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Abstract: In this paper, a current that is called spin current and corresponds to the variation of
the matter action in BF theory with respect to the spin connection A which takes values in Lie
algebra so(3, C), in self-dual formalism is introduced. For keeping the 2-form B I constraint (covariant
derivation) DB! = 0 satisfied, it is suggested adding a new term to the BF Lagrangian using a new
field ¢, which can be used for calculating the spin current. The equations of motion are derived
and the solutions are dicussed. It is shown that the solutions of the equations do not require a
specific metric on the 4-manifold M, and one just needs to know the symmetry of the system and the
information about the spin current. Finally, the solutions for spherically and cylindrically symmetric
systems are found.
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1. Introduction

The BF theory on 4-manifold M is a topological theory, which includes constraints when
terms turn to gravity theory [1]. The fundamental variables are 2-form B € Q?(M;s0(3,1))
and spin connection w, which takes values in Lie algebra s0(3,1), and all derivatives are
linear and applied only on w, which makes it easy for canonical formalism, finding the
phase space, Hamiltonian equations, quantization, etc. [1]. This theory does not require a
metric to be formulated, as the metric is a derived quantity from the solutions of B. That
gives motivation to formulate Einstein’s gravity as a theory of 2-forms rather than the metric
tensors, and so no pre-existing geometrical structure is needed to obtain the gravity. Let
F(w) € O?(M;s0(3,1)) be the curvature of w. The pure BF theory action is [ Tr(B A F(w)),

M

which is invariant (symmetric) under local Lorentz transformation (regarded as gauge
group) and under arbitrary diffeomorphisms of M, and does not need using a metric.
The equations of motion are F(w) = 0 and d,B = 0, where d,, stands for covaraint
derivative with respect to the connection w, thus, B defines a twisted de Rham cohomology
class [B] € H%z(M,50(3,1)), and the solution of F(w) = 0 is unique up to gauge and
diffeomorphism transformations. There are no local degrees of freedom because the system
has so much symmetry that all solutions are locally equivalent under gauge transformation
of the group SO(3,1) and under diffeomorphisms of M. Hence, the pure BF theory is a
topological theory [2,3].

In constrained BF theory, the Lagrangian includes the constraint term ¢k, B/ A BKE.
The traceless matrix ¢ plays the role of a Lagrangian multiplier that imposes the constraint
on the 2-form B, so that its solutions are given in terms of 1-forms el = eﬁdx”, that
is Bl = ¢! A ¢, where the capital letters I, J,... = 0,1,2,3 are the Lorentz indices and
Greek letters y,v,... = 0,1, 2,3 are the space-time tangent indices. The frame fields e{l dxt
are regarded as gravitational fields, therefore, the constrained BF theory turns to general
relativity theory; the reason is that when ¢k is not constant (like cosmological constant),
the term @k B IJ'A BKL breaks the diffeomorphisms invariance of BF action, thus, there are
non-equivalent local solutions and so local degrees of freedom exist as known in general
relativity in the vacuum. Since the field ¢k is not a physical variable, the equations
of motion of general relativity do not to include it (see Appendix A). The problem with
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constrained BF theory is that the equation of motion, 6S/6B = 0, of the action variation
with respect to B contains the non-physical variable ¢k, but one can remove it by taking
the trace of the equations, but there is also a problem with the trace operation, as it reduces
the equations to one equation, which is not enough for getting a solution. For that reason,
the solutions of BF theory using the equation 65/dw = 0 are searched for. In general, the
equations of motion of constrained BF theory including matter give a relation between
the curvature F!/ (w) and the frame fields 2!I = el A el (the Plebanski 2-form), in matrix
notation, that is F = xX + &%, where the bar indicates anti-frame field, and x, ¢ are
symmetric matrices of scalar fields [4]. Therefore, the problem turns to finding x and ¢.
Let us start with the definition of the spin current | and discuss its conservation
in BF theory including matter (in general, a matter Lagrangian is not specified). The
spin current | appears in the equations of motion as a source for d,,B by the equation
*d,B + ] = 0 (" is Hodge star operator), and, in order to get d,B = 0 in this study, a
new term is added to BF Lagrangian, like Tr(¢B A F(w)), using a new field ¢, which is
seen as a redefinition B — B + ¢B. One finds that the equation of motion of ¢ is the same
conservation equation D, J# = 0 of the spin current vector field ], where D, is the covariant
derivative. Furthermore, by choosing d,B = 0 in the equations of motion, the spin current
becomes a source for the field ¢ instead of B and one gets a new formula (definition) for
the spin current using ¢, and since the spin current regards symmetry of the system, the
field ¢ also regards that symmetry. One can see that the equations of BF theory can be
solved only by solving the spin current equation, 6S/éw = 0, | # 0, with d,B = 0 and
without solving the equation §S/JB = 0, which includes the Lagrangian multiplier ¢k,
(a non-physical variable), and without using a gravitational metric on M, so that one just
needs to use the spin current and know the symmetry of the system. That means that

the BF equations can be solved only by using the coupling term [ wf] ] ?], which makes
M

them easy to solve, and makes the theory similar to the gauge theory. Furthermore, since
w!l'is 1-form and J; 7 is a vector field, the term w;,] ];4 i is naturally defined on M without
needing to use additional structures (like a metric), thus, solving the system equation using
only that coupling term gives a topological theory, i.e, the theory turns to finding 1-forms
and vector fields, similarly to Chern-Simons theory, which includes the Wilson loops as a
source for the gauge field. That makes it easy to solve the equations in different cases of
the spin current, e.g, point charge, straight line current, circular current, etc. The lines of
the spin current can be described using any coordinates system, e.g, Euclidean coordinates,
etc., so the BF theory can be studied in any coordinates system, but in order to avoid an
effect of the coordinates on the lines of spin currents, the coordinates are left to be flat
(not curved). Furthermore, since the spin current is the source for the field 1, this field
has singularities on the lines of that spin current. One can see that the solution of B!/ can
always be written as e/ A e/, so one gets the gravity theory. Finally, an example of explicit
solution of the equations in the case of a spherical and cylindrical symmetric systems in
static case just by finding the field ¢ are given; actually, the field 1 is used for obtaining the
spin current.

2. Spin Current in BF Theory

Let M be a connected oriented smooth 4-manifold and P — M be an SO(3, 1)-principal
bundle with a spin connection w, which is locally a 1-form with values in s0(3,1) and
F € O?(M;s0(3,1)p) is its curvature. The BF theory action is invariant under global and
local Lorentz transformation, which gives a conserved current, and it is called here a spin
current. Before discussing the conservation of the spin current, let us introduce the self-dual
formalism.

Definition 1. The self-dual projection is a homomorphism

50(3,1)p = P X50(31)50(3,1) = 50(3,C)p = P X 50(3,1)50(3,C)
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defined by
(Pﬁ) 150(3,1)=50(3,1)c = 50(3,C) ® 50(3,C) — 50(3,C),

for P xg0(31)50(3,1) = (P x s0(3, 1))/SO(3,1), where Latin letters i,j,... = 1,2,3, with
using the matrices [5]

. 1 . . . . . i .
P}]: Esljk,forlzz,]:], and Péj:— ;0:—55]’.,f0r120,]:]7é0, (1)

where ¢ jk is the totally anti-symmetric Levi-Civita tensor, and 5]11 is the Kronecker delta.

This relates to the fact that the complexified Lie algebra of SO(3,1) has the decomposition
50(3,1)¢c = 50(3,C) @ s0(3,C) [6]. The new connection is locally an so(3, C)-valued 1-form A
on M whose components are

: T 1; ik . i
Al = Py = E‘C’lfk“’;* — iy, @)
and its curvature is ‘ . L
F((A) = Pj;F (w) = dA" + ¢ AT A AF, ®3)

where d is the exterior derivative. The two form B is mapped to B! = P}]B” . The covariant
derivative D;, = V,, + w{] acting on sections of TM ® so(3,1,C)p becomes Dy, = V, + Ay,
with AZ = el A%, where Vy is the affine connection on the tangent (T) space T M.

Using the new variables one can write the Lagrangian of matter (without specifying matter
fields), Lmatter (¢, w!)), as Liatter (B, A, B, A"), where B! and A’ (anti-self-dual representation)
are the complex conjugation of B! and A'. The Urbantke formula (Equation (A4), Appendix B)
writes the metric gy, using only the constrained B! without using the constrained B'. Furthermore,
the self-dual connection A' is compatible with B! via d 4B' = 0, while the anti-self-dual connection
At is compatible with B! via d ;B! = 0. Here d 4 is the exterior covariant derivative with respect to
the connection A. By that one may suppose

1) 1)
ﬁLmatter =0, ﬁ Lmatter =0, (4)

or just writing Lmatter (B, A?).

Definition 2. Let A be the self-dual connection on the so(3, C)-bundle so(3,C)p — M. Let
Lmatter be the Lagrangian of matter fields on M. Then the spin current | l.” is defined as

6
B _
],’ - (SAL Lmatter-

The matter action, Smatter, is required to be invariant under any infinitesimal local
Lorentz transformation w{] — w{] + D, AV for infinitesimal transformation parameter A/ €
O°%(M;50(3,1)p). Now, let us assume Spatter has this property. Then one gets the following.
Lemma 1. The spin current | given by J; = WLmatter in gravity theory is conserved [7].
Proof. Since Smatter is invariant under infinitesimal gauge transformation AU itis invariant
under (one may suggest the condition (4))

Al Al + DA for A =P AT € Q°(M;50(3,C)p).
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The variation

Smatter (Ai + DAi) - Smatter (Al) = /d4x <DyAi) %Lmatter
M H

. ) )
== /d4XAZDH (MLmatter> + / d?’xy/\lmlamatter
M # oM ¥

s

vanishes for arbitrary Al only when Dy, (MLmatter> = 0, where A is considered to vanish
B

on the boundary 0 M. Thus, the current ]Z.” = %Lmaﬂer is conserved. Actually, the previous
M

calculation based on the idea that A’ and A’ transform independently under infinitesimal
local Lorentz transformation w{] — w{,’ + DVAU , therefore, there is another current that

associates with the connection A’ when the matter Lagrangian depends also on A’. [

~ One finds the same for the general relativity (GR) action; by using the variables
X!, A"), one obtains the equation
q

N S )
4 (D, A — ; 4 AID —
/d x( ’ 1)(5A;,SGR_O _/dx 1 ”(sA;,SGR_O'
M M

In 3 4 1 decomposition of the space-time manifold M = X x R, let %; be space-like
slice of constant time ¢, with the coordinates x%, a = 1,2, 3, let 0 be the time index. In the
Hamilton—Jacobi system, by using the variables (E?, Afl, Aé) on the slice of constant time Y,
the equation becomes

v N
— [ d*xAiD (,SGR)— / P Dy [ =2 Ser
/ "\ 6A; SA]

xR xR (5)

= —const. X / d*xA'(D,Ef + Do(D,E?)) = 0,
xR

which is satisfied when D,E? = 0, where E? is conjugate momentum to A’, and the re-

lations E? = const. X <2-Sgr and D,E? = const. x ~2-
i SAL i A}

Sar [5,8,9] are used. In this paper,

one fixes D,E{ = 0.

Remark 1. To note is that the current ]l.” is similar to the currents in Yang—Mills theory of
the gauge fields, and one can see this clearly when regards the connection A;, as a gauge field,
by that the current ]i}t relates to the local Lorentz invariance (local symmetry). The metric
S = e{lef/m] (117 is Lorentz metric) is invariant under arbitrary local Lorentz transforma-

tions, like ei,(x) — UI](x)e{l(x),for U(x) € SO(3,1), therefore, the local Lorentz symmetry is
an internal degree of freedom.

Definition 3. The action of BF theory including matter (without cosmological constant) on
SO(3,1)-principal bundle P — M is defined to be [10]

S= Stopological + Sconstraints + Smatter,
with )
Stopological = /Bi N Fl(A), and Sconstraints = E / (PijBl A B],
M M
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where ¢ € T(M;End(so(3,C)p)) is a traceless matrix of scalar fields ¢;j. Actually, it is not
required to be symmetric since a new term to be added to BF Lagrangian (see the discussion
below Equation (23)). The connection A on the Lie algebra bundle so(3, C)p, which is locally a
1-form with values in so0(3,C) and its curvature F(A) € O%(M;s0(3,C)p) are defined in the
Equations (2) and (3). The index contraction is done by using d;;, the Killing form on so(3, C).
Hence,

‘ 1 S
S= / (Bi A FI(A> + Eq’i]'Bl A B]> + Smatter- (6)
M
Since the matrix ¢ is traceless, one can write ¢;; = m;j — (my1 + myp + m33)(5i]- /3, for
some not traceless matrix (11;;). The variation of the action with respect to m;; produces a
quadratic equation in B’ whose solution turns the theory into general relativity. These are

B'AB = %517& AB.

The solutions to this are all of the following form B' = Pje! A e/, in which the

I
H

(Equation (1)), the constrained 2-form B! is written as

gravitational fields ¢, are considered as frame fields [11]. Using the self-dual formula

B' = Eeljke] Nel —ied Nl =3,

this is B'| =¥/, using the notation = = Pi el Ael.
constrained 1]

The equation of motion with respect to B' is

OSmatter
3B;

F'(A) +¢' B + =0,

or

1 i i 5Smatter
F/(A) = —¢';B — 5B 7)

Since Fi(A) € 0O?(M;s0(3,C)p) is 2-form with values in so(3, C), the (%ismaﬂer is also
2-form with values in s0(3, C).

Lemma 2. In constrained B, the variation ‘%]_Smatter € O?(M;s0(3,C)p) has the form

OSmatt o o
o =T33 +%,

dB; constraint

for some matrices Ti]-, gi]- € I'(M; End(s0(3,C)p)), with Ti]- = T]-i and ffij = gji (see Appendix B,
for more details).

Therefore, in the vacuum, T j = 0is set. Using this formula in Equation (7) implies
FZ(A) — _(Pljz‘] _ leZ] _ Clji],

F(A) = 9" X - %), ®)

for some matrix ) = —¢ — T € T(M; End(s0(3,C)p)) [12].
Since Tr(¢) = 0, so Tr(y) = —Tr(T), Equation (8) yields

2/'F, = ~Te(T) for %, 2" =06, and %, T =0. )



Physics 2021, 3

432

Thus, in the vacuum, Tij = 0, one has: Z? VP;V = 0. Z? 1/l-“;ﬂ,is called the TrF here.
Equation (9) does not contain the non-physical variable ¢, but the problem with it is that
the trace process decreasing the number of equations. Therefore, ! VF;“, =—-Tr(T)isa

condition on the solutions. The (0,2) tensor Z;l " is inverse of the 2-form Z;w (Appendix C).

The equation of motion with respect to the connection A’ is

; 1)
DB + Esmatter = 0/

or ) )
""" Dy Bl + JM = 0. (10)

where DB = dB! + Si]'kAka.

One can see that e""? D, Bj,, = 0 cannot be chosen when J# # 0, but the condition
EHVPUDVB;)U = 0 leads to the constraint D,E* = 0 which is satisfied in the Hamilton—
Jacobi system, Equation (5). One gets D,E" = 0 from ""*"D, B,, = 0 by setting y =
0, so €%bep, BZC = 0, then €%b¢ = ¢abc ig ysed to get s”bCDuBZC = 2D,E% = 0, where
E® = ¢"B! /2 is conjugated to the connection A}, on space-like slice of constant time on
which the coordinates x* are used. Furthermore, the condition DB’ = 0 is necessary when
the connection A’ is flat, by that the 2-form B’ belongs to the twisted de Rham cohomology
classes H2 (M, s0(3,C)p), and this is necessary for getting a topological theory. One can
solve that problem by adding new terms to the BF action (6) with which there are many
possibilities for controlling Equation (10) for J* # 0 with choosing DB’ = 0. Only some
simple possibilities are chosen below in order to get simple results.

By acting by D, on Equation (10), one gets:

e’ Dy, Dy B}, + DyJM =0,
and using D, | # — (), one obtains
e"?"D, Dy B}, = e"P[Dy, Dy]B}, /2 =0,
but [D,, Dy] = Fuy(A), therefore,
07 (Fyu(A)) B = 0.
Then using (Fuv(A));; = siij;jv(A), implies

S}Wpael‘]'kpiw (A) Bk

k=0 (11)

As it is shown below, one can regard Equation (11) as an equation of motion with
respect to a new field ¢, with the possibility of choosing DB' = 0 with J#* 7 0.
In order to include the constraints D, J*" = 0 and DB’ = 0 in BF theory, the following

action is suggested.

Definition 4. A new term is added to the BF action (6) to get
. 1 S .
S— / (Bi NFI(A) + 5058 A BJ> n / e B A F(A) + Smatter, (12)
M M

in which [ &;3'B/ A F¥(A) is added, for some vector field ' € T (M;s0(3,C)p). One can relate
M

the new term to a redefinition like B — B + Si]'kl/)jBk in pure BF Lagrangian B; A\ Fi(A).
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The equation of motion of this action with respect to the field ¢ is
eijke" P Bl FX, (A) = 0, (13)
which is the same as Equation (11). By using (Fuw(A));j = siij;jV(A), one gets
SVVP”BL,,(FW(A))Z- =0,
but [Dy, D,] = F,u(A). Therefore,
e"P7[D,, Dy B;'w =0,
but E”VPUDPBLV = 0 (DB = 0) is chosen as suggested before, thus,
)
(STIJi Smatter = 0
is satisfied.
The equation of motion of this action with respect to the connection A* is
DB+ D(&59/B) + - Smmatier = 0
1]1/’ (5Ak matter — Y,
or 5
77D, By + "D, (9Bl ) + @smam = 0. (14)

In this equation, one can choose the condition e#'*? D, B’p‘g = 0, which is equivalent to
=3i= P;']e’ Ael and [13,14]

v _— ) ; : i i —
D, =0in constrained B’, since B ‘Constraim

1 . N\ MV A\ WV . .
¢ 18”""‘72;)0: (*Zl> = (—121) = —ixH, e:det(eil), (15)

where the Hodge duality theory between the forms and the tensor fields is used; here,
2y, is 2-form and £ is (0,2)-tensor field. One can see that ZIH " is inverse of 2y, s0 that

Z}‘ VZ;W = (5; (see Appendix C for more details).

With that, the term SF‘VP”DVB’;U in constrained B becomes —iD, ! and so one can

choose the condition DVZP”’i = 0, which is locally equjvalent to DB! = 0 in constrained B'.
The remaining equation of (14) in constrained B’ is

. 5
D (€kz‘j¢12]) + msmatter =0,

or
A 0
£w/pa‘gkij (Dvl/]1> ZZ)U’ + msmatter = 0/
hence,
Yy (skl-j DV¢1>ZVVJ' k=, (16)

in which the spin current ]f = OSmatter/ (5A;l is used and the condition D, "/ = 0 is

imposed. Below, the condition DV ] #k — 0 is discussed. Here, both YHi and ] 1k are tensor
fields.

Remark 2. To note is that Equation (16) is similar to the current [ = (9V¢) Ti’} ¢/ in scalar
field theory with symmetry and generators Tl-’;, so one has [ = (aO(pi) Ti’} ¢ = niTi’]’. ¢!, where
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7t is conjugate momentum to ¢;. Similarly, Equation (1 6) gives JO = Zi(Dyl/)k)ekiijVO(fOT
u=a=1,2,3), s0 here Dy; is conjugate momentum to %80 noting that the indices raising in
MV is done by using a metric gyy.

The equation of motion of the action (12) with respect to B! in constrained BF (like
deriving Equation (8)) is

Fl(A) + ¢/ 5 + e/ FF(A) + T3 + &5 = 0. (17)
Multiplying by Z? ¥, summing over the indices and using Zf.‘ viiw = 0, one obtains:
S + ¢SSy + e gy B, + TORIE, = 0. (18)
Then, using =" VZLU = (55 to obtain
SIVEL, + Te(g) + € /2 FY, + Tr(T) = 0.
Since Tr(¢) = 0 and eiij?VF;jv = 0 (see Equations (13) and (15)), one finds:
SV Fl, + Te(T) = Tr(F) + Tr(T) = 0. (19)
Equation (17) allows us to write F/(A) in terms of £/ and £, and since eiijly UF;fU =0,
one can write '
Fi(A) = x'¥ + x5, (20)

for some symmetric matrix (x/) and skew-hermitian matrix (x’ i ). Using this equation in
Equation (19), one obtains: ‘ ‘
Tr(x';) + Te(T';) = 0. (21)

In addition to this relation, there is another relation between the vector field ¢’ and the
symmetric matrix x'; when T'; # 0 and J# # 0, from the conservation of the current (16),
D,J"" = 0, one has (for D,Z*" = 0):

2D, = (DD )T = 2 (1Dy, Dy i) 2

1 o ’
= — 5 B (A)ea"pne ;T = — S Fp (A)egontp™ e

7 M
_ 11:/ (A)€ mgkijzw/ _ 11:8 (A) m 51(5] _ 51' 5] ZPV
I ktm j T T H ¥ m mey | =

1. , 1 ,
= SEL (AW — SEL (A,

and using Equation (20), one gets:

i vi_li ijV_lj mi}“/_li jm_lj ism
EDV] - EX mz‘yv#] Z]' EX mzyvlp Z]‘ - EX m ‘Sj 57( m 5]’ (22)
1. . 1 . . .
= X = Switr (i) =0, for JM £0.

This is another relation between the vector field ¢ and the symmetric matrix x’ j
in existence of matter Ti]- # 0 with J# # 0. In this case, the matrix x! j has to satisfy
det (Xij — Tr(x' ])) = 0 in order to get l[Ji # 0; of course, this condition is not needed in the
vacuum Ti]- =0, M =0.

Using Equation (20) in (17), one obtains:

Xijz.j + (pljZ] + sijktpkang + TijZf + (... )ljij =0.
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That yields
X+ @l + T = 0. (23)
This equation relates to the equation of motion 65/6B = 0, and it includes the La-
grangian multiplier ¥/, which is a non-physical variable that makes (23) difficult to solve.
Therefore, one needs to find x and ¢ using the other equations of motion obtained above.
One can see that ¢ is not required to be symmetric matrix since the third term in (23) is
not symmetric in general. The symmetric matrix T is assumed to be given using the
matter Lagrangian (Appendix B), thus, the total unknown variables are 3 45 + 8 = 16 of
the vector ¢, the symmetric matrix x (with (21)) and the traceless matrix ¢. Equation (23)
gives 9 equations, therefore, there are 16 —9 = 7 unknown variables, but when J# = 0,
they reduce to 6 unknown variables (regarding Equation (22)). However, if one chooses a
solution for which the symmetric matrix x'/ becomes diagonal, like

X = (Kl(s;) = diag(K', K%, K3), (24)

for some scalar functions K!, K2 and K3 on M. Thus, the unknown variables reduce to 4
variables and to 3 variables when J# £ 0.

Remark 3. The field y' is a solution of D,D¥¢' = 0 (see Appendix C), so if D,v* = 0, then
W' + o' is another solution, and that makes the components ', ¢* and > of the vector field ¢’
independent variables, therefore, one can regard them as the degrees of freedom of the system and
solve the equations of motions in terms of them. Note that ¢' +— ¢ + o' (Dv' = 0) does not change
the current JV' = 2i( Dy i) € ZHVI.

The Bianchi identity DF' = 0 implies (Dx';) A £/ = 0 (for DX/ = 0), hence (dK')&’; A
¥/ = 0, where D4/ = 0 is used along with the covariant derivative Dv' = dv' + & j A/ ok,
Therefore, one obtains:

e"P?(3,K')Zh, = 0, (25)

where 0, = d/dx,. In 3 4+ 1 decomposition of the space-time manifold M = X x R, let 3
be the space-like slice of constant time t with the ;oordinates x?witha =1,2,3,and 0 is
the time index. The equation e/"?“D,, %}, = 0 (DB' = 0) decomposes into two equations,

D,E =0 and €"D,B. =0, (26)
in which the vector field E? and the 1-form B:
E%i = Onbeyi /2 = eyt /2, BL=%i, (27)

are introduced on the space-like slice ; (the field E" is conjugate to the connection A?).
Equation (25) decomposes into (for dgK* = 0)

€0 (9,KT) .. = (3,K))e™ xf, = 2(3,K")E =0, 28)
e (3,K1) iy = —e™(9,K) Bl = 0.

One can solve them by writing (for non-zero curvature F/(A))

1 o ‘ o
B = 2 (@K ), Bl = (K,

for some r' € Q' (M;s0(3,C)p) and u' € T(M;s0(3,C)p). The functions K’ are scalars, the
indices are just for distinguishing each from the others. Thus, one gets the solutions

= 0Ky, and X, = (9.K)u'. (29)



Physics 2021, 3

436

Equation (26) implies Dr' = 0 and Du’ = 0.
In the static case | = 0 (zero current) with ]lQ # O(non-zero charge), the spin current
formula J} = 2iey;;(Dyyp') Z*" decomposes into two equations:

Jo = 2iey; (Dalpi)z“bf —0, and J9 = 2iey; (Dat,bi)Z”Of £ 0. (30)

One can solve the first equation in terms of i by writing 2% = fola Dby, for some
vector v € T(M; TZ) that satisfies "D, ¢’ = 0, and f is scalar function on M. Including f in
v, one can just write % = vl? DPlyl. Let us note that D?g! = ¢? Dy, ' without a need the
used metric g, to be specified. Regarding the second equation of (30), when J% = 0, one
gets the solution, Z9% = — 3% = fD4’. Furthermore, when J% # 0, we let 2% = fD*¢
for a vector field & # . To note is that no specific metric g, is required for raising and
lowering the indices 4, b, ... on X4, so let it be the metric coming from pulling back of the
Lorentz metric, where X; is kept to be immersed in R4.

Lemma 3. By comparing the solutions £ = vl@ Dbyt and £.0% — fD*& of Equations (30) with
the solutions (29), and in order to get a correspondence between that solutions, one finds that

l[)i _ Kibi/ 7‘2 _ Ucbi, Ci — Kiui/

. . (31)
Db =0, Du'=0, do=0, f=1,
for some vector fields, b',u' € T(M;so(3,C)p).
By that, one obtains the solutions,
i 1 abc i 1 i\ g,i
E = Zeeyi 3, = Zeep, (abK )b 9. € T(M; TE ®50(3,C)p),
2" (32)

B =¥ dx" = (dKl)u € T(M;T*S ®50(3,C)p),
without needing to use a specific metric.

Remark 4. Regarding the solutions of Equations (29) and (30), let us note that for every two
solutions of ¥ "y and Y the metric guy satisfies X 'y = Sad’ gbb/Z”/l’,i. Furthermore, the metric
used in X wp = Saa' Sob' 2" Vi s not necessarily the same metric used in D! = gDy for getting
the solutions of (30). It is convenient to start from a solution of ., , and by using a metric g,p, to
obtain the corresponding solution of .

Remark 5. In solution (32), one can see that 21 can be written as el N e/, as required in constraint
BF theory to get gravity theory, that is, according to self-dual projection, there are vector fields b’

and K! satisfying K'b' = P! [b! (KTBT), therefore, ZU = (bl la )Db] (K'b/), then one can write
el = vubl ande = (3,K))bl. Furthermore, from ) = u'(9,K))u/, one gets: e} = (9,K/)u/
and e} = vou! for vg = 1. A more geneml case is to ﬁnd three vector fields bl, b} and K! satisfying
Kip' = Pi bI(KIbI) therefore, Zab = (b Ul )Db] (K]b]) then one can write el = v,bl and
e = (8hK])b] Furthermore, from ZOa =uj (8 K])uz, one gets b = (94 K])u2 and el = voul,
for vy = 1. By that, (32) can be written as ¥ = Pl 2 for &) = el A€, However, to note is

that solution (32) is a general solution and one has to ﬁnd a special solution, like to let b’ and u' be
constant fields.
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Using the solution of %% in Equation (30), one obtains:

= Qx _Ziekij(biaaKi) (ujaﬂKf)
= —i€xjj (biaaKiuja”Kj - bfaﬂKfuia”Ki) (33)

— iy (aﬂKi) (aﬂzd) (bl — blut).

One can see that ]} # 0 takes place only when b # u. Therefore, in the vacuum it
must be b = u. If J7 # 0, it must be ¢’ = g'b’ with g’ # K.

If the charges J% # 0 are given as functions on M, then letting b’ € T'(M;s0(3,C)p) be
constant field on M, one can determine the scalar functions K’ using Equation (33), and
obtaining the vector v € T(M;TX) using v"9,K' = 0. However, to satisfy Db = db’ +
s?kAj bk = 0 for a constant vector field b’, the connection A;'l must be written as A;, = Aybi.

Furthermore, u' = b + f(x)b’ + a' is chosen, for a constant a' € T'(M;s0(3,C)p) satisfying
a;b' = 0, the function f is needed for satisfying Du’ = 0. Examples of determining b’ and
u' in spherical and cylindrical symmetries are given below. Then, one obtains B* and
E% using Equation (32), and obtain the matrix x using Equation (24), thus, obtaining the
curvature F = xX. Note that vE, = 0, v,B* = 0 and v"9,K' = 0 depend on the symmetry
of the system, for example, spherical symmetry, cylindrical symmetry, and so on. Thus,
one sees that the equations of motion of BF theory can be solved without needing to use a
gravitational metric on the manifold M.

3. Solutions for Spherically Symmetric System

It was shown above that one can solve the equations of motion in BF theory by using
a complex vector field P = Kib' e I'(M;sa(3,C)p), which allows us to obtain v, Ei, B!
and J%, according to Equations (31)—(33). Here, the solutions to be found for spherically
symmetric system in the vacuum (1 = b) and then apply it for matter located at a point. As
it was seen above, the solution of the system regards the symmetry of that system, since
one searches for a vector v € T'(M; TZ) that satisfies v*D, i = 0, v"E}, = 0 and v*B; = 0.
For example, in spherical symmetry, the spherical coordinates (7,6, ¢) to be used on the
space-like slice &y = £ = R3. Letting the vector field ¢/ to depend only on the radius r, one
gets (for Dbl = 0):
1
D*p' = D*(K'b') = b'VK' = b%% (rzg)rw) =0=K= % (34)
SO l[)i = ¢'b' /7, for some constants ¢’ € R. Actually, one can include ¢ in b and just write
1[Ji = b'/r. Therefore,

bi

Dy’ = b'(dK*) = b’ (drd, + d6dy + dq)a(,,)% = —5dr,

thus, the 1-form v (dv = 0, g“bvanlpi =0)is
v =a1d0+axde, ai,a; € R,

where, in the spherical symmetry, a; and a; kept to not depend on the coordinates 8 and ¢.
The values of the constants a; and a5 are not significant since a’ = g/a j is the Killing vector,
thus, set a1 = a; = 1. The used metric g,;, here is the standard metric in the spherical
coordinates, because no any other metric is defined. In what follows in this Section, the
indices 7, § and ¢ denote the spherical components.
Using Equation (32), one gets the solutions of the 1-form B and the vector field E/,
1

—b—dr, for u=b,

B = (dK')u' = —
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C1 ‘ 1 i i b v
El = Esﬂbfzgcau = Es”bcvh (acK1>blaa = _S(Per%z dg — seq)r?ae
b b
I 0
— g9 ﬁafﬂ +e ”Pﬁag.
By that, one gets:
' bi , bi , bl
B =2 e =g T g >

while the other components like 269, 26 g7+ Are ZEeros.
One obtains the matrix x using Equation (24) with the solution (34),

, 1
X= (K]-(SJZ-) = ;dlag(cl,CZ, ),

where the constants ¢’ have to be determined in order to satisfy the condition Try = 0 (in

3 _

the vacuum), so Y ¢; = 0. Thus, one gets the curvature F = xX + x'X (with setting ' = 0
i=1

in the vacuum [15]),

. L ibi . L ibi
i _ i _ € i i) _ €
FOr_XfZOr__rB’ 0= X jZpg =

c'bt

i
Fo=X'jZtp = 53

(36)

' Now, le’; us ;alculate the connection A’ and the field bi, which satisfies Db’ = 0. Using
F' =dA" + & j Al N Ak, one obtains:

, 1 . . S
Fy=>5 (aoA; - arA;)) + el A) A,

, 1 . , S
B, =5 (9045 — 0,45 ) + /e Ak,

. 1 . . S
_ ] Ak
Fp =5 (a¢A; - a,A;,) + el Al AR,

Since a spherically symmetric system is under consideration, the connection A’ are
considered depending on r only. If the gauge A, = 0 is chosen, then:

: 1 ; ; 1 : : 1 :
F(l)r == —EarAl, Fér = —Ea,-Al, P(lpr == _EarAl(p,
and, therefore, using the solution (36), one obtains:

v 1
2137 2

1 : c'bt
—*arAE) T3

: c'bt
3 = ;A = —

1. i
2946 = ¢ 23"

However, Db! = dbt + e}kAf bk = 0 and Iy bt = 0 for i # r, therefore,

b+ e A =9, =0, b + e Albk = e Al =0,

89bi + Si]'kAébk = Ei]'kAébk =0, aq)bi + EijkA]q)bk = EijkA](Pbk =0.
Therefore, the field b’ € I'(M;s0(3,C)p) is constant, and one gets the solution,

: cibt : cibt : bt
i _ 1 __ [
AO__TT, Ae__ﬁ/ A(P__?/
where sijkbj bk = 0 is sued. Thus, in this solution the field b’ € I'(M;sa(3,C)p) is constant
on M = % x R. Next is to find b’ in the case of matter located at a point.



Physics 2021, 3

439

Solutions for Matter Located at a Point

If there is matter located at a point in ¥y = ¥ = R3, one, thus, has a spherically
symmetric system in a static case J? # 0, J# = 0. Let the origin (0,0,0) € R? to be that
point, therefore, the charge (33) is given by Q'(x) = Q6(53(x), so [ Q653(x) = Qf) = const.

R3

(conservation of the charges). In order to get the same solution as in Equations (35) and (36),
the field b* is kept to be a constant, and in Equation (33),

JO(x) = Qu(x) = —iey; (aaKf) (B“Kj) (bl — but), (37)

Q' (x) = Q{03 (x) is used. , { {
For spherical symmetry, the functions K’ are given by K' = ¢'/r (Equation (34)),
therefore,

Qk(x) = —2ig" (arKia,Kf) (ek,-]-biuj) = —iZC;Zj (eki]-biuj).

Therefore, in order to get Q' = Q6(53(x), one replaces 1/r* with 1/ 4(r4 + €*), for some
infinitesimal parameter € — 0, and looks for a solution for the field u/ like

w = bl +efbl +eal /(—2im*V2),

for some function f on M that is needed for satisfying Du' = 0 and a constant vector field
a' € T(M;s0(3,C)p). With that, one obtains (for i,j # k):

€ ]-) 1 €
a =
—2i2\/2 242 1% + €4

Comparing with Q'(x) = Q}é%(x), one finds ekij(cibi)(cjaj) = QF = const., and, by
imposing (c;a;)(c'a’) = 1 with (c;b;)(c'a’) = 0:

(cb)* = (ciby) (') = QuQf,

id .
Qu(r) = —2i—— et (bf +efb +

1"4—|—€4 eki]'(Cibi)(Cjﬂj).

thus, c'b’ = e/ QOleé are chosen for ||ei || = 1, so that the constant field b’ is determined

by QOng with free SO(3, C) rotation.
By that (for r > 0, ¢ — 07), one obtains the same solutions as in Equations (35) and (36),

but with ¢’b’ = ¢/ QOkQ’é for

sufficient to let the constants ¢; take arbitrary values, so chosen them to be (¢;) = (1,1, —2).

By that, an example for the possibility of solving the equations of motion in BF theory
without needing to use a gravitational metric on M is given, so that one needs just to use a
vector field ' € T'(M;s0(3, C)p), which is defined in the spin current ]} = 2ieyij (Dyy' ) THI
of matter, Equation (16). Furthermore, it is shown that the solutions depend on the
symmetry of the system, since one needs some vector v that satisfies v9,K = 0, v"E, = 0,
v,B" = 0 for obtaining the solutions.

. 3 .
l¢'|| = 1and ¥ ¢; = 0. Since ¢'b' is a finite value, it is not
i=1

4. Solutions for Cylindrically Symmetric System

In a cylindrically symmetric system, the matter is considered to be homogeneously
located along the Z-axis. Similar to the above-considered spherical symmetry, one searches
for the field l,bi =KbpeT (M;s0(3,C)p), and then calculates v, Ei, B! and J%, according
to Equations (31)—(33). The vector v € I'(M; TX) satisfies Z)aD,ﬂPi = 0, v"El = 0 and
v Bfl = 0, thus, it is the Killing vector. Here, the solution in the vacuum (# = b) to be
found and, then, to be to be applied to a matter located homogeneously along the Z-axis.
The needed information for solving the equations of motion is only the spin charge Q' (x),
Equation (33). As it was mentioned before, there is no need to use a gravitational metric, a
standard metric to be used instead. In cylindrical symmetry, the cylindrical coordinates
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(b, ¢,z) on the space-like slice Xy = X = R? of constant time f to be used. Letting the vector
field ¢ to depend only on the radius p, one gets (for D?y' = 0 and Db’ = 0):

D*p' = D*(K'b') = b'V?K' = bf;aap (paapKl) = 0= K' =c'log(p), (38)

so ' = c'bilog(p), for some constants ¢’ € R. Therefore,

) . . . ipi
Dy’ = 'b'(dK") = 'b' (dpd, + dd, + dzo;) log(p) = C;dp,

thus, the 1-form v (dv = 0, g“bvanlpi =0)is
v =a1de + axdz, a1,a; € R,

where, in the cylindrical symmetry, a; and a, are kept not depending on the coordinates z
and ¢. The values of the constants a; and a; are not significant since a’ = g'/ a; is Killing
vector, thus, are set as a; = ay = 1. The used metric g,; here is the standard metric in the
cylindrical coordinates because no any other metric is defined. In what follows in this
Section, the indices p,  and ¢ denote the cylindrical components.

Using Equation (32), one gets the solutions of the 1-form B’ and the vector field E/,
namely,

‘ i ini
B = = Yo for u=b,
P P
| ; 1 N c'b’ c'v’
i _ —abeyi _ —qabc i\pig — opzp° " zppt Y
E' = 26", = e, (E)CK )b % = €95 g+ EM5 0
By that, one gets:
; ; vt ; ; v’ j ; vt
1 _ 1 _ T 1 _ 1 _ 1 —
Op =~ Tp0 T Ty Ypp = —Lzp = 20 TPY T g = 20 (39)

while the other components like 262, 26 ,... are Zeros.
The matrix x is obtained using Equation (24) with the solution (38),

X = (Kjé;) = log(p)diag(ct, %, %),

where the constants ¢’ have to be determined in order to satisfy the condition Try = 0 (in

3 _

the vacuum), so ¥ ¢; = 0. Thus, one gets the curvature F = xX + x'% (with setting ' = 0
i=1

in the vacuum [15]),

]

, NP | o , o 1 o : L 1 o
F(l)p _ Xl]Z{)p _ ng(m Czclbll Féz — Xl Z;)z — Og(P) Clclbl’ F;)(p — ijzi)q) - _ Og(P) ClClbl. (40)

2p 2p

Using the gauge A; = 0, with letting A’ depend only on p, one obtains

A= —(0g(p) ()b, AL =3 (1log(p) ()b, AL = —(log(p)) (Y,

where the field b’ € T(M;s0(3,C)p) is constanton M = X x R.

As in the spherical symmetry case, one finds b’ by using the spin charge Q'(x), which
is given by Equation (33). Since the system is static and the matter homogeneously located
along the Z-axis, the spin charge Q'(p, ¢, z) is given by Q'(p, ¢,z) = Q)6(p)/27p, which

00 27T

yields [ [ pd(pdpQé(S(p)/ 2rtp = QB for each point of Z. Here, Qf) is the point charge
00

located at each point of the Z-axis.
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In order to get the same solution, as in Equations (39) and (40), the field b is kept to
be constant, and in Equation (33):

JR(x) = Qe(x) = —iegss (3K ) (3°K7 ) (bl — blu), 41)

Q' (x) = Q46(p) /27p is used. ‘ o
In cylindrical symmetry, the functions K’ are given by K’ = ¢’ log(p), Equation (38),
therefore,

Qk(x) = —2igff (apKiaij) (ekijbiuj) = —ZiC;;j (ekijbiuj).

Therefore, in order to get Q' = Q}5(p) /27tp, one replaces 1/p? with 1/ pp' ¢, for some
infinitesimal parameter € — 07, and chooses a solution for the field 1/ like

u = bl + efbl +eal /(—4im),

for some scalar function f on M that is needed for satisfying Du' = 0, with a constant
vector field a' € T'(M;s0(3,C)p). By that, one obtains (for i, j # k)

ctc

Qk(i’) = _Zlmekljbl <b] —|—€fb] + —Ziﬂa]> = %plie_eekij(clbl)(c]a]).

Comparing with Q' = Q}5(p)/27p, one finds: ekij(cibi)(cj a/) = Q8 = const., and, by
imposing (c;a;)(c'a’) = 1 with (¢;b;)(c'a’) = 0:

(cb)* = (ciby) (') = QuQf,

thus, choosing clbt =ely/ QOleé for HeiH = 1, so the constant field ¢'b’ is determined by

QOleé with free SO(3, C) rotation.
By that (for p > 0, e — 07), one obtains the same solutions as in Equations (39) and (40),

but with ¢’b’ = ¢/ QOkQ’é for

sufficient to let the constants ¢; take arbitrary values, so chosen to be (¢;) = (1,1, —2).

. 3 .
l¢'|| = 1and ¥ ¢; = 0. Since ¢'b' is a finite value, it is not
i=1

5. Conclusions

In this paper, the BF theory has been studied including matter by redefinition of the
2-form B' as B + ¢! jklpj Bk, so that one can get DB’ = 0, with D being a covariant derivative
and Latin letters i,j,... = 1,2, 3, in the case of non-zero spin current of matter fields. The
new field ¢ is defined using the spin current vector, J*/ = (Dylpk)skijZP‘Vf , ZM] being the
frame field and Greek letters y,v,... = 0,1,2,3, are the space-time tangent indices. It
is shown that one can solve the BF equations by using only the spin current of matter,
that is, it is enough to solve the equations 6S/J A’ = 0 (for the action variation with the
spin connection A’), DB' = 0 and J* = (Dylpk)skijZi‘Vj without using a gravitational
metric on the M 4-manifold and without a need to solve the equation 6S /6B’ = 0, which
includes the Lagrangian multiplier ¢;; (a non-physical variable), so that one gets ¢;; by
using the solutions in §S/6B' = 0. It is found that to obtain the solutions of BF theory,
it is enough to use (find) the field ¢’ and the Killing vector v (satisfies v"D,' = 0) in
Euclidean coordinates, where it is convenient to describe the spin currents and their lines in
Euclidean coordinates with no need to describe them in curved coordinates. Furthermore,
it is possible to obtain the solutions of BF theory using only the charges J% # 0 when
they are given as functions on M in the static case (discussion below Equation (33)). It is
shown that the singularities appear in solution of ¢/, that is related to the idea that the
spin current J# is the source for ¢, therefore, ¢ has singularities on the line of that spin
current, and the singularities appear by that and not by using a gravitational metric. It is
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found that the solutions of BF theory equations depend on the symmetry of the system
and every two solutions of (£!,, % ) and (£, 20') determine a metric (Remark 4), and
those solutions are able to be written as e! A e/ using 1-forms ¢!, where I, ],... =0,1,2,3
are the Lorentz indices. Finally, the solutions of BF theory are applied to spherically and
cylindrically symmetric systems in static case of matter.
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Appendix A. Verifying the General Relativity Equations in the Vacuum Using BF
Equations

Satisfying of the equation of motion of classical general relativity (GR) in the vacuum
is tested using the solutions in BF theory; the equations do not include the non-physical
variable ¢. The GR equations in the vacuum are [5]:

D.Ef =0, E/F}, =0, C=euE"EYFl =o0. (A1)

Here, the gauge ) = 0 is used with the metric g,, = zSije;eZ. Note that D,Ef = 0 is
satisfied when DB’ = 0 is satisfied (see the discussion below Equation (10)).

Using Equation (20), in the vacuum x’ lj = 0,' it reduces'to‘Fi(A) = xiij, on the

spacelike surface of constant time X, it becomes F'(A),, = x' jZ{]b. Using E* = e“bCZZ »

one obtains: ' o ’ '
F'(A)y = leZ]ub = lesath]C-

Multiplying it by Ef and summing over the contracted indices, one gets:
EJF/(A)ay = E{X'jeancE = Xijeanc E"EF =0,

where the fact that the matrix y;; is symmetric is used. Therefore, the second constraint (A1)
is satisfied. Using F/(A),, = xijsabcEfC in C, yields

Fbi k . i b
C= €i]'kEmE ]X i/eabCEl g )(kl 81] EabcE;‘zEj EIC;

Then using Ef = eef, where ef is the inverse of the gravitational field el and e = det(e}),
one obtains:

k a, b c

Lo .
C =y el €abcl; €] €y = Axi kel

giji’ = 2€2TI'X.

However, in the vacuum Try = 0 (Equation (21)), thus, C = sijkE“iEbjF{fb = 0is
satisfied. By that one finds that the general relativity constraints are satisfied in the vacuum
using the equations of motion of BF theory. In existence of matter, the first two equations
are still satisfied, the third equation becomes C = si]-kE”lEb] F’fb = 2%Try = —2e*Tr(T! i)

Appendix B. Calculating %

Starting from

OSmatter _ OSmatter _ —2 OSmatter /=& 5&1411/1 = ThnV -8 5g]41v1 (A2)
5B§1p1 constraint 5251!’1 V8 (5g’41v1 —2 5Zg1p1 —2 5Zg1p1

where T is energy-momentum tensor. Using

1 1
08mn = \/7_—8,5@ —88uu) — \/7_—881411/15(\/ -8),
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one obtains:

Ouv 5(\/ g#lvl) ‘5(\/ —8)
J—geshn — S =1L - b. (A3)
5251.01 52(671401 o 52‘[;1,‘71

Using the Urbantke formula [12],

k
V=88 = € Wsl]kzﬂlﬂz‘] Loy (A4)
one gets:
k
6(v/—88mmn) = 5(‘3” pasllkzﬂwzj Zm)
= e (5Zum)2 oo, + SZJkZm# (‘SZ{/P) ovy € EleZHW (52]3%)

Calculating I; in (A3):

1 52/ ( V gﬂlVl)

01P1

— ghvpo Eijkzvp ot (5[50% 5;’3) gﬂvpasl]kz 5]5015P1>

Hp ‘71/1<
Voo k so1 501
RS Y ¥ p((sé(sa 5V1)

= epl”P"sg»kZ] Zlfrvl ((5 ) 4 ehv1P10g. Y

HVpoy 01
muzwl + e ey B T (‘5 )

= e pwl BT (851) + ehP Zhuy + "¢, Tho (001

€itj 141;4
= ePP0ey i L () — hTey Rl BT 4 et Py zvp((sﬁ;).

To calculate I, one uses

V-§= *SWW‘SUZZW pos

hence,
)
= 8mvi g i

0101

(V=8) = 287 (510780 ) Sho + =gy e77 854, (565155

i 0 o i i v i i Vo i
= ggmvlg 1010 51‘Z2pa + ggmvlgli 1P15MZW = §gmvlgﬂ 1P1(5MZW'

Therefore,
08w
V=8~r =h—-Dh
5251171
= 1Pyl T, (O5) — e T T, + P Tl, T (1) (D)

1 .
- gg]/lwl (8;41/171,01 51’521;“/) .
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By this, Equation (A2) reads:

OSmatt -1
SBL =5 T~ )
7101 | constraint
1 . i 1 . i
= STV Ty — STHY e, T (o)) (A6)

1 P ] ;
— ETHM gplvpffgﬁjszszl (52) + éTﬂlvlgMVISHWlm 51,521}‘1/
=hL+L+L+ 14

Using TH"1 = T e?le;l, the first term of (A6) reads:
i j I] 1 v i pl K L Ky L
21 = TVWlsVW]P]siﬂZLWZ{WI =T ]e? ellsw‘ﬁp]singIQLPélLlemeyevlevll

1] sK 5L i pl LK I i pi LK
=TVl (5]18”””191sing}(LPlﬁlLle”evl =T ]sﬂwlplsing}LPA]e”evl

— T Pre, Pl p{<1 | ( p,lesz + P,%Klsz),

where « K K
e[Lyev]1 =Dy 'Ey, + PRy,
is used.
One uses the following property of the self-dual projection:

1 ;o 1 1
- §€i]'éPhPIJ<L =1 (m7xPer. =y Perk) — 2Le ) (A7)

which can be easily checked when I = 0 and J, K, L are spatial indices, and when I = K =0
and J, L are spatial indices, so the Lorentz invariance asserts that this property is also
satisfied when I, ], K, L are all spatial indices. By using this property, one obtains:

_1 K
21 = TV evoim -5 (112k, Perp — 112y Pork, — 11k, Pery + WI]PZLK])eﬁevl
-1 K K
= Tlemvam > (Peljgyv =Pk, eﬁevl — 1K, PzLjeﬁful + ’mzew)

-1 K K
= Tl - (—WLJPMKl@ﬁEvl — ik, Pejesen’ + ’mzfyu)

= %T”s’“"”pl (L1 Perk, + 11k, PZL])e[Lyef]l - %UUTU‘?HWWIZEW
hence,
2L = %T” eI (11 Pk, + 11k, Pery) (P 2y + P iLKlziw)
B %WUTUSW‘WZM'
Finally,

1 LKisi | pLKisi
Iy = T (g Parg, + yax Pecy) (B + PO, )

1
_ EﬂUTU’E”WWlZzw-
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Furthermore, the second term of (A6) becomes

= —THV1Hvpo ] sl _ 1] 11 Pl VPO 4 J oK oL Ky Ly
2, = —TH"g 181]52141;421,‘051/1 =-T'e; e e 1€z]£PKLPK1L1 11 CHlv €p
1] 5K LK L I LKL
= -1Vl eme’”p‘ﬁs gPKLPK I eyev lgs' = T Ieﬁ)lswp‘fls ZPILPK I eyevlep1

AP1pl Ky Ly

-1
= TP — (77LK1P€IL1 oLy Pork, — ik, Pewry, + 11w, Pevk, ) e ] eutv ey =

1 I 1
5T Jgrvee (PHL gwep — Puik, §puplh’ —'71K1PZLL1€,4€V ep +771L1P£LK1eyev ey ) ?

1

— Tl gnvpor (_ £1,L K1 L1
2

ik, Pecry + 111, Peri ) € een' e

Using e#P1 eﬁe{fl eFL]] = eef1liMel where ¢ is the determinant of (ef,), one obtains:

01 LKy LlM Ul

ik, Perry + 1L, Pevk, )€ €

LK1 M, p1 1l
€M

= 5eT (-

L

= el (=1, Perr, + 110, Perk, ) €
1

= ( ik, Perr, + 11, Perk, )€

— 11k, Perr, + 111, Peg ) e61E 1M(P M1 4 P]lepm)

One uses the self-dual property,
Pf,e”KL — _2ipiKL.
to get
212 = —ieTU (ﬂ[KlpflM + U]LIPZLIM) (Pi]MZiplal + pi]Mii‘DlUl).
Furthermore, using
1 . N\ UV A\ WY . .
ie_ls”"WZ;m = (*Zl) = (—zZZ> =—iz", e=,/—g
one obtains:
1 ) _ .
L = _AITU (WIKl PflM + nIL, PZLlM) (_pi]Mg,DlUlP‘TZ‘LU + P,']M€P1(TIPUZ;W).

One gets the third term of (A6) by the replacing oy <+ p1 in I, and, with reversing its
sign:

1 ‘ _ .
Iz = +1TU (anlpflM + WILlpeLlM) (—Pi]MSU]plpUZLa + Pi]MSW]WzLa) =D,
therefore,
1 ‘ _ .
12 + 13 == +§TU (ﬂ[Klpl{(lM + 771L1 PngM) (_pl.]MEfHPleTZLU -+ Pi]MealplpUZ;g> .
The fourth term of (A6) is

i
Iy = 3 THiV1 S ehvoipr Z;wﬁ-
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Using T# g,y = T!5;; = T, Equation (A6) reads:

6 Smatter

OBL

0101

=h+Lh+L+1L

constraint

1 ; _ o 1

= fTU (WL]PHK + WIKPEL]) (PiLKe}W(TlelVV + PiLKgyvalpl Z;ﬂ,,) . iT(—Z}WUlPlZgVV
1 ; _ .

+ = TU (7711( + UILP[ ) (_Pi]MSVlPlP‘TZ‘LU + Pi]MS‘TlplpUZ;m>

+ ETEHV‘TlplZWg.

For brevity, this form is written as

éS
o n';atter _ 8141/(71‘01 T[ ZI + 8,‘(1/0'1.016 Z;I/ll//
711 |constraint
or 5S 5S
matter m j 5
: =00 T 4 s, (A8)
oB! constraint ox! ! !

with the complex matrices T and ¢§ given by
1 1
Tij = 1T” (112 Pirx + UIKPiLj)PjLK - ETU (WIKP[KM + WILPiLM> Piim
i 1
+T<6 — 4>(5ij (A9)
1 1] i 1
= —E(PHKP] )T + <6 - 4> Ts;,
and
Loy LK | Lorg KM LM\ p
Gij = ZT (mLyPirk + nxPiey) P + QT (UIKPZ‘ + P )Pj]M
3 5. K\l
= (PHKPH )T J.
The self-dual projection matrices P} ; are given in Equation (1),

Py = Eel]-k, forI=i]=j, and P(l)j = —P]?O = —5(5]1, forI=0,]=j#0. (A10)

and P! j are their complex conjugate. One finds:

(PHKP}}) T = (PHOP]Q] + P,MP]) T
i00Pf T + Pioe Pl T + Pig PoT™ + Pigy Py, T + Py Py, T
= —PiggPimo T + Piog PlgT™ + Py Pl T"™ + Py P}, TO" + PWP-Z T

1 i

—i . —i 1 1,
50 z(sjmTfm 751,675@00 + =i —MT’”M —5 ¢ Tom 4 fsm; 5 e, T

2 il 2 ]m 2
% .
=3 ‘S T+ ZeszTmo + ZemTO’” *(51‘]‘5% = Oim0nj) T
1 1
= 1 5 TOO Zezm}T + 4 e]mITom + 51]5an " — 4T]l

1
= —;Lé‘jTOO + 1(51‘]‘5an”’” = 1(51‘]”700T + 151‘]‘77an”’” = 151‘]‘771]T = 29T
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Using this in Equation (A9), one gets:
1 i 1 i 3

Appendix C. Calculating ¢’
Here, it is verifired that the (0,2)-tensor field Z*¥/ defined in

1 .
— iz = 57 18’”9‘72;70, e= det(ef‘),

is inversion of the 2-form Z;W that is Z;WZ]}.‘ V= 5; Multiplying by ¥,,,; and summing up

over contracted indices, one gets:

1 4
g suvi .~ —1 uvpor i
12 2P = 28 € ZW]ZW.

Then, using Z;w = P}']eile{/, one finds:

| ,
: vi _ =1 _uvpo i ,I,J] K,L
=% 2 = 5¢ eI P Py e evep e,

Using e”"P”e{LeLegeg = eel/KL one gets:

: _Lap pi 1
_12}“,]-2141/1 = Ee lP]-UPI’(LegI]KL - EPJIIPIl(LEUKL-
Then, one uses the self-dual projection property,
pjjel/KE = —2ipiKL,

to obtain .
— % T = EPjU(—ZiPZ”) = Py (—iP")).

Therefore,
) 1 )
ZVV]'Z;WI = PjUPZ / = 5;/

where the self-dual projection property, Pj ]P’U = (5} is used. The sum is over the contracted
indices. ‘ . .
Now, let us calculate the vector ﬁeld ', which is given in | ;: = 2iskij(DV1pl)ZW]',
therefore, it is related to the current J#, or, in other words, the current is source for ¢'.
If ]]’: = 2i£kij(Dyl[Jl)ZW] is multiplied by Z’;p and summed up over contracted indices,
one obtains:
zholf = 2iekij (Do) Th, 2T = 2ieg (Duy') (Phyehe ) (Ppeet) a2
= iey;; P P, (Dylpi)qIKe£e"L = —2iyey; PPl (Dvwi)e£eVL.

Using Equation (A7):
eikiP1Pxr = —5 (mjxPirr — nyLPix) + 5 (n1x Py — 1L Pijk)-
Multiplying by 1'% and summing over I, K, one gets:

: 1 1
n'%enPly Py = —5 (PyL = 0) + 5 (4Pyr — Pyr) = Py
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Using this formula in (A12), one finds:
Z’;{p]k = P}‘]eﬂebf = —2iP;, (thpi)eg,e"l‘.

Multiplying by ¢k (inverse of e}), one gets Pigel, Ji' = —2iP; (Dyy')e’". From this
equation, one can see that J = 2igh" D,y + v#, for some vector v*' satisfying v”ieﬂ =0.
However, DHZP“”' =0, so Dve{, = 0, therefore, e{, D,v* = 0, and thus, one can choose
D,v" = 0 which allows us to calculate v* and then, to calculate ¢' in terms of [/ and A;l.
The equation D, J* = 0 implies D, D*¢p' = D?*p' = 0. Let us note that a specific metric g,
defined by ei, = gue'! is used, but, according to the Remark 4, there is a metric for every two
solutions of (X,, £} ) and (X, 3.0%) and also the equation D! = 0 is invariant under
any coordinates transformation x — x’, '’ (x') = 1/ (x), so that the same equation Dy = 0
is valid for other metric g’,,,.
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