.
The derivatives of the Q̂-box are defined as



Physics 2021, 3 982

Q̂s(E) =
1
s!

dsQ̂(E)
dEs

= (−1)sPVQ
Q

(E−QHQ)s+1 QVP, (12)

where s denotes the s-th derivative.
The effective Hamiltonian Heff can then be constructed in operator form [63], written as

H̃eff = H̃BH(E) +
∞

∑
k=1

Q̂k(E)H̃eff, (13)

where H̃eff stands for H̃eff = Heff − E, and H̃BH(E) = HBH(E)− E is the Block–Horowitz
Hamiltonian shifted by an energy E, with

HBH(E) = PH0P + Q̂(E)

= PH0P + PVP + PVQ
Q

E−QHQ
QVP. (14)

H̃eff is obtained by performing iterations of Equation (13), which is equivalent to
calculate folded-diagrams, where one considers high-order contributions by summing
up the subsets of diagrams to finite order. When convergence is obtained, the effective
Hamiltonian is given by Heff = H̃eff − E, and the effective interaction reads Veff = Heff −
PH0P. The extended Q̂-box folded-diagram calculations provide a useful approach for
including effects from the continuum coupling and core polarization [57,58,61,62].

2.2. Gamow Shell Model with Phenomenological Nuclear Potential

Within the Gamow shell model with phenomenological nuclear potential, the nucleus
is assumed to be a system of Nv valence particles outside a frozen closed core, from which,
core polarization is absent [5,36,37,49]. The GSM Hamiltonian, expressed with intrinsic
nucleon-core cluster-orbital shell model coordinates [64], writes

H =
Nv

∑
i=1

[
p2

i
2µi

+ Ucore(i)

]
+

Nv

∑
i<j=1

[
V(i, j) +

pi pj

Mcore

]
, (15)

where pi is the nucleon momentum in cluster-orbital shell model frame, Ucore is the single-
particle nucleon-core potential, and V is the phenomenological NN interaction between
valence nucleons. µi and Mcore stand for the reduced mass of the nucleon and the mass
of the core, respectively. The

pi pj
Mcore

term accounts for the two-body recoil term. As seen
in Equation (15), the GSM has two components: the one-body part Hamiltonian H0 =

∑Nv
i=1

[
p2

i
2µi

+ Ucore(i)
]

and the two-body part Hamiltonian HI = ∑Nv
i<j=1

[
V(i, j) +

pi pj
Mcore

]
.

The core-valence particle potential Ucore is usually a WS potential, in which a spin-orbit
term is included. The NN interaction V takes the form of an effective phenomenological NN
interaction, such as Minnesota [65], Furutani-Horiuchi-Tamagaki (FHT) [66,67], or effective
field theory (EFT) [18,56] interactions. The parameters within the effective Hamiltonian
in Equation (15), both one- and two-body interactions, need to be optimized to reproduce
experimental data. For optimizations, the χ2 optimization method is employed, where
one uses the Gauss–Newton algorithm augmented by the singular value decomposition
technique to calculate the Jacobian pseudo-inverse [43].
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3. Gamow Shell Model Calculations
3.1. Neutron-Rich Oxygen and Fluorine Isotopes

Neutron-rich oxygen isotopes form a particularly interesting chain for experimental
and theoretical research. Firstly, the proton number Z = 8 shows magical properties for the
neutron-rich oxygen isotopes, which provide a good laboratory to perform configuration
interaction (shell-model) calculations [22,38,68,69]. Secondly, the nuclei 22O and 24O exhibit
doubly magicity at the neutron number N = 14 and 16, respectively, [70–73]. Thirdly,
experiments have shown that the 25O and 26O are unbound and decay by one- and two-
neutron emission, respectively, [8,74]. Experimental studies suggest that 24O is the heaviest
bound isotope of the oxygen chain [8,74]. However, the loosely unbound property of
26O, which is only −18 keV unbound [8], is a strong incentive to investigate the bound or
unbound character of 28O, which should have a magicity of N = 20. Consequently, the
neutron-rich oxygen isotopes provide an ideal laboratory to study many-body correlation,
continuum coupling, and single-particle structure. By adding one valence proton to the
neutron-rich oxygen isotopes, one obtains the fluorine isotopes at the neutron drip line,
which can sustain six additional neutrons after 25F, hence, up to 31F, which is suspected
to be at the neutron drip line of the fluorine chain [75]. This dramatic change is called
an “oxygen anomaly”. Moreover, many exotic properties develop at the neutron drip
line for fluorine isotopes, such as halos in 29F [76] and 28F within the island of inversion
around N = 20 [77], and thus fluorine isotopes provide a very interesting ground for
theoretical studies.

3.1.1. Realistic Gamow Shell Model Calculations

We have developed realistic GSM with the Berggren basis using a WS potential,
while the realistic effective Hamiltonian is constructed within the model space using a
nondegenerate Q̂-box folded-diagram method [38]. We first employed it to investigate
the neutron-rich oxygen isotopes up to and beyond the neutron drip line [38]. In our
calculations, the realistic CD-Bonn potential [55] was used. To speed up the convergence of
many-body calculations, the bare force is usually softened to remove the strong short-range
repulsive core. The Vlow−k method [59] is used for that matter in Ref. [38].

Figure 2. Calculated spectrum of 24,25,26O, compared with available experimental data [8,10,74].
The resonances are indicated by shades, and their widths (in MeV) are given by the number below
or above the levels. The light blue shade indicates the 3/2+ many-body scattering states (with
permissions from Ref. [38]). The “CGSM” stays for “core Gamow shell model”.
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Figure 2 shows the calculated low-lying states of 24−26O, along with experimental
data [8,10,74]. Our realistic GSM calculations [38] reproduce the experimental excited-
state spectrum well, including the observed resonance widths. The ground state energies
and one-neutron separation energies Sn of the neutron-rich oxygen isotopes are also
calculated [38] (see Figure 3) and compared to the experimental data [8,10,74,78]. The
WS parameters used, taken from Ref. [38], reproduce the experimental 1s1/2 and 0d3/2
single-particle energies well, including the decay width of the 0d3/2 state, but give the 0d5/2
energy as lower than the experimental data, at about 1.17 MeV [10]. The results presented
in Figure 3 show that adopting the experimental 0d5/2 energy can dramatically improve
calculations. Overbinding in the GSM calculations of oxygen isotopes after 24O is obtained
in Ref. [38], which is caused by the absence of the three-nucleon force (3NF).

Figure 3. Calculated ground state energies of oxygen isotopes with respect to the 16O core (upper
panel) and associated neutron separation energies Sn (lower panel) as a function of atomic number
compared with experimental data [8,74,78]. “GSM with WS SPE” indicates that the calculations were
performed with Woods-Saxon (WS) single-particle energies (SPE), whereas “GSM with optimized
SPE” means that the calculations were performed with the 0d5/2 SPE replaced by its experimental
value (with permissions from Ref. [38]).

3.1.2. Ab-initio Realistic GSM Calculations within GHF Basis

GSM is usually performed using a basis generated by a WS potential [5,19,36–39],
whose parameters must be determined by fitting experimental single-particle energies and
resonance widths. However, the single-particle energies and resonance widths in the multi-
shell case are sometimes difficult to assess due to the lack of experimental data for that
matter [10]. We then developed an ab initio realistic GSM approach by introducing the GHF
basis as the Berggren basis [41]. The GHF basis is obtained by using the same interaction as
the one used in the construction of the effective SM Hamiltonian [41], and thus there is no
parameter introduced in the GHF Berggren basis. Starting from the chiral next-to-next-to-
leading-order (NNLOopt) force [79], we perform a nondegenerate Q̂-box folded-diagram
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calculation [38,62] in the GHF basis in order to construct a complex effective Hamiltonian.
The energies and widths of single-particle orbitals can also be obtained self-consistently
using the nondegenerate Ŝ-box folded-diagram method [41]. The neutron-rich fluorine
isotopes have been extended to the p f -shell, using a cross-shell effective Hamiltonian with
the following model space : {1s1/2, 0d5/2, 0d3/2} for the valence proton, and {1s1/2, 0d3/2 +
d3/2 scattering states, 1p3/2 + p3/2 scattering states, 1p1/2 + p1/2 scattering states, f7/2
scattering states} for valence neutrons. More details can be found in Ref. [41]. The con-
structed effective Hamiltonian was employed to study neutron-rich oxygen and fluorine
drip line nuclei.

Figure 4 shows the calculated ground-state energies and neutron separation ener-
gies Sn of oxygen and fluorine isotopic chains, as well as comparisons with experimental
data [78] and other theoretical calculations [31,68,79–83]. The GSM calculations using a
GHF basis and based on the NNLOopt [79] provide the correct location of the neutron
drip line of oxygen isotopes and a good description of the unbound nuclei 25,26O, which
lie beyond the neutron drip line (see the left panel of Figure 4). Note that, when using
the standard SM calculations with the USDB interaction [68], conventional SM calcula-
tions with NN + 3NF [82], or valence–space IMSRG (VS-IMSRG) calculations with NN +
3NF [81], the resonance and continuum couplings are absent. Complex CC [31] and GSM
calculations [80] are displayed in Figure 4 for comparison.

Figure 4. Calculated ground-state energies (upper panel) with respect to the 22O core and associated neutron separation en-
ergies Sn (lower panel) for oxygen and fluorine isotopes, compared with experimental data [78] (the AME2016 extrapolated
values are taken for 27,28O and 30,31F) and theoretical calculations from other groups: complex coupled-cluster (CC) with
next-to-next-to-next-to-leading-order nucleon-nucleon CC with NNLOopt interaction [79], GSM [80], –space in-medium
similarity renormalization group (VS-IMSRG) [81], SM with NN+3NF [82], SM with USDB [68], and SM with SDPF-M [83]
(with permissions from Ref. [41]).

The results of fluorine isotopes are shown in the right panels of Figure 4. For compari-
son, standard SM calculations using USDB [68] and SDPF-M [83] effective interactions are
also presented. All ground-state energies in Figure 4 are given with respect to the ground
state of 22O. Experiments revealed that 31F is a neutron drip line nucleus [75]. Although
our GSM calculations provide a lower energy of 31F compared to that of 30F, 31F is still
unbound compared to 29F. However, our GSM calculations provide good descriptions of
ground-state energies for 23−29F.
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3.1.3. GSM Calculations with Phenomenological Nuclear Potential

Many ab initio calculations, such as SM [82], VS-IMSRG [81], complex CC [31], and
realistic GSM [38,39,41] calculations, have been employed for the description of neutron-
rich oxygen and fluorine isotopes. However, these calculations bear a large theoretical
uncertainty. Furthermore, results arising from ab initio calculations depend on the realistic
nuclear forces used (a short summary of the VS-IMSRG calculations based on different
chiral nuclear forces can be found in Ref. [80]). Moreover, continuum coupling is absent in
the VS-IMSRG [81] and SM [82] calculations. Similar situations also occur for neutron-rich
fluorine isotopes, where few calculations have been performed and most of the calculations
are absent for the continuum coupling [83,84]. Based on these grounds, we performed the
GSM calculations with a phenomenological nuclear interaction for neutron-rich oxygen
and fluorine drip line nuclei.
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Figure 5. Energies of ground states in 24−28O, calculated by GSM within the sdp f (s1/2, p1/2,3/2,
d3/2,5/2, f5/2,7/2 partial waves) (upper) and sd (s1/2, d3/2,5/2 partial waves) (lower) model spaces,
using the effective field theory (EFT) EFT(318)(the value within braket stands momentum cut-
offs), EFT(356), EFT(390), EFT(436), and Furutani–Horiuchi–Tamagaki (FHT) interactions, with
A-independence (A-indep) or A-dependence (A-dep) (see details in Ref. [42]). Results are compared
with the experimental data available, represented by a star. The data for 25,26O and 27,28O are taken
from experiment (see Refs. [8,74]) and evaluations given in AME2016 [78] (with permissions from
Ref. [42]).

For the considered neutron-rich oxygen isotopes, the closed-shell nucleus 22O is
selected to be the inner core. The one-body potential is mimicked by a WS potential, whose
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parameters are adjusted to reproduce the single-particle spectrum of 23O [10]. We use the
pionless EFT interaction [85,86] as the two-body interaction. Owing to the few available
data related to the oxygen drip line nuclei [10], only the leading order (LO) NN interaction
of the EFT force is fitted to reproduce selected experimental data. The effect of the 3NF at
LO is then effectively taken into account in the fitted parameters. Details can be found in
Ref. [42]. We calculated the energies of the ground states of 24−28O with GSM within sdp f
(s1/2, p1/2,3/2, d3/2,5/2, f5/2,7/2 partial waves) and sd (s1/2, d3/2,5/2 partial waves) active
spaces, using different EFT interactions (see details in Ref. [42]). The calculated ground-
state energies of 24−28O are shown in Figure 5. The calculations within the sd space show
that the 25−28O isotopes are unbound and that their binding energies are close to the
experimental data [8,74,78] and to calculations performed within the sdp f space. However,
the calculations obtained in the sd space provide an unbound 26O ground state, by about
300 keV relative to the ground state of 24O, which is a little higher than its experimental
value, which is about 20 keV unbound [8]. Though the energy difference obtained using the
two different model spaces is small, the calculation performed within the spd f space seems
to be more reasonable. The GSM calculations performed within the sdp f space provide
good agreements of the 23−26O ground states with experimental data [8,74,78]; in particular,
the two-neutron separation energy (S2n) of 26O is about 20 keV [8]. The calculated ground
state of 28O is unbound in all three cases and located about 700 keV above the ground
state of 24O. The ground states of the 26,28O isotopes are unbound, but bear negligible
widths. Together with the calculated one-body densities of the 26,28O isotopes in Ref. [42],
the results suggest that the ground state of 28O exhibits four-neutron decay by way of
2n-2n emission via the 26O ground state, which is consistent with few-body [87] and the
above ab initio GSM calculations [41].
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Figure 6. Energies of 25−31F with respect to the 24O core, calculated within different theoretical
frameworks and compared to experimental data [78]. Besides the GSM calculations using FHT and
EFT interactions, calculations in the Hartree-Fock many-body perturbation theory (HF-MBPT) [88]
and VS-IMSRG [84] frameworks, utilizing the harmonic-oscillator (HO) basis, hence being without
continuum coupling, are presented (with permissions from Ref. [18]).

Figure 6 shows the GSM calculations of the binding energies of fluorine isotopes using
FHT and EFT interactions (see details in Ref. [18]), wich are compared with experimental
data [78] and Hartree-Fock MBPT (HF-MBPT) [88] and VS-IMSRG [84] calculations, which
are both performed in the HO basis. The energy of 25F has been fixed to its experimental
datum in all used models in Figure 6. We can see that all calculations reproduce the
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ground state energies of 25−28F isotopes well, situated in the well-bound region, whereas
differences start after 29F, i.e., when one reaches the neutron drip line. Due to the absence
of both multi-shell and continuum couplings, the VS-IMSRG calculations [84] provide
visible differences, which are about 4- to 5-MeV in magnitude for 30,31F. When applying
the HF-MBPT method [88], the cross-shell couplings generated by the sd and p f shells
are included, so that proper binding energies of up to 29F are predicted. However, due
to the lack of continuum coupling, the binding energies of 30,31F are about 1 MeV away
from experimental data. The GSM calculation performed with FHT and EFT interactions
correctly provides binding energies of up to 31F. Moreover, the odd–even staggering
encountered from the 28F isotope, typical of the presence of a strong proton–neutron
interaction, is well reproduced, with 30F being unbound and 31F being loosely bound in
our calculations.

Recent realistic shell model calculations [89] have pointed out that nuclear deformation
plays an important role in the neutron drip line nuclei. Within GSM, deformation can
be accounted for by configuration mixing using a cross-shell valence space [5]. Besides
deformation, continuum coupling also gives important contributions in drip line nuclei.
They are strongly coupled with continuum states near the particle-emission threshold,
which provides additional binding energy [5]. This situation is unlike that occurring
in well-bound systems, where one only has strong coupling with nearby deeply-bound
single-particle states.
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The two-neutron separation energy S2n of 31F is about 170 keV [78], which is suffi-
ciently small for sustaining a two-neutron halo. We calculated the one-nucleon densities
and neutron rms radii of the neutron-bound 27,29,31F isotopes using GSM with the EFT
interaction (see Figure 7). From our calculations, a halo clearly develops in the asymptotic
region of 31F. Indeed, on the one hand, the one-nucleon density of 31F slowly decreases
on the real axis and is about one to two orders of magnitude larger than those of 27,29F in
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the asymptotic region. Added to that, on the other hand, the neutron rms radius of 31F
does not follow the trend noticed in 27,29F, as the rms radius sharply increases compared
to the associated values in 27F and 29F. Consequently, one can assume from these GSM
calculations [18] that 31F is a two-neutron halo state.

3.2. Realistic Gamow Shell Model Calculations of Neutron-Rich Calcium Isotopes

The long chain of calcium isotopes provides an ideal laboratory for both theoretical
and experimental investigations of unstable isotopes. With two typical doubly magic
isotopes, 40Ca and 48Ca, and two new magic isotopes discovered in the neutron-rich region,
52Ca [90] and 54Ca [91], the calcium chain is speculated to end the 70Ca isotope. Its rich
nuclear structure data [10] attract continued theoretical interest, especially using methods
that include continuum coupling. The realistic GSM based on the realistic CD-Bonn [55]
interaction has also been performed to investigate the properties of neutron-rich calcium
isotopes up to the drip line.
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(b), compared with data [78,92], and calculations obtained with SV-min density-functional theory
(DFT) [93] and multireference IM-SRG (S2n only) [94]. The Sn calculations end at 60Ca because
odd isotopes heavier than 60Ca become unbound in our GSM calculations (with permissions from
Ref. [47]).
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The calculated one-neutron separation energies Sn and two-neutron separation en-
ergies S2n are shown in Figure 8 and compared with experimental data [78,92], DFT [93],
and IM-SRG [94] calculations. The calculated one-neutron separation energies Sn show
that 57Ca is the heaviest odd-mass bound calcium isotope, which is consistent with MBPT
calculations [95]. 59Ca is weakly unbound with a small one-neutron separation energy
Sn = −326 keV in our GSM calculations. For the two-neutron separation energy S2n, the
GSM calculations are performed with two different cores, 48Ca and 54Ca. For 56,58,60Ca, the
two calculations give similar results. The calculated two-neutron separation energy S2n is
in good agreement with experimental data [78,92] and other theoretical calculations, e.g.,
with DFT [93] and IM-SRG [94] calculations. The large decrease in S2n at neutron number
N = 32 and 34 indicate that subshell closures occur therein, which has also been suggested
from experiments [90,91] and theoretical calculations [94–96]. Moreover, the calculated
two-neutron separation energy S2n using GSM predicts that the two-neutron drip line of
the calcium isotopes should be located at 70Ca. This is consistent with the recent mean-field
calculations of Ref. [97].
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In order to see the shell evolution of the calcium isotopes around the neutron number
N = 32, 34, 40, and 50, we calculated effective single-particle energies (ESPE) based on
the GSM effective Hamiltonian. Figure 9 shows the evolution of the valence neutron
ESPEs when increasing the neutron number. The calculations show that large shell gaps
between 1p3/2 and 1p1/2 and between 1p1/2 and 0 f5/2 exist, indicating that shell closures
occur at N = 32 and 34, respectively. These results are consistent with experimental
observations [90,91] and theoretical calculations [94–96,98]. The shell gap above the 0 f5/2
orbit is reduced at around N = 40, implying a weakening of the N = 40 shell closure in the
calcium chain. The 0g9/2 shell becomes bound at N ≥ 40, which can enhance the stability
of the heavy calcium isotopes. The observed 60Ca isotope in experiments [99] may be an
indication of this enhanced stability. Moreover, the calculated ESPEs show a significant
shell gap at N = 50, implying a shell closure at 70Ca.
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3.3. One-Proton and Two-Proton Decays in 16Ne and 18Mg Unbound Nuclei

Two-proton decay is one of the most important drip-line phenomena. It occurs in
proton drip line nuclei, such as 48Ni, 54F, 54Zn, 76K, 16Ne, and 19Mg (see a review of this
topic in Ref. [4] ). While 18Mg has not been observed, it can decay in principle by proton
and/or two-proton emissions. The GSM is then a suitable method to study these types of
particle emissions. We carried out GSM calculations of the proton-rich carbon isotones of
14O, which are all resonance [10], using 14O as an inner core. The obtained energy spectra
of carbon isotones are depicted in Figure 10 with respect to the ground state of 14O. One
can see that both the energies and widths of experimentally known eigenstates are well
reproduced for the low-lying states in 15F and 16Ne [10]. We also provide predictions
for the 17Na and 18Mg nuclear spectra, of which, there are no experimental data. Our
calculations show that the 16Ne and 18Mg isotopes are unbound nuclei, where both one-
proton separation energies Sp and two-proton separation energies S2p are negative, thereby
indicating that two different particle-emission channels are open therein.
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To evaluate one-proton and two-proton decay widths, we changed the central potential
depth V0 of the WS core potential in order for the Sp to become positive or very negative
(see details in Ref. [48]). Consequently, it is possible to find a central potential depth for
which only the two-proton decay channel is open, so that the obtained width is that of
the two-proton emission. The obtained results are shown in Figure 11. As 15F and 17Ne
are one-proton resonances, their width increases steadily with the Hamiltonian central
potential depth. In contrast, one can see that the widths of 16Ne and 18Mg increase abruptly
when the one-proton channel opens. The width of two-proton decay is almost constant
with respect to the central potential depth below the one-proton emission threshold, and
is also about 500 keV to 1 MeV above (see Figure 11). It is reasonable to assume that the
two-proton decay width is almost independent of energy. Therefore, the GSM results
shown in Figure 11, where only the two-proton channel is open, can be extrapolated to
the physical case (indicated by an arrow in Figure 11). This two-proton decay width is
about 10-15 keV for both 16Ne and 18Mg nuclei. The one-proton width can be assumed as
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the difference between the total width and the two-proton emission width of 10–15 keV.
Then, our calculations show that one-proton emission is negligible for 16Ne, whereas the
one-proton decay width in 18Mg is estimated to be about 85-90 keV. The obtained data for
16Ne are also in agreement with experimental data [10,100–102].
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Figure 11. Calculated energies and widths (in MeV) of 15F, 16Ne (upper panel), 17Na, and 18Mg
(lower panel) as a function of the difference ∆V0 = V0 −V(fit)

0 (fit) of the WS central potential depths
(see details in Ref. [48]). Energies are depicted by blue disks and red lozenges for even and odd
nuclei, respectively. Widths are represented by segments centered on disks and lozenges. The widths
of 16Ne and 18Mg have been multiplied by 20 for readability. Energies are given with respect to
the 14O core. The physical GSM calculation, for which V0 = V(fit)

0 , is indicated by an arrow (with
permissions from Ref. [48]).

4. Summary

The Gamow shell model (GSM) is a powerful method for the description of the weakly
bound and resonance properties of drip line nuclei. In the present review, we presented
several recent applications of GSM dedicated to the study of drip line nuclei, including
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GSM calculations of neutron-rich oxygen and fluorine drip line nuclei, of the long chain of
neutron-rich calcium isotopes, and of the unbound proton-rich 16Ne and 18Mg isotopes.
For the neutron-rich oxygen and fluorine drip line nuclei, both the realistic GSM and GSM
with phenomenological forces have been utilized. Our calculations have described the
weakly-bound and unbound properties of drip line nuclei well. Furthermore, the unbound
properties of the 28O are obtained within the two both types of GSM calculations, and the
two-neutron halo property of 31F has been predicted in GSM calculations as well. The
realistic GSM calculations provide good agreements of the neutron-rich calcium isotopes
with experimental data, as GSM calculations predict that the one- and two-neutron drip
line nuclei of calcium isotopes are 57Ca and 70Ca, respectively. For the unbound proton-rich
16Ne and 18Mg nuclei, GSM calculations provide calculations and predictions for their low-
lying spectra. Added to that, the one- and two-proton emission widths could be estimated
for 16Ne and 18Mg isotopes. Our calculations have shown that 16Ne decays only by two-
proton emission, whereas 18Mg can decay through both one- and two-proton emission
channels, whose widths are estimated to be about 85–90 and 10–15 keV, respectively.

GSM has thus been shown to be the tool of choice for the study of drip line nuclei.
Many challenges remain to be overcome for the future applications of GSM:

• Due to the large computational cost of the GSM calculations, the GSM has been applied
for the neutron-rich nuclei with only one or two valence protons, and, for proton-rich
nuclei, with only one or two valence neutrons in the non-resonant continuum. For
example, the model space dimension of 31F is about 107 with two valence particles
in the continuum. It can easily reach 1010 without truncations, which is untractable
numerically. In the nuclear chart, most of the drip line nuclei need to be described with
many valence particles (protons and neutrons). One can think of the neutron-rich Ne
and Mg drip line isotopes, where both continuum coupling and strong internucleon
correlations must be treated properly. These isotopes will provide a challenge for
future GSM calculations, due to the large dimensions;

• The diagonalization of the GSM Hamiltonian in order to obtain eigenstates of large
resonance widths, such as the second 0+2 state in 8He, is very difficult from a numerical
point of view;

• The dimensions of the GSM Hamiltonian matrices increase extremely quickly when
one adds valence particles, and thus the treatment of the many-body Hamiltonian is
difficult when using the configuration interaction framework. Other kinds of many-
body methods are urgently needed. The two-particle reduced density matrix method
is one of the promising methods to solve the dimensionality problem of the GSM
many-body Hamiltonian [103];

• The unbound single-particle states of s waves in neutron-rich nuclei are anti-bound
states, which are difficult to include in many-body GSM calculations. The consider-
ation of many-body anti-bound states in GSM (the ground state of 10Li is supposed
to be anti-bound, for example [104]) is thus also a challenge for future applications
of GSM.
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