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Abstract: In this paper, the effects of the quantum metric fluctuations on the background cosmological
dynamics of the universe are considered. To describe the quantum effects, the metric is assumed to
be given by the sum of a classical component and a fluctuating component of quantum origin . At the
classical level, the Einstein gravitational field equations are equivalent to a modified gravity theory,
containing a non-minimal coupling between matter and geometry. The gravitational dynamics
is determined by the expectation value of the fluctuating quantum correction term, which can be
expressed in terms of an arbitrary tensor Kµν. To fix the functional form of the fluctuation tensor, the
Newtonian limit of the theory is considered, from which the generalized Poisson equation is derived.
The compatibility of the Newtonian limit with the Solar System tests allows us to fix the form of
Kµν. Using these observationally consistent forms of Kµν, the generalized Friedmann equations are
obtained in the presence of quantum fluctuations of the metric for the case of a flat homogeneous
and isotropic geometry. The corresponding cosmological models are analyzed using both analytical
and numerical method. One finds that a large variety of cosmological models can be formulated.
Depending on the numerical values of the model parameters, both accelerating and decelerating
behaviors can be obtained. The obtained results are compared with the standard ΛCDM (Λ Cold
Dark Matter) model.

Keywords: semiclassical gravity; quantum metric fluctuations; cosmological models

1. Introduction

General relativity and quantum mechanics are the basic, and widely accepted, branches
of theoretical physics, confirmed by a large number of experiments and observations. In
particular, general relativity, a theory of gravity [1–3] is a typical example of a physical
theory with a very beautiful geometric structure. Moreover, it is one of the very successful
existing physical theories, with its predictions being confirmed in the past one hundred
years with a high degree of accuracy [4–6]. In addition to the classical tests of general
relativity performed at the Solar System level, recently two other fundamental predictions
of general relativity, the existence of the gravitational waves, and the existence of black
holes, have also been confirmed [7,8].

Despite the remarkable achievements of both quantum mechanics and general rela-
tivity, it had been known for a long time that these two fundamental theories of physics
cannot be unified, and they seem to be incompatible with each other. The first in depth
analysis of the possibility of the unification of quantum mechanics and general relativity
was performed by Bronstein [9], whose analysis indicated the existence of an essential
difference between quantum theory and the quantum theory of the gravitational field
based on general relativity. These early results already pointed out to the fundamental
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difficulty of unifying quantum theory and general relativity. Even after almost ninety
years of intensive effort the task of building a quantum theory of gravity is still unfulfilled,
remaining an open assignment for modern theoretical physics. There are many approaches
to quantum gravity, and for an introduction to the field, see, e.g., [10,11].

One possible avenue for the quantization of gravity would be its reformulation as a
gauge theory, an approach pioneered in [12], and further developed in [13–17]. Another
attempt to a quantum theory of gravity was initiated in [18–20], and it is based on the
rewriting of the Hilbert-Einstein action in terms of a spin connection and a set of tetrads.
Since both the tetrads and the spin connection are vector fields, the theory of gravitation
can be reformulated as a vector gauge theory.

However, from a fundamental physical point of view, such an approach is not sat-
isfactory, since in the case of gravitation the principles of equivalence and of the general
covariance are more important than the gauge principle, on which the standard model of
particle physics and its extensions are based [21]. Moreover, the theory is still based on the
standard Hilbert-Einstein action, and it is not clear at this moment if it can be quantized.
Various other approaches have been proposed for the quantization of the gravitational field
in [22–29].

A possible way of dealing with the problem of the quantization of gravity, and a
first step in this direction, is to assume that the matter fields are quantized, and that
evolve in a classical spacetime, described by a metric gµν, where the indices, denoted by
Greek letters, take on the values 0, 1, 2, 3. There is an important difference in this case as
compared to the evolution in a Minkowski spacetime, in the sense that in general there is
no preferred vacuum state for the fields. Consequently, particle creation effects naturally
take place. In semiclassical gravity the gravitational field is described classically, using the
Hilbert-Einstein action, S =

∫ (
−R/2κ2)√−gd4x, where R denotes the Ricci scalar, κ is the

gravitational coupling constant, g is the determinant of the metric tensor, and x represents
the time (x0) and space (x1, x2, x3) coordinates. Hence, in semiclassical gravity quantum
matter is coupled to the gravitational field via the semiclassical Einstein equations,

Rµν −
1
2

gµνR =
8πG

c4

〈
Ψ
∣∣T̂µν

∣∣Ψ〉, (1)

where G is the Newtonian constant of gravitation, c is the speed of light, and T̂µν is the
quantum operator associated with Tµν.

The above equations are obtained by replacing in the Einstein gravitational field
equations Tµν, the classical matter energy-momentum tensor by the expectation value,
〈· · · 〉, in an arbitrary quantum state Ψ of the quantum operator associated with Tµν. The
semiclassical approach to quantum gravity was proposed initially in [30,31], and it has
been further developed and discussed in [32–44].

From Equation (1) it follows that the matter energy-momentum tensor Tµν is obtained
in the classical limit by assuming 〈Ψ|T̂µν|Ψ〉 = Tµν. The semiclassical Einstein Equation (1)
can also be derived from the variational principle δ

(
Sg + Sψ

)
= 0 [35], where Sg is the

standard Hilbert-Einstein general relativistic classical action of the gravitational field, while
the second component of the total action, generated by quantum effects, is given by:

SΨ =
∫ [

Im
〈
Ψ̇|Ψ

〉
−
〈
Ψ|Ĥ|Ψ

〉
+ α(〈Ψ|Ψ〉 − 1)

]
dt,

where α is a Lagrange multiplier, while Ĥ is the Hamilton operator of matter.
A more general pathway to semiclassical gravity was introduced in [35]. It is essen-

tially based on the idea of the introduction of a nonminimal coupling between the classical
Ricci scalar R, and the quantized matter fields. Specifically, one can introduce in the total
action a term containing the quantum matter-geometry coupling with the simple form:∫

RF(〈 f (φ)〉)Ψ
√−gd4x. In the coupling term, F and f denote some arbitrary functions,
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while (〈 f (φ)〉)Ψ = 〈Ψ(t)| f [φ(x)]|Ψ(t)〉 denotes the average value of a function over the
quantum fields. Then, the effective semiclassical Einstein equations are given by [35]:

Rµν −
1
2

Rgµν = 16πG

[〈
T̂µν

〉
Ψ + GµνF−∇µ∇νF + gµν�F

]
. (2)

The semi-classical effective gravitational model described by Equation (2) has one
important consequence, namely, that the mean value of the matter energy-momentum ten-
sor

〈
T̂µν
〉

Ψ is not conserved directly, since generally ∇µ

〈
T̂µν
〉

Ψ 6= 0. Thus, the theoretical
model described by Equation (7) can be interpreted theoretically as describing a process of
particle production that is the direct result of an energy removal from geometry to matter.

An alternative method for the quantization of classical physical structures is the
stochastic quantization method, introduced initially in [45]. In this approach to quantiza-
tion of the classical systems the quantum fluctuations are characterized with the help of
the stochastic Langevin equation. The stochastic quantization method goes back to the
study initiated in [46], in which the Schrödinger equation was from the classical dynamics
obtained using stochastic methods. However, the rigorous formulation of the stochastic
quantization method was presented in [45]. In stochastic quantization the quantum me-
chanical picture of physical processes is constructed through the limit, with respect to a
fictitious time variable t, of a hypothetical higher-dimensional stochastic process, assumed
to be described by a Langevin type equation. For the early advancements in stochastic
quantization theory see [47,48]. For the gravitational field the stochastic quantization
procedure was introduced in [49,50], by assuming that the classical metric tensor obeys the
covariant stochastic Langevin equation, given by [49]:

ġµν = −2i
[

Rµν −
λ + 1

2(2λ + 1)
gµνR

]
+ ξµν,

where ξµν is a stochastic source term, λ is a parameter, and a dot denotes the derivative
with respect to λ. For recent discussions on the stochastic quantization of gravity see [35].
For alternative Einstein-Langevin type equations, see, e.g., [51,52].

The quantum fluctuations of the space time are assumed to play an important role
in the quantum description of gravity. In fact, long time ago, it was suggested that due
to the Heisenberg uncertainty principle over extremely small distances and sufficiently
small intervals of time, the geometry of spacetime may fluctuate [53,54]. The quantum
fluctuations of the spacetime could be large enough to induce important deviations from the
smooth spacetime one experiences at macroscopic scales, and giving spacetime a "foamy"
character [53,54].

Quantum fluctuations play a central role in the alternative semi-classical description
of quantum gravity, introduced in [55]. In this approach to quantum gravity, the quantized
metric is assumed to have two components, and is given as the sum of classical and quan-
tum terms. After performing this decomposition, the quantized Einstein equations can be
approximated at the classical level by a modified gravity theory that includes a nonmini-
mal coupling between matter and geometry. After introducing some natural hypotheses
for the two-points expectation value of the product of the fluctuating quantum metric,
one can obtain the effective semiclassical gravitational and scalar field Lagrangians [56].
For a vanishing expectation value of the first-order terms of the metric, the second order
corrections can also be calculated. The second order quantum corrections also lead to a
modified gravity theory.

The gravitational field equations and the modified conservation laws were obtained
within the framework of the fluctuating metric approach in [57]. It was also shown that
due to the quantum fluctuations a bouncing universe model can be constructed. Moreover,
in a dark energy dominated phase, a decelerated expansionary cosmological evolution
is also possible. Gravitational models with fluctuating metric were studied in [58–60]. In
particular, after expressing generally the expectation value of the quantum correction in
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the form of a general second order tensor, in [61] the effective gravitational field equations
at the classical level have been derived in a general formulation. Cosmological models
with the quantum correction tensor given by the coupling of a scalar function and of a
scalar field to the metric tensor, as well as by a quantum term proportional to the ordinary
matter energy-momentum tensor, were analyzed. These models can describe the present
day accelerated expansion of the universe.

One of the important implications of the gravitational theories with fluctuating quan-
tum type metric is that they typically lead to modified gravity models in the presence of
a geometry-matter coupling. Such theoretical models have been proposed already in the
framework of standard classical general relativity as viable explanations of the recent cos-
mological observations that have determined a fundamental change in our comprehension
of the universe. Very precise and detailed astronomical and astrophysical observations indi-
cate that recently the universe experienced a transition from deceleration to an accelerating,
de Sitter type regime [62–67]. These cosmological observations are usually interpreted
through the postulation of the existence of a dominant constituent of the universe, called
dark energy, and whose presence can give a reason for all recent cosmological observa-
tions [68,69]. However, a second major constituent, called dark matter, is also required to
fully explain the observations [70,71].

On the other hand, one cannot reject a priori the possibility that the two major con-
stituents of the universe, dark energy (usually modelled as a cosmological constant [72,73]),
and dark matter, could be explained as a common and basic property of a generalized
gravity theory that goes ahead of standard general relativity, and its Hilbert-Einstein
variational formulation. Many extended gravity theories, modifying and generalizing
Einstein’s general relativity have been suggested recently. One of the first extensions
of general relativity is represented by the f (R) gravity theory, with gravitational action
of the form S =

(
1/2κ2) ∫ f (R)

√−gd4x +
∫

Lm
√−gd4x [74–79], where Lm denotes the

matter Lagrangian density. f (R) gravity generalizes only the geometric part of the gravita-
tional action, and thus it ignores the profound role the matter Lagrangian could have [80].
Moreover, f (R) theory is still based on a minimal coupling between geometry and matter.

Extended gravity theories with arbitrary matter-geometry couplings were introduced
initially in [81–84] in the form of the f (R, Lm)-modified gravity theory, with the gravita-
tional action given by S = 1

2κ2

∫
f (R, Lm)

√−gd4x. In this approach, geometry becomes
equivalent with matter, and thus matter plays a more important role in describing the
properties of space-time as the one ascribed to it in standard general relativity.

The f (R, T) gravity theory introduces an other type of matter-geometry coupling,
with the gravitational action given by S =

∫ [
f (R, T)/2κ2 + Lm

]√−gd4x [85,86]. Hence,
in f (R, T) theory matter and geometry are coupled through the trace T of the energy-
momentum tensor. Many other gravitational theories with geometry-matter couplings have
been proposed and studied widely up to now. Among them are the f

(
R, T, RµνTµν

)
gravity

theory [87,88], the f (R,R) hybrid metric-Palatini gravity theory, withR representing the
Ricci scalar, formed with the help of a connection not depending on the metric, such as
in the case of the Levi-Civita connection [89–91], the Weyl-Cartan-Weitzenböck (WCW)
theory [92], and the f (Q, T) modified gravity theory [93,94], where Q is the non-metricity.

Modified gravity theories in which the torsion scalar T̃ couples nonminimally to the
trace T of the matter energy-momentum tensor are called f (T̃, T ) gravity theories. These
types of theories have also been extensively investigated [95]. In [96] theories with higher
derivative matter fields were considered in detail. Extensive reviews of the f (R, Lm),
f (R, T), and hybrid-metric-Palatini type gravity theories can be found in [97,98].

All gravitational theories with matter-geometry coupling have the curious partic-
ularity implying that the four-divergence of the matter energy-momentum tensor does
not vanish generally, so that ∇µTµν 6= 0. This non-conservation of Tµν can be under-
stood from a physical point of view using the formalism of the thermodynamics of open
systems [86,99,100]. Hence, in these gravitational theories, one can presume that the energy
and momentum balance equations describe irreversible particle creation processes. Thus,
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the non-conservation of Tµν indicates an irreversible matter and energy transfer from the
gravitational field to the newly produced particles.

The creation of particles from the cosmological vacuum is one of the significant pre-
dictions of the quantum field theory in curved space-times [101–105]. Quantum field
theoretical approaches to gravity lead naturally to particles creation processes, and they
play an essential role in the understanding of the foundations of the theory. In the ex-
panding Friedmann-Lemaitre-Robertson-Walker geometry, quantum field theory in curved
spacetimes predict that quanta of the minimally coupled scalar field are produced perma-
nently from the cosmological vacuum [105–107].

Hence, the presence at the theoretical level of the particle creation processes in both
quantum theories of gravity in curved space-times and in modified gravity theories with
geometry-matter coupling suggests that a deep relationship may exist between these two,
seemingly distinct physical theories. In fact, such a relationship was already obtained
in [57], where it was found that in the nonperturbative approach for the quantization of the
metric, as introduced in [55,56,58], as a consequence of the fluctuations of the spacetime, a
specific f (R, T) type gravitational model naturally emerges. The Lagrangian density of the
theory is given by:

L =

[
(1− α0)

R
2κ2 +

(
Lm −

α0

2
T
)]√

−g, (3)

where α0 is a constant. This result suggests that a phenomenological description of quantum
mechanical particle production processes may be possible in the f (R, Lm) or f (R, T) type
theories. Such a semiclassical approach could lead to a better understanding of the quantum
processes describing matter creation through an equivalent semi-classical description
essentially involving the coupling between geometry and matter.

It is the main goal of the present study to further investigate the physical, astrophysical
and cosmological implications of the effective modified gravitational theories induced by
the quantum fluctuations of the space-time metric, as developed in [55–58], and further
considered in [61]. Let us start the analysis by assuming that within a semiclassical
approximation the quantized gravitational field can be described by a quantum metric,
which can be decomposed into two terms. They are the classical, and a stochastic fluctuating
component of quantum origin. Hence, the metric is obtained as the sum of these two
components. As a result of this decomposition, the Einstein quantum gravity leads to an
effective gravitational theory, analogous to the modified gravity models with a nonminimal
coupling between geometry and matter, which have been already analyzed in [81,85,87].
Hence, it is proposed that a quantum gravitational theory can be illustrated within a
semiclassical approximation.

To obtain some specific predictions from the effective gravitational theory obtained
from the fluctuating quantum metric, one has to introduce the assumption that the ex-
pectation value of the quantum correction tensor Kµν can be constructed from the metric,
and from the thermodynamic quantities describing the ordinary matter content of the
universe. In the present approach, the functional form of Kµν is fixed using the Newtonian
limit of the theory. By assuming that Kµν can be represented as a linear combination of
the metric, the Ricci tensor and the matter energy-momentum tensor, with the coefficients
depending on the Ricci scalar R and on T, one derives first the Poisson equation in the
presence of quantum fluctuations. Then, the functional form of Kµν is determined by
requiring compatibility with the Solar System observations. Hence, from the Newtonian
limit, one obtains the form of Kµν that satisfies all the Solar System constraints. Then, the
cosmological implications of the obtained forms of Kµν is investigated by considering four
distinct cosmological scenarios.

The present paper is organized as follows. In Section 2, the field equations, induced by
the quantum fluctuations of the metric, are obtained in general form using the variational
principle. The modified Poisson equation for this modified gravity theory is also derived,
and a set of constraints on the model parameters are obtained. The general cosmological
implications of the modified gravity theories in the presence of quantum metric fluctuations
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are discussed in Section 3. Several cosmological models, obtained for different choices
of the fluctuation tensor are investigated in detail in Section 4, using numerical methods.
The results are discussed and concluded in Section 5. The full form of the generalized
Friedmann equations obtained in the presence of a fluctuation tensor satisfying the Solar
System tests are presented in Appendix A. In the present paper, a system of units with the
speed of light c = 1 is used.

2. Quantum Metric Fluctuations Induced Gravitational Field Equations

Quantum mechanics is a very successful fundamental theory of physics, providing
an excellent description of atoms, molecules, elementary particles, and classical fields,
excluding gravitation. The quantum mechanical approach requires that all physical quan-
tities must be described by operators acting in a Hilbert space. If gravity can also be
described quantum mechanically, then it follows that all geometrical quantities character-
izing the gravitational field must be quantized by identifying them with some suitably
chosen operators. Hence, in one would like to construct a proper quantum theory of the
gravitational field, Einstein’s gravitational field equations must take an operator form,
given by [55,56,58]:

R̂µν −
1
2

R̂ĝµν =
8πG

c4 T̂µν. (4)

This formal representation corresponds to the non-perturbative quantum approach.
Useful physical information should be extracted from the quantum Einstein operator
equations by taking their average values over all possible products of the quantum met-
ric operators ĝ(x1) . . . ĝ(xn) [55,56,58]. By introducing the Green functions, Ĝµν, of the
quantized gravitational field, the exact quantum approach to gravity implies to obtain the
solutions of the infinite system of operator equations,〈

Ψ|ĝ(x1)Ĝµν|Ψ
〉

=
〈
Ψ|ĝ(x1)T̂µν|Ψ

〉
,〈

Ψ|ĝ(x1)ĝ(x2)Ĝµν|Ψ
〉

=
〈
Ψ|ĝ(x1)ĝ(x2)T̂µν|Ψ

〉
.

. . . = . . . ,

In the above equations, |Ψ〉 represents the quantum state associated with the grav-
itational field. As this moment it is important to point out that |Ψ〉 may not necessarily
represent the ordinary vacuum state of the standard quantum field theory in curved
spacetimes. Unfortunately, no exact analytical solutions of the operator equations for the
gravitational Green functions are known so far, and it seems that it may not be possible to
obtain their solutions analytically. Therefore, the investigation of the physical implications
of the quantum gravity models needs to use approximate methods [55–58]. A possible
suggestion for the study of quantum gravity was presented in [55]. This approximations
is based on the decomposition of the quantum metric operator, ĝµν, into the sum of two
components. The first one is the average of the classical metric gµν, while the second one
corresponds to the fluctuating component, δĝµν. Hence, in this approach, the quantum
metric reads:

ĝµν = gµν + δĝµν. (5)

Moreover, at this moment another approximation is introduced. Let us suppose that
the average value of the fluctuating part of the metric, which is typically of a quantum
nature, can be represented with the help of a classical tensor quantity Kµν, so that:〈

δĝµν

〉
= Kµν 6= 0. (6)

Hence, in the present approach, the classical and quantum degrees of freedom are
coupled using an expectation value. When such a coupling occurs there will be no effects
of quantum fluctuations on the classical system [108]. Generally, in its Copenhagen inter-
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pretation, for a microscopic physical system quantum mechanics gives the amplitudes for
many different states at a given time t. In the presence of quantum fluctuations, due to
the interactions at later times, one cannot obtain a unique set of values of the physical or
geometric quantities, but only a probability distribution for the different states. On the
other hand, in the present semiclassical approach to quantum gravity, there is a unique
solution for the metric, once the initial data for the metric and wave function are known.
Hence, in this sense, quantum fluctuations do not influence the evolution of the metric.
Moreover, if the metric and the initial state are homogeneous and isotropic, it follows
that these symmetries are preserved by the dynamics of the gravitating system. Hence,
one arrives at the important physical result that quantum fluctuations do not generate
spatial variations in the energy-momentum tensor, or in the gravitational field itself [108].
Therefore, the character of the cosmological evolution is not influenced by the presence of
the quantum fluctuations.

Then, by ignoring higher order fluctuations, the Lagrangian of the gravitational
theories that also considers the consequences of the quantum fluctuations can be obtained
as [55]:

L =
√
−ĝLg

(
ĝµν

)
+
√
−ĝLm

(
ĝµν

)
≈
√
−g(Lg + Lm) +

[
δ(
√−gLg)

δgµν +
δ(
√−gLm)

δgµν

]
δĝµν (7)

=
√
−g

[
1

2κ2

(
R + Gµνδĝµν

)
+ Lm −

1
2

Tµνδĝµν

]
,

where κ2 = 8πG/c4, Lg
(

ĝµν

)
denotes the (quantized) Lagrangian of the gravitational

field, Lm
(

ĝµν

)
is the matter Lagrangian, while Tµν is the energy-momentum tensor of the

classical matter, defined as:

Tµν = − 2√−g
δ(
√−gLm)

δgµν . (8)

Therefore, in the present approach to quantum gravity, the analysis starts with the
full system of the gravitational field equations in operator form. As a next step, the
metric is decomposed into two terms, the first being the classical part, while the second
term a stochastic fluctuating part. Thus, one obtains an effective semiclassical theory
of gravity, completely described in terms of classical concepts and quantities. However,
in this approach one cannot obtain the functional form of Kµν, the important quantum
perturbation tensor, from the first principles. Therefore, the form of Kµν must be chosen
from physical considerations.

The first-order corrected quantum Lagrangian (7) leads to the following general
gravitational field equations:

Gµν = κ2
(

Tµν + γ
αβ
µνTαβ −

1
2

gµνTαβKαβ

+2
δ2Lm

δgαβδgµν
Kαβ − 1

2
LmKgµν +

1
2

KTµν

+LmKµν

)
− 1

2

(
2γ

αβ
µνGαβ − gµνGαβKαβ

+gµν∇α∇βKαβ − KRµν + RKµν

)
+

1
2

[
∇α∇(νKα

µ) +�Kgµν −�Kµν −∇ν∇µK
]

,

(9)
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where K = gµνKµνand AαβδKαβ = δgµν(γ
αβ
µν Aαβ). Moreover, Aαβ is either Rαβ or Tαβ. On

the other hand, γ
αβ
µν may represent an operator, an algebraic tensor, or their combination.

One can also obtain the conservation of the energy-momentum tensor:

(K− 2)∇µTµν = 2∇µ
(

2Kα(νT α
µ) − KµνLm

)
+∇ν

(
KLm − TαβKαβ

)
− Tµν∇µK (10)

+
1

2κ2

{
2Gαµ

(
∇νKαµ − 2∇µKαν

)
+∇µ

[
γ

αβ
µν

(
κ2Tαβ − Gαβ

)]}
.

One can see immediately that in the case of a vanishing Kµν, the matter energy-
momentum tensor becomes a conserved quantity.

The Modified Poisson Equation

The tensor Kµν is a second order symmetric tensor, and it is responsible for the
quantum corrections of the quantum metric tensor. In general, it can be proportional to any
classical second rank tensor existing in general relativity. However, one may assume that
it is a function of the geometric and thermodynamic quantities describing a gravitational
system. Moreover, in the following it is assumed that Kµν has a linear dependence on these
quantities, and hence, a general form of the tensor Kµν is:

Kµν = A1 gµν + A2 Rµν + A3 Tµν, (11)

where Ai = Ai(R, T), i = 1, 2, 3, are general functions of the classical Ricci scalar R, and
of the trace T of the energy-momentum tensor. We would like to emphasize that here
the Latin letters do not denote the spatial coordinates. The background solution for the
Minkowski space time of Equation (9) is Kµν = αηµν, where α is a constant.

To obtain the Newtonian limit of this model, one perturbs the field equations around
the Minkowski space time up to first order in perturbed quantities. Then, the perturbed
metric is represented in the Newtonian gauge:

ds2 = −c2
(

1 +
2φ

c2

)
dt2 +

(
1− 2ψ

c2

)
δijdxidxj, (12)

where φ and ψ are general functions of spatial coordinates and the indices, denoted by
Latin letters, stay for spatial coordinates. In the first order of perturbations the Lagrangian
of the matter field and its energy-momentum tensor takes the form:

Lm = −c2ρ, Tµ
ν = diag

(
−c2ρ, 0, 0, 0

)
, (13)

where ρ is the matter energy-density.
One should note that since the Newtonian limit of the model is considered, the matter

is assumed to be non-relativistic with the thermodynamic pressure p = 0. In the first order
of approximation of Equation (11), the coefficients Ai, appearing in Kµν, contribute up to
the linear order in R and T which gives:

Ai(R, T) = αi + βiR + γiT, i = 1, 2, 3, (14)

where αi, βi and γi are constants. The α1 term reproduce the Einstein-Hilbert action. The
term containing β1 is redundant because the same terms are generated by α2 and γ1,
respectively. Hence, in the following, Equation (14) is considered with α1 = 0 = β1.
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With these assumptions, the first-order off-diagonal components of Equation (9) yield:

(
α2~∇2 + 1

)
(φ− ψ) +

c4

2
(α3 + 2γ1)ρ = 0. (15)

Using the above equation, the (ii) components of Equation (9) will be satisfied in first
order, while the (00) component becomes:

α2~∇2
(
~∇2φ

)
+

c4

4

(
2γ1 + 2α3 − κ2α2

)
~∇2ρ

+ ~∇2φ = c4κ2ρ. (16)

The above equation differs from the Poisson equation for the gravitational potential
φ due to the presence of the first and second terms in the left-hand side. The generalized
Poisson equation provides a very powerful theoretical tool for investigating the consistency
of modified gravity models. For example, in [109] the modified Poisson equations for
f (R)-gravity were obtained in the form of the system:

∇2φ +∇2ψ− 2 f ′′(0)∇4φ + 2 f ′′(0)∇4ψ = 2X ρ, (17)

∇2φ−∇2ψ + 3 f ′′(0)∇4φ− 3 f ′′(0)∇4ψ = −X ρ, (18)

where X = 8πG/c4, and φ and ψ are the two metric potentials, as introduced in Equation (12).
By a prime we have denoted the derivative with respect to the argument of the function.

After eliminating the higher-order terms, one can recover the standard Poisson equa-
tion of general relativity. As an application of the modified Poisson equation, used together
with the collisionless Boltzmann equation, the Jeans stability criterion in f (R) gravity
was investigated in [109], by considering a small perturbation from the equilibrium and
linearizing the field equations. From the performed analysis, unstable modes, not present
in the standard Jeans analysis, were obtained.

To be compatible with the Solar System observations, the coefficients of these two
terms should be very small. In the following, we set α2 = 0 . Additionally, one should have
γ1 + α3 � 1, a condition that can be safely satisfied for γ1 = −α3.

As a result, the form of the tensor Kµν up to the linear order is obtained:

Kµν = (β2R + γ2T)Rµν + (γ1 + β3R + γ3T)Tµν − γ1Tgµν. (19)

In Section 3, several classes of cosmological solutions of the quantum metric fluctua-
tions, induced modified gravity theory with the above form for the tensor Kµν, are considered.

3. Cosmological Models with Quantum Metric Fluctuations

In this Section, the cosmological implications of the extended gravity models, obtained
from the effective approach to quantized gravity introduced in the previous sections, are
investigated. After presenting the basic geometrical and physical assumptions, defining the
basic parameters used for the characterization of the cosmological models, one considers
four specific models of the universe, obtained by adopting some specific functional forms
for the fluctuation tensor Kµν.

3.1. Metric and Field Equations

In the following, for the metric of the universe, we adopt the homogeneous and
isotropic flat Friedmann-Lemaitre-Robertson-Walker line element [110],

ds2 = −dt2 + a(t)2d~x2, (20)

where the scale factor a(t) is a function of the cosmological time only. At this moment
the Hubble function H, defined as H(t) = ȧ/a, is introduced. Moreover, we assume
that the matter content of the universe consists of a perfect fluid, characterized by two
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thermodynamic quantities only, the energy density ρ, and the thermodynamic pressure p.
Then the matter energy-momentum tensor is given by:

Tµν = (ρ + p)uµuν + pgµν. (21)

For the matter equation of state, let us adopt the linear barotropic equation of state
p = ωρ, where ω is a constant. For the choice of Kµν, as given by Equation (19), the
cosmological field Equation (9), representing the generalized Friedmann equations, are:

3H2 = κ2(ρ + ρeff), (22)

and

2Ḣ + 3H2 = −κ2(p + peff), (23)

where ρeff and peff are given in Appendix A.
To specify the accelerating/decelerating type of the cosmological expansion, one uses

the deceleration parameter q defined as:

q =
d
dt

1
H
− 1 = − Ḣ

H2 − 1. (24)

Using Equations (22) and (23):

q =
1
2
+

3
2

p + peff
ρ + ρeff

=
1
2

[
1 +

3(ω + ωeff)

1 + Ωeff

]
, (25)

where ωeff = peff/ρ and Ωeff = ρeff/ρ. A dust universe reaches the marginally accelerating
state with q = 0 once the condition 1 + Ωeff = 3ωeff is satisfied. The general condition for
accelerating expansion can be formulated as ωeff/(1 + Ωeff) < −1/3.

To simplify the mathematical formalism, a set of dimensionless parameters
(Ωm, τ, h) is introduced:

ρ =
3H2

κ2 Ωm, τ = H0t, H = H0h, (26)

where H0 is the current value of the Hubble parameter.
To expedite the testing of the theoretical predictions of the model with the cosmological

observations, one introduces, instead of the cosmological time variable t, as independent
variable the redshift z, defined as:

1 + z =
1
a

, (27)

where one normalizes the scale factor a by imposing the condition that its present-day
value is one, a(0) = 1. Hence, one replaces in all cosmological evolution equations the
derivatives with respect to the cosmological time t with the derivatives with respect to the
redshift z, so that

d
dt

=
dz
dt

d
dz

= −(1 + z)H(z)
d
dz

. (28)

As a function of the cosmological redshift, the deceleration parameter is obtained as:

q(z) = (1 + z)
1

H(z)
dH(z)

dz
− 1. (29)

In what follows, the cosmological evolution of the universe filled with non-relativistic
matter with ω = 0 for four independent choices of the fluctuation tensor Kµν is considered.
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3.2. The Standard ΛCDM Model

In this investigation, we also include a comparison of the behavior of the physical
and geometric cosmological quantities obtained from the present version of the modified
gravity induced by the quantum metric fluctuations with the standard ΛCDM (Cold Dark
Matter) model, where Λ is the cosmological constant.

The recent results of the study of the cosmic microwave background radiation by
the Planck satellite has provided high precision cosmological data [62,111–117]. In the
following, the simplifying assumption that the present day universe consists mostly of
dust matter, with negligible pressure, is adopted. Hence, the energy conservation equation,
ρ̇ + 3Hρ = 0, of standard general relativity gives for the variation of the matter energy
density the expression, ρ = ρ0/a3 = ρ0(1 + z)3, where ρ0 = ρ(0) is the present-day matter
density. As a function of the scale factor the time variation of the Hubble function is
obtained in the form [115]:

H = H0

√
(Ωb + ΩDM)a−3 + ΩΛ, (30)

where Ωb, ΩDM, and ΩΛ denote the density parameters of the baryonic matter, the cold
(pressureless) dark matter, and the dark energy (described by a cosmological constant), re-
spectively. The three density parameters satisfy the important relation Ωb + ΩDM + ΩΛ = 1,
indicating that the geometry of the universe is flat.

As a function of the redshift the dimensionless form of the Hubble function H(z) = H0h(z)
is obtained as:

h(z) =
√
(ΩDM + Ωb)(1 + z)3 + ΩΛ. (31)

For the deceleration parameter, as a function of the redshift, then one finds

q(z) =
3(1 + z)3(ΩDM + Ωb)

2[ΩΛ + (1 + z)3(ΩDM + Ωb)]
− 1. (32)

In this study, for the density parameters, the numerical values ΩDM = 0.2589,
Ωb = 0.0486, and ΩΛ = 0.6911 [115] are are adopted, as obtained from the Planck data. For
the total matter density parameter, Ωm = ΩDM + Ωb, the value Ωm = 0.3089 is taken. The
present day value of the deceleration parameter is given by q(0) = −0.5381, corresponding
to an accelerating expansion of the universe [115,116]. The dependence of the dimension-
less matter density on the redshift is given, in the standard ΛCDM cosmological model, by
r(z) = Ωm(1 + z)3 = 0.3089(1 + z)3 [115,116].

4. Specific Cosmological Models

Here, a few particular cosmological models are investigated, in which for the fluctua-
tion tensor some particular forms are adopted, which follow from the general represen-
tation (19). These specific forms of Kµν are obtained by fixing the values of the arbitrary
coefficients γi, and βi, i = 2, 3.

4.1. Kµν = (β2 R + γ2 T)Rµν

As a first example of a cosmological model in the modified gravity theory induced by
the metric fluctuations, one considers that the tensor Kµν is proportional to the Ricci tensor:

Kµν = (β2 R + γ2 T)Rµν. (33)
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This form of Kµν is obtained by taking γ1 = γ3 = β3 = 0 in Equation (19). To obtain a
dimensionless form of the cosmological evolution equations, the dimensionless parameters
b2 and g2 are introduced:

b2 = β2H4
0 , g2 =

H4
0 γ2

κ2 . (34)

In terms of redshift z, the field equations (A1) and (A2) in this case take the form:

1−Ωm = 9g2h4Ω2
m − 9b2h4(3Ωm + 4)

+ (z + 1)h3(3b2
(
30h′Ωm − 64h′ + 9hΩ′m

)
+ 3g2

(
−6h′Ω2

m + Ωm
(
16h′ − 3hΩ′m

)
+ 6hΩ′m

))
+ (z + 1)2

(
− 3b2h2(2hh′′(3Ωm − 16) + 3h′2(5Ωm − 18) (35)

+ 6hh′Ω′m
)
− 3g2h2

(
2hh′Ω′m + Ωm

(
2hh′′ + 5h′2

)))
− 12b2h(z + 1)3h′

(
3hh′′ + 2

(
h′
)2
)

,

1−2(z + 1)h′

3h
= 9(Ωm − 4)(b2 − g2Ωm)

+ (z + 1)
(
b2h3(60h′Ωm − 56h′ + 21hΩ′m

)
+ g2h3(3h(2− 3Ωm)Ω′m − h′Ωm(9Ωm + 16)

))
+ (z + 1)2

(
g2h2(3h

(
hΩ′2 − 2hΩ′′m − 16h′Ω′m

)
+ 6Ω2

m

(
hh′′ + 4h′2

)
+ Ωm

(
3h
(
hΩ′′m − 6h′′ + 9h′Ω′m

)
− 67h′2

))
− b2h2(3h

(
4h′′(3Ωm − 8) + 3hΩ′′m

)
(36)

+ h′2(135Ωm − 374) + 81hh′Ω′m
))

+ (z + 1)3

×
(

2b2h
(
27h′3(Ωm − 4) + 21hh′2Ω′m + h2(h′′′(3Ωm − 16)

+6h′′Ω′m
)
+ hh′

(
2h′′(15Ωm − 67) + 3hΩ′′m

))
+ 2g2h

(
h
(
hh′Ω′′m

+
(

2hh′′ + 7h′2
)

Ω′m
)
+ Ωm

(
9h′3 + h2h′′′ + 10hh′h′′

)))
+ 12b2(z + 1)4

(
h2h′′2 + 2h′4 + 6hh′2h′′ + h2h′h′′′

)
,

where a prime denotes the derivative with respect to the independent redshift variable z.
The non-conservation equation of the energy-momentum tensor (see Equation (10))

can be written as:

(z + 1)
(
4h′Ωm + 2hΩ′m

)
− 6hΩm = −216b2h5Ωm

+ 108g2h5(Ωm − 2)Ωm + (z + 1)
(
36b2h4(9h′Ωm + hΩ′m)

+ 18g2h4(h′(16− 7Ωm)Ωm − h(Ωm − 2)Ω′m
))

+ (z + 1)2(18g2h3h′(2h′(Ωm − 3)Ωm + h(Ωm − 2)Ω′m) (37)

− 18b2h3h′
(
10h′Ωm + 3hΩ′m

))
+ (z + 1)3(18b2h2(h′)2

×
(
2h′Ωm + hΩ′m

)
+ 6g2h2(h′)2(2h′Ωm + hΩ′m

))
.



Physics 2021, 3 701

Figures 1–3 show the cosmological parameters h(z), Ωm(z) and q(z), obtained by
numerically solving the generalized Friedmann equations, for different values of b2 and
g2. One can see that there are ascending and descending curves for the density parameter,
depending on the values of the pair of the parameters (b2, g2). Additionally, an accelerated
phase is present at late times, while, for earlier times, a decelerating phase is found.
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Figure 1. Variation of the dimensionless Hubble function, h, as a function of the redshift z for the
tensor Kµν = (β2 R + γ2 T)Rµν with different values of the parameters b2 and g2: b2 = 0.044 and
g2 = −0.01 (solid curve), b2 = −0.0076 and g2 = 0.001 (dotted curve), b2 = −0.013 and g2 = −0.0007
(dashed curve), and b2 = 0.013 and g2 = 0.03 (dot-dashed curve). The evolution of the Hubble
function in the standard ΛCDM model is represented by the red solid curve.

As shown in Figure 1, the Hubble function is an increasing function of the redshift z
(and a decreasing function of time), indicating an expansionary evolution of the universe.
The evolution of h depends strongly on the model parameters b2 and g2. For low redshifts
z ≤ 0.3, the evolution is basically independent of b2 and g2. The model can reproduce well
the evolution of h in the standard ΛCDM model. The matter density, displayed in Figure 2,
shows significant differences with respect to standard cosmology. For the chosen set of
parameters, two different behaviors can be observed.

The matter energy density is either increasing or decreasing function of z (decreasing
or increasing function of time). The latter case, implying a matter density that increases
in time, may be considered unphysical. A scenario with an almost constant density is
also possible. For the adopted set of parameters, the evolution of the matter density is
significantly different from the evolution of the matter density in the ΛCDM model.
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Figure 2. Variation of the dimensionless matter density, Ωm, as a function of z for Kµν = (β2 R +

γ2 T)Rµν with different values of the parameters b2 and g2: b2 = 0.044 and g2 = −0.01 (solid curve),
b2 = −0.0076 and g2 = 0.001 (dotted curve), b2 = −0.013 and g2 = −0.0007 (dashed curve), and
b2 = 0.013 and g2 = 0.03 (dot-dashed curve). The evolution of the matter density in the standard
ΛCDM model is shown by the red solid curve.



Physics 2021, 3 702

0.0 0.2 0.4 0.6 0.8 1.0 1.2

- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

z

q

Figure 3. Variation of the deceleration parameter, q, as a function of z for Kµν = (β2 R+γ2 T)Rµν with
different values of the parameters b2 and g2: b2 = 0.044 and g2 = −0.01 (solid curve), b2 = −0.0076
and g2 = 0.001 (dotted curve), b2 = −0.013 and g2 = −0.0007 (dashed curve), and b2 = 0.013 and
g2 = 0.03 (dot-dashed curve) The evolution of the deceleration parameter in the standard ΛCDM
model is depicted by the red solid curve.

The deceleration parameter, q, shown in Figure 3, indicates the existence of a transition
from the decelerating to an accelerating expansion. The evolution of q is strongly dependent
on the model parameters, and a wide variety of cosmological behaviors can be constructed.
The evolution of q in standard cosmology can also be reproduced.

4.2. Kµν = (β3 R + γ3 T)Tµν

In this Subsection, the expression of the fluctuation tensor Kµν, containing only the
energy-momentum tensor, is considered. Hence, the γ1 term is ignored, since it corresponds
to a term proportional to the metric tensor. Therefore, the tensor Kµν is given in this case by:

Kµν = (β3 R + γ3 T)Tµν. (38)

The dimensionless parameters b3 and g3 are defined as:

b3 =
H4

0
κ2 β3, g3 =

H4
0

κ4 γ3. (39)

Then, the field Equations (A1) and (A2) read for this case:

1−Ωm =
9
2

h4Ωm(2b3(Ωm + 3)− g3Ωm(Ωm + 1))

− 9b3h3(z + 1)(2Ωm − 1)
(
2h′Ωm + hΩ′m

)
, (40)

1− 2(z + 1)h′

3h
=

9
2

h4Ωm
(
14b3 − 6Ωmb3 + 3g3Ω2

m

− 5g3Ωm
)
+ (z + 1)h3

(
6g3Ωm

(
3h′Ωm + hΩ′m

)
− b3

(
3h(2Ωm + 3)Ω′m + 84h′Ωm

))
+ 3b3h2(z + 1)2 (41)

×
(

h
(

2hΩ′2m − 7h′Ω′m − hΩ′′m
)
+ 4Ω2

m

(
hh′′ + 4h′2

)
+ 2Ωm

(
h2Ω′′m − hh′′ + 9hh′Ω′m − 3h′2

))
.
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The non-zero component of Equation (10) is:

(z + 1)
(
4h′Ωm + 2hΩ′m

)
− 6hΩm = 108h5(1−Ωm)Ωm

× (g3Ωm − 2b3) + (z + 1)
(
36b3h4(h(1− 2Ωm)Ω′m

− 7h′(Ωm − 1)Ωm) + 9g3h4Ωm(6h′(Ωm − 1)Ωm (42)

+ h(3Ωm − 2)Ω′m)
)
− 18b3h3(z + 1)2h′

×
(
h(1− 2Ωm)Ω′m − 4h′(Ωm − 1)Ωm

)
In Figures 4–6 the behaviors of the Hubble function, the matter density and the

deceleration parameters are shown for different values of the parameters b3 and g3.
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Figure 4. Variation of the dimensionless Hubble function h as a function of z for Kµν =

(β3 R + γ3 T)Tµν with different values of the parameters b3 and g3: b3 = 0.073 and g3 = 0.1 (solid
curve), b3 = 0.08 and g3 = 0.097 (dotted curve), b3 = 0.15 and g3 = 0.30 (dashed curve), and
b3 = 0.21 and g3 = 0.12 (dot-dashed curve). The evolution of the Hubble function in the standard
ΛCDM model is described by the red solid curve.

The Hubble function, h(z), represented in Figures 4, is an increasing function of z, and
it can reproduce the evolution of the Hubble function in the standard ΛCDM model.
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Figure 5. Variation of the dimensionless matter density, Ωm, as a function of z for Kµν =

(β3 R + γ3 T)Tµν with different values of the parameters b3 and g3: b3 = 0.073 and g3 = 0.1 (solid
curve), b3 = 0.08 and g3 = 0.097 (dotted curve), b3 = 0.15 and g3 = 0.30 (dashed curve), and
b3 = 0.21 and g3 = 0.12 (dot-dashed curve). The evolution of the matter density in the standard
ΛCDM model corresponds to the red solid curve.

However, significant differences do appear in the behavior of the matter density, as
shown in Figure 5. As opposed to the matter behavior in standard cosmology, in this model,
the matter energy density is an increasing function of time. Moreover, its the evolution is
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significantly different compared to the matter density evolution in the standard ΛCDM
model for all adopted values of the model parameters.
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Figure 6. Variation of the deceleration parameter, q, as a function of z for Kµν = (β3 R + γ3 T)Tµν

with different values of the parameters b3 and g3: b3 = 0.073 and g3 = 0.1 (solid curve), b3 = 0.08
and g3 = 0.097 (dotted curve), b3 = 0.15 and g3 = 0.30 (dashed curve), and b3 = 0.21 and g3 = 0.12
(dot-dashed curve). The evolution of the deceleration parameter in the standard ΛCDM model is
described by the red solid curve.

However, the deceleration parameter q, shown in Figure 6, indicates a transition from
a decelerating to an accelerating phase, which can reproduce the present day value of q.

4.3. Kµν =
(

β2Rµν + β3Tµν

)
R

Now, let us consider the case where γi = 0, i = 1, 2, 3. Hence, the expression of Kµν,

Kµν = R
(

β2Rµν + β3Tµν

)
, (43)

is obtained.
In this case, the field equations are:

1−Ωm = 9h4(b3Ωm(Ωm + 3)− b2(3Ωm + 4))

+ 3h3(z + 1)
(
b2
(
30h′Ωm − 64h′ + 9hΩ′m

)
− 3b3(2Ωm − 1)

(
2h′Ωm + hΩ′m

))
− 3b2h2(z + 1)2

×
(

2hh′′(3Ωm − 16) + 3h′2(5Ωm − 18) + 6hh′Ω′m
)

− 12 b2 h h′(z + 1)3
(

3hh′′ + 2h′2
)

, (44)
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and

1− 2(z + 1)h′

3h
= 9h4(b2(Ωm − 4) + b3(7− 3Ωm)Ωm)

+ h3(z + 1)(4h′(15b2Ωm − 14 b2 − 21b3Ωm)

+ 3h(7b2 − 2b3Ωm − 3b3)Ω′m)− h2(z + 1)2

×
(
b2(12hh′′(3Ωm − 8) + 9h2Ω′′m + h′2(135Ωm − 374)

+ 81hh′Ω′m) + 3b3(7h h′Ω′m + h2
(

Ω′′m − 2Ω′2m
)

− 4Ω2
m(hh′′ + 4h′2) + 2Ωm(hh′′ − h2Ω′′m − 9hh′Ω′m

+ 3h′2))
)
+ 2 b2 h(z + 1)3(27h′3(Ωm − 4) + 21hh′2Ω′m

+ h2(h′′′(3Ωm − 16) + 6h′′Ω′m) + hh′(2h′′(15Ωm − 67)

+ 3hΩ′′m)
)
+ 12 b2 (z + 1)4(h2h′′2 + 2h′4 + 6hh′2h′′

+ h2h′h′′′
)
, (45)

and the temporal component of Equation (10) in terms of redshift is:

(z + 1)
(
4h′Ωm + 2hΩ′m

)
− 6hΩm = 216h5Ωm

× (b3(Ωm − 1)− b2) + 36h4(z + 1)
(
h′Ωm(9b2

− 7b3(Ωm − 1)) + h
(
b3(1− 2Ωm) + b2

)
Ω′m
)

+ 18h3(z + 1)2h′
(
2h′Ωm(2b3(Ωm − 1)− 5b2)

− h(b3(1− 2Ωm) + 3b2)Ω′m
)
+ 18 b2 h2 h′2(z + 1)3

×
(
2h′Ωm + hΩ′m

)
. (46)

The evolution in terms of redshift z of the cosmological parameters h, Ωm and q are
shown in Figures 7–9 for different values of the parameters b2 and b3. In this case, as well
as in all other cases the parameters were chosen in such a way to obtain the closest possible
approximation of the ΛCDM model.

The Hubble function, h, presented in Figure 7, is an increasing function of z and
reproduces well the standard ΛCDM model. For low redshifts, the behavior of h is basically
independent on the model parameters.
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Figure 7. Variation of the Hubble function h as a function of z for Kµν = R
(

β2Rµν + β3Tµν
)

with
different values of the parameters b2 and b3: b2 = −.007 and b3 = 0.011 (solid curve), b2 = −0.08 and
b3 = 0.098 (dotted curve), b2 = −0.02 and b3 = 0.009 (dashed curve), and b2 = −0.01 and b3 = 0.006
(dot-dashed curve). The evolution of the Hubble function in the standard ΛCDM model is described
by the red solid curve.
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The ordinary matter density, Ωm, shown in Figure 8, is found to be a monotonically
decreasing function of time, whose evolution at high redshifts is strongly dependent on
the model parameters. For a particular set of values of b2 and b3, the variation of Ωm in the
standard cosmological model is reproduced almost exactly.
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Figure 8. Variation of the matter density Ωm as a function of z for Kµν = R
(

β2Rµν + β3Tµν
)

with
different values of the parameters b2 and b3: b2 = −.007 and b3 = 0.011 (solid curve), b2 = −0.08 and
b3 = 0.098 (dotted curve), b2 = −0.02 and b3 = 0.009 (dashed curve), and b2 = −0.01 and b3 = 0.006
(dot-dashed curve). The evolution of the matter density in the standard ΛCDM model is described
by the red solid curve.

The deceleration parameter, q, represented in Figures 9, shows a transition from a
decelerating to an accelerating cosmological phase. The evolution of the deceleration
parameter depends strongly on the adopted numerical values of the model parameters, b2
and b3. For a range of these parameters, the present model can reproduce quite well the
behavior of q at low redshifts.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

z

q

Figure 9. Variation of the deceleration parameter, q, as a function of z for Kµν = R
(

β2Rµν + β3Tµν
)

with different values of the parameters b2 and b3: b2 = −.007 and b3 = 0.011 (solid curve), b2 = −0.08
and b3 = 0.098 (dotted curve), b2 = −0.02 and b3 = 0.009 (dashed curve), and b2 = −0.01 and
b3 = 0.006 (dot-dashed curve). The evolution of the deceleration parameter in the standard ΛCDM
model is represented by the red solid curve.

4.4. Kµν = −γ1
(
Tgµν − Tµν

)
Finally, let us consider the case when only the coefficient γ1 is kept in Equation (19),

with all the other coefficients set to zero. Hence,

Kµν = −γ1
(
Tgµν − Tµν

)
(47)

is obtained.
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Let us also introduce the dimensionless parameter g1 defined as:

g1 =
H2

0
κ2 γ1. (48)

With the use of Equations (A1) and (A2), one can obtain the Friedmann and Raychaud-
huri equations in terms of redshift for this case:

1−Ωm =
3
2

g1h
(
Ωm
(
3h− 4(z + 1)h′

)
− 2h(z + 1)Ω′m

)
, (49)

1− 2(z + 1)h′

3h
= g1

(
3
2

h2Ωm(2Ωm − 3)

+ (z + 1)2
(

5hh′Ω′m + h2Ω′′m + 2
(

hh′′ + 2h′2
)

Ωm

)
− 2(z + 1)

(
hh′Ωm + h2Ω′m

))
. (50)

The divergence of the energy-momentum tensor (10) takes the form:

(z + 1)
(
4h′Ωm + 2hΩ′m

)
− 6hΩm = 18g1h3(3−Ωm)Ωm

+ 6g1(z + 1)2
(

2hh′2Ωm + h2h′Ω′m
)

+ g1(z + 1)
(
−9h3Ω′m − 48h2h′Ωm

)
. (51)

The evolutions in terms of redshift z of the Hubble parameter, h, the density parameter,
Ωm, and the deceleration parameter, q, are shown in Figures 10–12. The curves are obtained
for different values of the parameter g1 = −10,−1, 5, 15.
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Figure 10. Variation of the Hubble function, h, as a function of z for Kµν = −γ1
(
Tgµν − Tµν

)
with

different values of the parameter g1: g1 = −10 (solid curve), g1 = −1 (dotted curve), g1 = 5 (dashed
curve), and g1 = 15 (dot-dashed curve). The evolution of the Hubble function in the standard ΛCDM
model is represented by the red solid curve.

For this choice of Kµν, no accelerating expansion at late times is found. The evolution
of the universe is still expansionary, as shown by the evolution of the Hubble function in
Figure 10. The matter density, shown in Figure 11, is a decreasing function of the redshift,
in contrast with the ΛCDM model, indicating an increase of the matter density in time. This
effect is due to the non-conservation of the energy-momentum tensor of Equation (51). As
one can see from Figure 12, the deceleration parameter is positive, and is roughly constant
in the considered range of z. The variation of the numerical values of the parameter γ1 has
a little effect on the behavior of the cosmological parameters Ωm, q and h.
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Figure 11. Variation of the matter density, Ωm, as a function of z for Kµν = −γ1
(
Tgµν − Tµν

)
with

different values of the parameter g1: g1 = −10 (solid curve), g1 = −1 (dotted curve), g1 = 5 (dashed
curve), and g1 = 15 (dot-dashed curve). The evolution of the matter density in the standard ΛCDM
model is represented by the red solid curve.
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Figure 12. Variation of the deceleration parameter, q, as a function of z for Kµν = −γ1
(
Tgµν − Tµν

)
with different values of the parameter g1: g1 = −10 (solid curve), g1 = −1 (dotted curve), g1 = 5
(dashed curve), and g1 = 15 (dot-dashed curve). The evolution of the deceleration parameter in the
standard ΛCDM model is represented by the red solid curve.

5. Discussions and Final Remarks

The search for quantum gravity is one of the major topics of interest in nowadays
theoretical physics. However, despite the intensive effort invested in this direction, the
quantum properties of gravity are still elusive, and we presently lack a theory fully unifying
the two basic branches of physics. Hence, in order to have at least a basic understanding of
the quantum properties of gravity, we need to resort to some mathematical approximations,
or to some qualitative approaches. One of such semiclassical directions of research was
proposed in [55,57], and it is based on the idea of the decomposition of the quantum metric
into two components, one being the classical metric tensor, while the second one is a fluctu-
ating tensor, of quantum origin. By adopting another semiclassical approximation, one can
substitute the quantum fluctuating part by the average value of the tensor Kµν, representing
an effective classical term to be added to the standard metric of general relativity.

A first interesting consequence of this approach is that it leads, in the first order of
approximation and on a classical level, to several classes of modified gravity theories, with
geometry-matter coupling. For example, by assuming thatKµν ∝ gµν, a particular class
of the modified f (R, T) gravity theory [98] as a function of the Ricchi scalar, R, and the
trace of the energy-momentum tensor T, with geometry-matter coupling is obtained. These
extensions of standard general relativity have been intensively studied in their different
versions [98], but the possible relation with effective semiclassical theories of gravity has
not been pointed out. Modified gravity theories with quantum metric fluctuations, even
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formulated in a semiclassical and effective form may give some insights into the quantum
nature of gravity, and its manifestations at the level of the classical world. An important
property of all modified theories with geometry-matter coupling is the non-conservation
of the matter energy-momentum tensor. This is also a basic property of quantum field
theories in curved space-times. Hence, the particle creation processes present in modified
gravity theories with geometry-matter coupling may point towards a possible relation
between these classes of theories and quantum effects in gravity.

However, in the general formulation of the modified gravity theories in the presence
of quantum metric fluctuations, the mathematical form of the fluctuation tensor Kµν is
arbitrary. In the present paper, the functional form of Kµν is fixed by considering the
Newtonian limit of the theory. This leads to the derivation of the generalized Poisson
equation, which contains several correction terms, with respect to its standard form. By
requiring that the model passes the standard tests of gravity at the level of the Solar System,
we can fix the form of the fluctuation tensor as given by Equation (19). Generally, Kµν can
be obtained as a linear combination of the Ricci tensor, the energy-momentum tensor, and
the metric tensor, with the coefficients functions of the Ricci scalar R and of the trace of the
energy-momentum tensor T.

As a next step, in this investigation, the quantum corrected classical Lagrangian is
obtained along with the general effective Einstein equations, corresponding to an arbitrary
Kµν [61]. Then, using the general form of Kµν, a few classes of cosmological models can be
constructed that are consistent with the Solar System tests. More exactly, four classes of
models are studied. In the first two models, Kµν is proportional to the Ricci tensor, and the
matter energy-momentum tensor, respectively, with the proportionality coefficients given
by linear combinations of R and T. In the third model, we have assumed that Kµν can be
obtained as a linear combination of the Ricci tensor and the energy-momentum tensor. In
the fourth model, Kµν is determined by the energy-momentum tensor and its trace only,
i.e., by the properties of the matter filling the universe.

A detailed investigation of the cosmological properties of the models, obtained for
these specific functional forms of Kµν, was performed using numerical methods. Exact
solutions of the field equations seem to be impossible to be found, due to the extreme
mathematical complexity of the generalized Friedmann equations. The behavior of the
Hubble function, of the matter density and of the deceleration parameter were investigated,
and for each case, the model predictions are compared with the cosmological results,
obtained in the framework of the standard ΛCDM model. Overall, the cosmological
evolution strongly depends on the choice of the function Kµν, and of the parameters of
the specific models. Generally, the models can reproduce the predictions of the standard
ΛCDM model, and, thus, describe both decelerating and accelerating phases. To test
these models, a detailed comparison with the observational data is necessary. In the
present approach, a phenomenological approach is used, by adopting, for the quantum
perturbation tensor, some specific functional forms that passes the Solar System tests.
However, even this strong criterion cannot uniquely fix the form of Kµν, and, thus, for
different choices of the quantum perturbation tensor drastically different astrophysical and
cosmological behaviors may emerge.

In most of the considered models, in the large time (small redshift) limit, the universe
enters into an accelerating phase. The present day value of the deceleration parameter
q ≈ −0.53 can be obtained for large range of parameter values for the first three considered
forms of Kµν. By varying the model parameters, a wide variety of cosmological evolutions
can be constructed, with some of them reproducing almost exactly the results of the
standard ΛCDM model. However, other models do show significant deviations from it.
If the variations of the Hubble function and of the deceleration parameter are, for the
first three models, qualitatively consistent with observations, some significant differences
do appear in the evolution of the matter density. In the first, the second and the fourth
here considered cosmological models, for some specific values of parameters the matter
energy-density is increasing in time. This unusual behavior is a direct consequence of
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the non-conservation of the energy-momentum tensor, which can also be interpreted as
related to the creation of ordinary matter by the gravitational field. Such processes may
play an important role in the early stages of the evolution of the universe, as possible
alternatives to the reheating phase of the post-inflationary era. We would also like to point
out is that purely decelerating cosmological evolution over a large range of redshifts can
also be obtained.

The ultimate challenge present day theoretical physics faces is the problem of the
quantization of the gravitational field. Unfortunately no exact solutions for this problem
are known. Hence to answer the question of the existence of quantum effects in gravity one
should resort to approximate, semiclassical methods. A promising way in this direction
could be represented by the consideration, in an additive way, of some tensor fluctuating
terms in the metric. The quantum mechanical origin of these terms can be well motivated
physically. Such approaches lead to classical gravity models with geometry-matter cou-
pling, and to the non-conservation of the matter energy-momentum tensor. Consequently,
the particle production processes, specific to these classes of theories, may be an indication
of their deep relation with effective descriptions of quantum gravity. On the other hand,
the investigations of the gravitational models with fluctuating quantum metrics could
lead to a better understanding of the physical basis of the modified gravity theories with
geometry-matter coupling. In the present paper, we considered some of the cosmological
implications of the modified gravity models, induced by the quantum metric fluctuations,
and some basic theoretical and mathematical tools were introduced that might be used for
further investigations of the quantum mechanical effects in gravity and in the geometry of
the spacetime.
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Appendix A. The Generalized Friedmann Equations

The generalized Friedmann and Raychaudhuri equations, obtained by adopting for
the fluctuation tensor the expression given by Equation (19), can be written as:

κ2ρeff =
3
2

γ1H(A3 + ρ̇) + γ2
(
3κ2HA1ρ− 18ρ̇H3

−6ρHḦ − 6HḢA3 + 3ρḢ2)− 1
2

γ3ρ2
(

3H2 + κ2ρ
)

+9β2

{
κ2
[
ρ(Ḣ2 − 2HḦ)− 3H3A1 − 2HḢA3

]
(A1)

−12H4(H2 − 8Ḣ) + 2Ḣ2(17H2 − 2Ḣ)

+4HḦ
(

8H2 + 3Ḣ
)}

+ 3β3H
[
3H2(A3 − 2ρ̇)

+κ2ρ(A1 + ρ̇)
]
,
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and

−κ2 peff = γ1

[
ρ̈− 2ρḢ + 3Hρ̇ + ρ (κ2ρ− 9

2
H2)

]
+

1
2

γ3ρ
[
3ρ
(

κ2ρ− 5H2
)
− 4Ḣρ− 4Hρ̇

]
+ γ2

[
18ρH2 ×(

Ḣ + 2H2
)
− 12Hρ̇

(
H2 + 2Ḣ

)
− 2ρ̈

(
Ḣ + 3H2

)
−6ḦA2 − ρ

(
2

...
H + 3Ḣ2

)
+ κ2

(
ρρ̈ + ρ̇A4

−3ρ2(Ḣ + H2)
)]

+ β2

{
12

...
H
(

8H2 + 3Ḣ
)
+ 12Ḧ ×(

48H3 + 3Ḧ + 50HḢ
)
+ 6Ḣ2

(
243H2 + 28Ḣ

)
− 108H4 × (A2)

(H2 − 6Ḣ) + κ2
[
ρ (3H4 − 2

...
H)− ρḢ

(
5Ḣ + 16H2

)
−2ρ̇H(9Ḣ + 5H2)− ρ̈ (2Ḣ + 3H2)− 4ḦA3

]}
+β3

{
3H2(21H2ρ + 2Hρ̇− ρ̈) + 6HḢ(11Hρ− ρ̇)

+6ρḢ2 − 2κ2
[
ρ2
(

4Ḣ + 9H2
)
− 2ρ̇A2 − 2ρρ̈

]}
,

with

An = ρ̇ + n Hρ, n = 1, 2, 3, 4. (A3)

References
1. Hilbert, D. Die Grundlagen der Physik. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen–Mathematische-Physikalische

Klasse; Vandenhoeck & Ruprecht: Göttingen, Germany, 1915; Volume 1915, pp. 395–407.
2. Einstein, A. Die Feldgleichungen der Gravitation. In A. Königlich Preussische Akademie der Wissenschaften; Vandenhoeck & Ruprecht:

Göttingen, Germany, 1915; Volume 25, pp. 844–847.
3. Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Annalen Phys. 1916, 49, 769. [CrossRef]
4. Turyshev, S.G. Experimental Tests of General Relativity. Ann. Rev. Nucl. Part. Sci. 2008, 58, 207. [CrossRef]
5. Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [CrossRef]
6. Marchi, F.D.; Cascioli, G. Testing General Relativity in the Solar System: Present and future perspectives. arXiv 2019,

arXiv1911.05561.
7. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.;

et al. LIGO Scientific and Virgo Collaborations. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev.
Lett. 2016, 116, 061102. [CrossRef]

8. Akiyama, K.; Alberdi, A; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D; Baloković, M.; Barrett, J.; Bintley, D.; et al. Event
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