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Abstract: Ongoing social restrictions, including social distancing and lockdown, adopted by many
countries to inhibit spread of the the COVID-19 epidemic, must attempt to find a trade-off between in-
duced economic damage, healthcare system collapse, and the costs in terms of human lives. Applying
and removing restrictions on a system with a given latency as represented by an epidemic outbreak
(and formally comparable with mechanical inertia), may create critical instabilities, overshoots, and
strong oscillations in the number of infected people around the desirable set-point, defined in a practi-
cal way as the maximum number of hospitalizations acceptable by a given healthcare system. A good
understanding of the system reaction to any change of the input control variable can be reasonably
achieved using a proportional–integral–derivative controller (PID), which is a widely used technique
in various physics and technological applications. In this paper, this control theory to is proposed to
be applied epidemiology, to understand the reaction of COVID-19 propagation to social restrictions
and to reduce epidemic damages through the correct tuning of the containment policy. Regarding
the synthesis of this interdisciplinary approach, the extended to the susceptible–infectious–recovered
(SIR) model name “SIR-PID” is suggested.

Keywords: pandemic lockdown; non-linear processes; complex systems; Covid-19; SARS-CoV-
2; SIR compartmental models; proportional–integral–derivative (PID) controllers; PID tuning;
numerical methods

1. Introduction

The diffusion of the coronavirus disease (COVID-19) outbreak, caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1,2], is described, as for typical
epidemics, by the so-called basic reproduction number (or ratio), usually denoted R0 [3] and
defined as the expected number of new infections from a single new case in a population
where all subjects are susceptible.

A sizeable fraction of people infected by COVID-19, especially those who are older
and with underlying preexisting medical problems, are likely to develop a serious illness
with a fatality rate well above the typical seasonal influenza [4]. To mitigate this problem,
many countries have adopted drastic or moderate social restrictions to reduce and control
R0 by limiting the population mobility, which determines the interactions among people.
In early 2020, due to the lack of data on virus diffusion and transmission dynamics, social
distance policies emerged as the main method to mitigate the outbreak [5–7].

Another parameter, called the effective reproduction number and labelled as Rt, is
also used and accounts for the evolution of R0 in time. However, for the sake of notation
simplicity, let us keep one definition in compliance with the standard compartmental
models used in epidemiology that is described below.

In this paper, an attempt to study how to manage the diffusion of COVID-19 by
exploiting the concept of control loop mechanism, used in physics technologies, is made.
This idea is based on the consideration that social restrictions aimed at reducing the
diffusion of the virus that, at the same time, imply a negative impact of the pandemic
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on the economy. Therefore, the need to balance these effects appears obvious. Such an
operation is typical of a modulated control mechanism. The use of dynamic control theories
has been applied to the diffusion of a virus [8] and to lockdown effects [9] although with a
different approach to this study. In those approaches, the optimal lockdown policy, in a
mathematical model-dependent framework, is typically chosen to maximize a given social
objective as a trade-off between the economic loss and the cost of the epidemic. In this
paper, a generalization of those approaches through the integration with a well-known
control theory used in physics and engineering is proposed.

As a general consideration, drastic social restrictions, such as the so-called lockdown,
cannot last too many weeks because it may cause serious damage to the economy; on
the other hand, relaxing too much the epidemic containment in a subsequent phase may
cause a restart of the pandemic growth, thus, setting a country into an even more critical
status [10]. The best condition would be a compromise in which R0 is brought close to the
unity (or, better, ≤1) with the number of active cases reasonably close to a given threshold,
represented by the capability of a healthcare system to maximize the number of recovered
people and to avoid system collapse. This threshold is reasonably close to the maximum
number of available intensive care hospitalizations. This steady condition is meant to be
optimal, while waiting for the manufacture and the administration of a vaccine [11].

The problem of manipulating the people’s mobility, and thus trying to change R0,
is, in general, not straightforward for the enormous inertia (resistance to changes) of the
epidemic propagation. This is due to two factors that characterize COVID-19, namely the
long incubation period or latency (up to 14 days [12]) and the long recovery time (up to or
longer than one month). In simple terms, it is not easy to act on a system with such a long
latency and fast reaction to relaxation [13–16]: if one tries to relax the restrictions or wait
too long to set them, the effects will be visible only after a certain period. This behaviour is
analogous to mechanical inertia.

In fact, one has seen, from the beginning of 2020 to the present, more than a year
later, multiple waves of infections that have devastated many countries in a desperate
attempt to set restrictions to slow down the pandemic diffusion and, soon after, release
them when the situation seemed to have improved. This policy has not been effective: see
for example the COVID-19 “new cases” trends of many countries in Europe and/or in
America from the beginning of the pandemic to the beginning of the vaccinations [17]. The
observed pandemic restriction behaviour can be compared with the typical cases in many
technological systems in which a control system attempts to reach a set-point in a smooth
way avoiding dangerous stress and unstable oscillations of the system itself.

The control system theory is quite complicated, and different solutions have been
studied over the centuries [18]. One fundamental approach, sometimes with some lim-
itations, but in general with high performance, is the proportional–integral–derivative
controller (PID) [19]. In this paper, the most important features of this theory are exploited
to understand the evolution of the COVID-19 outbreak when controlled with social re-
strictions. This modelling may help in understanding the COVID-19 evolution in many
countries. Its description can be used to choose the right sequence of social restrictions
during an epidemic. The novel aspect of the present analysis, which is called “SIR-PID”
here, extending the susceptible–infectious–recovered (SIR) model, is the application of a
well-established control technology to epidemiology science, with the advantage of gaining
a new tool for limiting and controlling the social and economical damage produced by a
serious epidemic, such as COVID-19, that is expandable to many epidemiological models
and, in principle, will work even without a specific model.

In Section 2, the PID controller theory is introduced with its most important features.
In Section 3, a mathematical model for the COVID-19 epidemic evolution is described
based on the time-dependent modification of the SIR compartmental model. In Section 4,
the numerical implementation of the resulting SIR-PID model is given, proposed as a
test-bench model. In Section 5, the tuning of the SIR-PID coefficients is described. Finally,
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in Section 6, a simple method of implementing the mechanism on real data dealing with
large statistical uncertainty is recommended.

2. The PID Controller

A PID controller is a feedback control loop mechanism widely used in technical
systems in which a continuously modulated control is required [19]. Even if certain basic
properties were grasped a few centuries ago, the first mathematical formalization dates back
to the early 1900s [20]. Currently, PID controllers are used in many automatic processes
that require high stability and optimization, but they have interesting applications also in
understanding complex biological systems [21,22].

The PID computes on line the time t-dependent error value input, e(t), as the difference
between a desired set-point (SP) and a measured process variable (PV), received as feedback.
A PID applies correction through the control variable output, u(t), consisting of a weighted
average of a proportional (P), integral (I), and derivative (D) terms, according to the flow
diagram reported in Figure 1. The controller essentially aims at minimizing the error over
time by updating the control variable to a newer value established by control terms. Its
explicit mathematical formulation reads:

u(t) = Kpe(t) + Ki

∫ t

0
e(t′)dt′ + Kd

de(t)
dt

, (1)

where Kp, Ki, and Kd represent the proportional, integral, and derivative terms, respectively.

Figure 1. Flow diagram of the proportional–integral–derivative controller (PID) controller. The time
t-dependent error function, e(t), is the difference between the set-point (SP) and a measured process
variable (PV). The weighted average of the P, I, and D contributions determines the output control,
u(t), for the specific system to be controlled.

The meaning of the three terms can be summarized as follows. The proportional
term represents the action of the present condition of the system and is proportional to
e(t) through the coefficient Kp. The proportional control alone generates a response only
if e(t) is different from zero. In other words, if the error is positive, the control output is
correspondingly positive and vice versa. The integral term takes into account the past,
by adjusting the control output with the cumulative residual error e(t). The integral term
stops growing when the set-point is reached, keeping the desired set-point. Finally, the
derivative term gives an estimation of the future condition. The control is proportional to
the error change rate. Fast change induces fast control and vice versa.
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The optimized choice of K’s parameters is achieved after a loop tuning process [23,24].
The values are related to the system response, and they can be tuned with different methods
observing the behaviour of the system response after fixing or moving a given set-point.
For further detail, see Section 5.

3. The SIR-PID Model

To model the behaviour of the COVID-19 epidemic in the presence of social restrictions
aiming at changing the basic reproduction number R0, let us consider a basic SIR compart-
mental model [25,26]. This model is modified to account for a time-dependent R0(t) as
described in [27]. Hereafter, this model is referred as SIR-PID. A remark is in order. The
basic SIR compartmental model can be expanded to make more elaborate models, such as
the one described in [28]. In addition, Monte Carlo methods have also been introduced to
enlarge the dynamic of the diffusion taking into account inhomogeneities in the population
affected by the virus [29].

In this study, the standard SIR model assumptions are used to exploit the PID feedback
method. It is worth noting that, if the system response is known a priori, the control condi-
tion can be determined mathematically, independently of the PID mechanism, or one can
calculate the PID coefficients a priori. In principle, one can forget this aspect and proceed
as if the epidemic system response was completely unknown. This generalizes the specific
control to a real epidemic system, such as the COVID-19, i.e., not completely modelled in
all its, sometimes unknown, details, giving to the present analysis the potentiality of being
applied to model-independent systems.

In the model, three categories of individuals are distinguished, known as compart-
ments: S(t) for the number of susceptible, I(t) for the number of infectious, and R(t) for
the number of recovered, or better removed. The last category might include recovered and
deceased individuals together or separately. Based on these assumptions, the mathematical
model is written in terms of the following set of differential equations:

dS(t)
dt

= −γI(t)R0(t)
S(t)
N

,

dI(t)
dt

= γI(t)
(

R0(t)
S(t)
N
− 1
)

,

dR(t)
dt

= γI(t) ,

(2)

where γ is the recovery rate, and N = S(t) + I(t) + R(t) is a constant defined with its
derivative being equal to zero. In order to match the standard SIR model, γR0 corresponds
to β, usually called the transition rate.

If a susceptible population of S(t = 0) = N people is affected for the first time by the
disease outbreak, the initial conditions of the system (2) can be easily cast as: N(0) = N0,
I(0) = I0, and R(0) = 0. In the basic SIR model, as reported above, R0 determines the
dynamic of the infection, and emerges as the ratio β/γ. With this definition, let us focus on
the second equation in system (2). From this equation it follows: dI

dt (0) > 0 if R0 > N/S(0).
Therefore, the epidemic decreases when R0 < N/S(0).

Figure 2 shows the evolution of the compartments under assumption that the basic
reproduction number decreases exponentially as a function of time. This represents a
typical situation when social restrictions are applied progressively from mild to strong
conditions; see [27] for further details.
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Figure 2. Example of time-dependent susceptible–infectious–recovered (SIR) model prediction, in
which the basic reproduction number decreases exponentially from the beginning of the disease
epidemic outbreak. The initial susceptible population S (blue) is converted into infected I (red)
according to the time-dependent basic reproduction number, R0. Finally, according to the strength of
the recovery rate,γ, population I is converted into removed R (green). The grey curve represents the
sum of R+I, and is usually very well approximated by a logistic curve (the parameters used in these
examples are 1/β ∼ 2.5 days, where β is the transition rate, and 1/γ ∼ 35 days).

4. SIR-PID Numerical Implementation

In order to implement and study a simple SIR-PID model, let us group the standard
compartment functions S(t), I(t), and R(t) in a vector Y = (S, I, R). The system (2) can be
easily recast as

dY(t)
dt

= F(Y(t)) (3)

with the initial condition: Y(0) = Y0, where F represents the nonlinear vectorial function
defined in the SIR equations (see the three equations in system (2)).

The system can be solved numerically using e.g., the Runge–Kutta method [30,31]
even if, for the sake of simplicity, one considers a simple forward Euler’s method [32]. The
latter states that, for each constant iteration ∆t = tn+1 − tn, the solution of the differential
equation can be incremented as:

Y(tn+1) = Y(tn) + F(Y(tn))∆t, (4)

In particular, the second component of Y(t), representing the infected people or
active cases,

I(tn+1) = I(tn) + γI(tn)

(
R0(tn)

S(tn)

N
− 1
)

∆t, (5)

is the output of the PID controller, while u(t) = R0(t)/AR is the input control variable,
where AR is a normalization constant, that can be chosen equal to one for having a 100%
increment at R0 = 1. Defining the error e(tn) = (ISP − I(tn))/AI (with e.g., AI = ISP to
normalize the response), the SIR-PID model is then implemented as

u(tn) = Kpe(tn) + Ki

(
n

∑
j=0

e(tj)∆t

)
+ Kd

(
e(tn)− e(tn−1)

∆t

)
. (6)
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The second and third terms of the right-hand side represent the numerical approxima-
tion of the integral and the derivative of the error e(t), respectively. Finally, let us put some
reasonable ingredients in the model:

(i) Let N = 107 be the typical population of a small country or region. To understand
the SIR-PID response, N must be greater than the typical infected population, to avoid the
so-called herd immunity turning point, as expected for the free evolution of epidemics
without any attempt of containment.

(ii) One can imagine that the outbreak starts with an out-of-control patient zero. The
initial condition is, therefore, Y = (N, 1, 0).

(iii) R0(t) can range from 0.5 to 10. Let us assume that a country cannot do a total
lockdown (R0 = 0), as some basic goods and services must be guaranteed. R0 = 10
represents, in this case, the maximum reproduction number, corresponding to the absence
of restriction by governments and/or by freedom of action of citizens. This value is
assumed as the starting condition for the control variable.

(iv) Social restrictions are applied by the government through official orders every
two weeks (∆T = 14 days, the typical time of the virus latency) and, after application,
R0 decreases anyway by the inertia of one unit per day. In other words, when a new law
restricts people’s mobility, it may take some time to obtain the result, because people need
time to become used to the new recommended behaviours. This explains the choice in the
modelling made here.

(v) Let the set-point be ISP = 10, 000, representing a threshold chosen in order to
not make the healthcare system collapse and guarantee a certain number of intensive
care patients.

(vi) Let us choose γ = 1/30 assuming one month for the typical recovery time.
(vii) Finally, to guarantee good accuracy of the solutions of Equation (3) with the

forward Euler’s method, let us set ∆t = 0.0001 day.
The system is free to evolve and ready for tuning.

5. Tuning and Interpretation

The tuning process aims at the best calibration of the proportional gain, the integral
gain, and the derivative correction to select the proper proportional bands. The final
goal is to reach system stability within the desired range with the desired time scale.
The PID tuning is a quite complex problem because each system has a different (very
often unknown) response, even if the selection of the P, I, and D parameters may look
quite intuitive.

Many different procedures have been developed over the years. Some empirical rules,
such as Ziegler–Nichols tuning [33], appear quite flexible and usable for the majority of the
technological applications. It is also possible to determine the PID coefficients performing
complex system simulations, and there are many algorithms of self-tuning. For further
details, see e.g., [34].

In summary, the tuning can be a manual process based on experience, a methodical
process based on known rules, an automatic process based on software, or a combination
of them. Manual tunings can be time-consuming and can damage the system if the reaction
is completely unknown, while a tuning based on rules, as Ziegler–Nichols, is faster and
safer, even if it cannot be applied to all systems. Conversely, an automatic tuning based on
software tools can identify the system model from test samples of data and model the PID
controller with specific algorithms.

To have an idea of a tuning process, let us consider a manual approach. The starting
point is setting Kd = Ki = 0 with increasing only the Kp process until the output starts
oscillating. At this point, Kp can be almost halved, and the user can start increasing Ki (to
compensate the offset with respect to the set-point) and Kd (to react to the fast changes and
damping, a possible ringing around the off-set). An example reported in Figure 3 shows the
contribution of the different terms during manual tuning. In particular, Figure 3 shows a
generic system responding respectively to a pure proportional control (red), a proportional
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corrected with the integral term (yellow) for removing the bias with the set-point (dashed
black), and finally with oscillation damped by the derivative term (violet).

Figure 3. Tuning example: simulation of a generic system responding respectively to a pure propor-
tional control (red), a proportional corrected with the integral term (yellow) for removing the bias
with the set-point (dashed black) and finally with oscillation damped by the integral term (violet).
The values used here for the proportinal, derivative, and integral terms are Kp = 1, Kd = 0.4, and
Ki = 0.2, respectively.

Following a manual tuning, the different behaviours of the SIR-PID is reported below
when introducing step by step different values for the PID coefficients.

Figure 4 shows the behaviour of input R0 (top) and output I(t) bottom with Kp = 10,
Ki = Kd = 0. The dashed black line represents the set-point. A very strong proportional
action only was not able to stabilize the system. This corresponds to the complete absence
of restrictions at the beginning and a drastic lockdown when the threshold is reached,
and this behaviour was repeated every time the set-point was reached, causing many
out-of-control devastating epidemic waves. This scenario could happen when excessive
optimism makes the restrictions relax too early until the situation becomes out-of-control
again and another drastic lockdown is needed. Such behaviour has been seen in many
countries since the beginning of 2020.

In Figure 5, the behaviour of input R0 (top) and output I(t) (bottom) with Kp = 5
and Ki = Kd = 0 is shown. A milder proportional term avoids a strong overshoot at the
first reach of the set-point but is not sufficient for damping the system oscillation. This
corresponds to a less drastic social restriction at the beginning and then a subsequent
attempt to stabilize the rate with a mild and strong lockdown. This situation could be, in
principle acceptable, yet the residual oscillations can create instabilities and make people
unhappy with the continuous changes of the restrictions policy.

Finally, Figure 6 shows the behaviour of input R0 (top) and output I(t) (bottom)
with optimal tuning Kp = 2.4, Ki = 0.04, and Kd = 0.004. The optimal tuning, which
includes the integral and derivative term, allows reaching the set-point smoothly. This
corresponds to a mild lockdown at the beginning and a subsequent fine-tuning of the
restriction, corresponding to the final social distancing that can remain unchanged. This
scenario is optimal and can be afforded by a country to avoid strong economic damages
and finding a good compromise while waiting for a different solution, like vaccination.

Even this last scenario could require further corrections because of many other effects,
like the possible change of R0 due to the environmental conditions or to the possible
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attenuation or increase of the COVID-19 virulence with virus variants. These are the
reasons why a warning was made above that the SIR-PID model is only a test-bench
theoretical model and that the final fine-tuning can be found probing the real COVID-19
system with PID control actions.

Figure 4. Example of PID controller simulation. Behaviour of (top) the input basic reproduction
number, R0, and (bottom) the output number of the infectious individuals, I(t), with Kp = 10,
Ki = Kd = 0. The dashed black line represents the set-point. A very strong proportional action only
is not able to stabilize the system. This corresponds to the complete absence of restrictions at the
beginning and a drastic lockdown when the threshold is reached, and this behaviour is repeated
every time the set-point is reached, causing many out-of-control devastating epidemic waves.
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Figure 5. Example of PID controller simulation. Behaviour of (top) the input basic reproduction
number, R0, and (bottom) the output number of the infectious individuals, I(t), with Kp = 5 and
Ki = Kd = 0. The dashed black line represents the set-point. A mild proportional term avoids
a strong overshoot at the first reach of the set-point but is not sufficient for damping the system
oscillation. This corresponds to a less drastic social restriction at the beginning and then a subsequent
attempt to stabilize the rate with the mild and strong lockdowns.
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Figure 6. Example of PID controller simulation. Behaviour of (top) input basic reproduction number,
R0, and (bottom) the output number of the infectious individuals, I(t), with tuned Kp = 2.4,
Ki = 0.04, and Kd = 0.004. The dashed black line represents the set-point. The optimal tuning, which
includes the integral and derivative term, allows reaching the set-point smoothly. This corresponds
to a mild lockdown at the beginning and a subsequent fine tuning of the restriction corresponding to
the final social distancing that can remain unchanged.

6. Application on Epidemiological Datasets

Working with real data is not trivial due to large fluctuations in the sampled data,
essentially due to the intrinsic statistical nature of the phenomenon and, more importantly,
due to the discontinuous procedure of the administration of medical tests. For that reason,
the computation, especially of the derivative, can be affected by large uncertainty that may
cause a false understanding of the system reaction.

It is good practice, therefore, to smooth the data using, for example, a local regression
(LOESS) method based on a Savitzky–Golay filter [35]. Once the data are flattened by the
smoothing process, the integral can be numerically computed using e.g., Simpson’s rule,
while a stable derivative estimation can be performed applying Richardson’s extrapolation
method [36].

As an example, the analysis of the Italian data during the first epidemic wave in
2020 [17] and its interpretation in terms of the present model are reported. Figure 7 shows
the data preparations for the implementation of the PID algorithm on real data. In particular,
Figure 7 (top left) shows the active cases evolution, I(t). The black curve represents its
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smoothing obtained with LOESS. The dashed horizontal line represents a hypothetical
set-point of e.g., 30,000 cases for the epidemic control.

Figure 7 (top right), shows the error function, e(t), (blue) of I(t) with respect to the
chosen set-point and its integral (green) and derivative (red), corresponding to the pro-
portional, the integral and the derivative responses, respectively, as required by the PID
method. All of the three functions are built from the smoothed I(t) using a LOESS algo-
rithm. Figure 7 (bottom left) reports the daily new infections It with its LOESS smoothing
(black). Finally, Figure 7 (bottom right) shows the R0 evolution deduced from It, using a
common method described e.g., in [37]. In particular, the evolving R0 is calculated as

R0 =
It

∑t
s=1 ws It−s

, (7)

where ws is the probability of having s days between an infected subject and a new infection
caused by the same subject (here assumed to be naively uniform for s in the interval [0, 1/γ],
e.g., [0, 35] days, see Section 2). R0 is found to decay almost exponentially, as obtained with
a different method in [27].

Figure 7. Top left: Active cases in Italy during the first epidemic wave in 2020. The black curve represents its smoothing
obtained with the local regression method (LOESS). The dashed horizontal line represents a hypothetical set-point of,
e.g., 30,000 cases. Top right: (in arbitrary units) The error function e(t) (blue) of I(t) with respect to the chosen set-point
and its integral (green) and derivative (red), corresponding to the proportional, the integral, and the derivative responses,
respectively, as required by the PID method. All of the three functions are built from the smoothed I(t). Bottom left: Daily
new infections, It, with its LOESS smoothing (black). Bottom right: R0 evolution deduced from It; see text for details.

From this particular example, it is clear that the Italian government adopted a slow
and progressive restriction policy causing the R0 exponential fall-out. This approach, as
shown in Section 4, does not allow the smooth approach to a possible set-point consisting
of a few tens of thousands but caused a strong overshoot that required a great deal of time
to recover. A different approach would have been considering a correct balance between
the P, I, and D terms, as suggested from the PID theory, by looking at the corresponding
responses reported in Figure 7 (top right).
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In a possible implementation of the PID control method, R0 to be considered as an
input parameter even though it is not generally easy to determine this parameter from
the data with an ongoing outbreak, see [3]. As a consequence, R0 has to be interpreted,
at leading order, in terms of people mobility even if environmental effects and intrinsic
changes can modify the COVID-19 virulence. If one makes this simple hypothesis, R0,
from 0 to Rmax

0 (10, in the example considered), can be interpreted as 10 levels of people
mobility, from drastic lockdown (R0 = 0) to free epidemic evolution (R0 = Rmax

0 ). Values
in between represent different gradations of the social distancing ruled by official orders
set every 14 days, the typical time scale of the COVID-19 epidemic latency. This time could
be even shorter, according to the data availability. A day-by-day update of the control is, in
principle, possible, however, likely not feasible from a social point of view.

The mobility can be determined a priori considering the daily traffic of different society
compartments as, e.g., basic goods production/services, massive industrial production,
shops and markets, public transportation, open-air sports, gyms, entertainments, etc.
This mobility can include or not the usage of protective devices (as masks, gloves, and
disinfectants) and the application of safety distances, or a limited number of indoor people,
and so on. Once the mobility scale from 0 to 10 is defined according to mobility/protection
estimations, one can test the SIR-PID model on the real COVID-19 data. Probing the system
with social restrictions, one can determine the optimal tuning of the SIR-PID coefficient to
smoothly reach the desired set-point, thus, minimizing the outbreak damages.

7. Conclusions

In this paper, the use of the proportional–integral–derivative (PID) control theory for
the COVID-19 epidemic control is proposed. This well-established technique can be useful
both for understanding the behaviour of the infected population during an intermittent
lockdown and for defining a strategy for a lockdown policy to establish optimal control. In
particular, it is demonstrated that the COVID-19 outbreak, with the attempt at containment
through social restrictions by governments, can be modelled and understood in terms of
the PID controller mechanism, which is used in various applications of complex systems.

Using a simple time-dependent modification of the SIR modelling of the COVID-19
outbreak evolution, a test-bench model called SIR-PID is built to test the possibility of using
a PID controller to achieve the desired containment threshold smoothly, aiming at avoiding
serious damages in terms of economical crisis and especially in terms of human life costs.
The implementation assumes the basic reproduction number, R0, as input parameter and
the number of infected (or active cases) as output. Even if R0 is not directly accessible as an
input parameter, it can be reasonably substituted by people’s mobility, which can be easily
estimated and classified in a gradation scale ranging from a drastic lockdown to the free
evolution of the pandemic. In addition, a numerical recipe is provided for simulating the
epidemic that can be extended to more complex epidemiological models.

In the study, it is shown that, in using a loop-tuning procedure, this goal was achiev-
able in a satisfactory way. This result allows us to exploit this procedure on real data,
even if the real COVID-19 outbreak system is more complex due to other potential effects
contributing to the time variation of R0. For the basic model considered, it is shown that
the best way of achieving an optimal control is to react promptly at the beginning of the
pandemic by lowering the mobility by a factor of two and then to increase the social re-
strictions slowly to reach the desired set-point that is deemed affordable for the healthcare
system. This procedure is desirable when the pandemic is already out of control over a
wide geographical area because the first attempt should be the complete confinement of the
outbreak by drastically limiting the patient zero areas and nearest contacts, when possible.

The advantage of using a well-known PID control theory instead of relying on tra-
ditional control methods, based on numerical simulations and rules suggested by the
experience, is mainly its flexibility. Once the input and output variables have been selected,
the PID controller, through the tuning process, can probe the system and calibrate the
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parameters—the proportional, integral and derivative terms Kp,i,d— even the features of
the system are not perfectly known and cannot be simulated a priori.

Furthermore, instead of delaying the epidemic peaks and relaxations (waves), this
allows us to smoothly approach the desired set-point (in principle, changeable during the
different phases of the pandemic) and to keep it almost constant, in compliance with the
healthcare system availability. If the epidemic model can be simulated, the tuning process
is even faster, as, in this case, the PID parameter, as in the SIR example, can be determined
from the theory. A good epidemic modelling, even if not perfectly correct, is useful for
sketching out the preliminary configuration and is further improvable on real data with
subsequent fine-tuning.

In this study, the case of keeping the number of infectious people, I(t) close to the
threshold set-point ISP is mainly discussed, approaching it smoothly and avoiding strong
overshoots. However, when the conditions for the propagation of the virus drastically
change (e.g., due to a vaccination campaign) the conditions naturally changes to I(t) < ISP.
In other words, the system, even if completely released, would not be able to increase
I(t) any further. At this moment, an “exit strategy” is needed. There are two options: (i)
maintaining the PID coefficients as they are and waiting for the epidemic to extinguish
naturally; or (ii) further reducing, when possible, the set-point, thus, decreasing the mobility
to speed up the conclusion of the epidemic and eventually the return to normality.

In addition to the simple SIR model, the SIR-PID is proposed here as a starting point
for an interdisciplinary approach in epidemiology. More complex models can be elaborated
without changing the core of the problem: the epidemic control is an input–output system
that is sufficiently complex and needs to be stabilized around a desired set-point, and this
is a problem that is very well approached and solved in PID controller theory.
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