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Abstract: In this paper, a current that is called spin current and corresponds to the variation of
the matter action in BF theory with respect to the spin connection A which takes values in Lie
algebra so(3,C), in self-dual formalism is introduced. For keeping the 2-form Bi constraint (covariant
derivation) DBi = 0 satisfied, it is suggested adding a new term to the BF Lagrangian using a new
field ψi, which can be used for calculating the spin current. The equations of motion are derived
and the solutions are dicussed. It is shown that the solutions of the equations do not require a
specific metric on the 4-manifold M, and one just needs to know the symmetry of the system and the
information about the spin current. Finally, the solutions for spherically and cylindrically symmetric
systems are found.
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1. Introduction

The BF theory on 4-manifold M is a topological theory, which includes constraints when
terms turn to gravity theory [1]. The fundamental variables are 2-form B ∈ Ω2(M; so(3, 1))
and spin connection ω, which takes values in Lie algebra so(3, 1), and all derivatives are
linear and applied only on ω, which makes it easy for canonical formalism, finding the
phase space, Hamiltonian equations, quantization, etc. [1]. This theory does not require a
metric to be formulated, as the metric is a derived quantity from the solutions of B. That
gives motivation to formulate Einstein’s gravity as a theory of 2-forms rather than the metric
tensors, and so no pre-existing geometrical structure is needed to obtain the gravity. Let
F(ω) ∈ Ω2(M; so(3, 1)) be the curvature of ω. The pure BF theory action is

∫
M

Tr(B ∧ F(ω)),

which is invariant (symmetric) under local Lorentz transformation (regarded as gauge
group) and under arbitrary diffeomorphisms of M, and does not need using a metric.
The equations of motion are F(ω) = 0 and dωB = 0, where dω stands for covaraint
derivative with respect to the connection ω, thus, B defines a twisted de Rham cohomology
class [B] ∈ H2

DR(M, so(3, 1)), and the solution of F(ω) = 0 is unique up to gauge and
diffeomorphism transformations. There are no local degrees of freedom because the system
has so much symmetry that all solutions are locally equivalent under gauge transformation
of the group SO(3, 1) and under diffeomorphisms of M. Hence, the pure BF theory is a
topological theory [2,3].

In constrained BF theory, the Lagrangian includes the constraint term ϕI JKLBI J ∧ BKL.
The traceless matrix ϕ plays the role of a Lagrangian multiplier that imposes the constraint
on the 2-form BI J , so that its solutions are given in terms of 1-forms eI = eI

µdxµ, that
is BI J = eI ∧ eJ , where the capital letters I, J, . . . = 0, 1, 2, 3 are the Lorentz indices and
Greek letters µ, ν, . . . = 0, 1, 2, 3 are the space-time tangent indices. The frame fields eI

µdxµ

are regarded as gravitational fields, therefore, the constrained BF theory turns to general
relativity theory; the reason is that when ϕI JKL is not constant (like cosmological constant),
the term ϕI JKLBI J ∧ BKL breaks the diffeomorphisms invariance of BF action, thus, there are
non-equivalent local solutions and so local degrees of freedom exist as known in general
relativity in the vacuum. Since the field ϕI JKL is not a physical variable, the equations
of motion of general relativity do not to include it (see Appendix A). The problem with
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constrained BF theory is that the equation of motion, δS/δB = 0, of the action variation
with respect to B contains the non-physical variable ϕI JKL, but one can remove it by taking
the trace of the equations, but there is also a problem with the trace operation, as it reduces
the equations to one equation, which is not enough for getting a solution. For that reason,
the solutions of BF theory using the equation δS/δω = 0 are searched for. In general, the
equations of motion of constrained BF theory including matter give a relation between
the curvature FI J(ω) and the frame fields ΣI J = eI ∧ eJ (the Plebanski 2-form), in matrix
notation, that is F = χΣ + ξΣ̄, where the bar indicates anti-frame field, and χ, ξ are
symmetric matrices of scalar fields [4]. Therefore, the problem turns to finding χ and ξ.

Let us start with the definition of the spin current J and discuss its conservation
in BF theory including matter (in general, a matter Lagrangian is not specified). The
spin current J appears in the equations of motion as a source for dωB by the equation
∗dωB + J = 0 (’*’ is Hodge star operator), and, in order to get dωB = 0 in this study, a
new term is added to BF Lagrangian, like Tr(ψB ∧ F(ω)), using a new field ψ, which is
seen as a redefinition B→ B + ψB. One finds that the equation of motion of ψ is the same
conservation equation Dµ Jµ = 0 of the spin current vector field J, where Dµ is the covariant
derivative. Furthermore, by choosing dωB = 0 in the equations of motion, the spin current
becomes a source for the field ψ instead of B and one gets a new formula (definition) for
the spin current using ψ, and since the spin current regards symmetry of the system, the
field ψ also regards that symmetry. One can see that the equations of BF theory can be
solved only by solving the spin current equation, δS/δω = 0, J 6= 0, with dωB = 0 and
without solving the equation δS/δB = 0, which includes the Lagrangian multiplier φI JKL
(a non-physical variable), and without using a gravitational metric on M, so that one just
needs to use the spin current and know the symmetry of the system. That means that
the BF equations can be solved only by using the coupling term

∫
M

ω I J
µ Jµ

I J , which makes

them easy to solve, and makes the theory similar to the gauge theory. Furthermore, since
ω I J is 1-form and JI J is a vector field, the term ω I J

µ Jµ
I J is naturally defined on M without

needing to use additional structures (like a metric), thus, solving the system equation using
only that coupling term gives a topological theory, i.e, the theory turns to finding 1-forms
and vector fields, similarly to Chern–Simons theory, which includes the Wilson loops as a
source for the gauge field. That makes it easy to solve the equations in different cases of
the spin current, e.g, point charge, straight line current, circular current, etc. The lines of
the spin current can be described using any coordinates system, e.g, Euclidean coordinates,
etc., so the BF theory can be studied in any coordinates system, but in order to avoid an
effect of the coordinates on the lines of spin currents, the coordinates are left to be flat
(not curved). Furthermore, since the spin current is the source for the field ψ, this field
has singularities on the lines of that spin current. One can see that the solution of BI J can
always be written as eI ∧ eJ , so one gets the gravity theory. Finally, an example of explicit
solution of the equations in the case of a spherical and cylindrical symmetric systems in
static case just by finding the field ψ are given; actually, the field ψ is used for obtaining the
spin current.

2. Spin Current in BF Theory

Let M be a connected oriented smooth 4-manifold and P→ M be an SO(3, 1)-principal
bundle with a spin connection ω, which is locally a 1-form with values in so(3, 1) and
F ∈ Ω2(M; so(3, 1)P) is its curvature. The BF theory action is invariant under global and
local Lorentz transformation, which gives a conserved current, and it is called here a spin
current. Before discussing the conservation of the spin current, let us introduce the self-dual
formalism.

Definition 1. The self-dual projection is a homomorphism

so(3, 1)P = P×SO(3,1) so(3, 1)→ so(3,C)P = P×SO(3,1) so(3,C)
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defined by (
Pi

I J

)
: so(3, 1)↪→so(3, 1)C = so(3,C)⊕ so(3,C)→ so(3,C),

for P ×SO(3,1) so(3, 1) = (P× so(3, 1))
/

SO(3, 1), where Latin letters i, j, . . . = 1, 2, 3, with
using the matrices [5]

Pi
I J =

1
2

εi
jk, for I = i, J = j, and Pi

0j = −Pi
j0 = − i

2
δi

j, for I = 0, J = j 6= 0, (1)

where εi
jk is the totally anti-symmetric Levi-Civita tensor, and δi

j is the Kronecker delta.
This relates to the fact that the complexified Lie algebra of SO(3, 1) has the decomposition

so(3, 1)C = so(3,C)⊕ so(3,C) [6]. The new connection is locally an so(3,C)-valued 1-form A
on M whose components are

Ai
µ = Pi

I Jω
I J
µ =

1
2

εi
jkω

jk
µ − iω0i

µ , (2)

and its curvature is
Fi(A) = Pi

I J FI J(ω) = dAi + εi
jk Aj ∧ Ak, (3)

where d is the exterior derivative. The two form BI J is mapped to Bi = Pi
I J BI J . The covariant

derivative Dµ = ∇µ + ω I J
µ acting on sections of TM⊗ so(3, 1,C)P becomes Dµ = ∇µ + Aµ,

with Aij
µ = εij

k Ak
µ, where ∇µ is the affine connection on the tangent (T) space TM.

Using the new variables one can write the Lagrangian of matter (without specifying matter
fields), Lmatter(eI , ω I J), as Lmatter(Bi, Ai, B̄i, Āi), where B̄i and Āi (anti-self-dual representation)
are the complex conjugation of Bi and Ai. The Urbantke formula (Equation (A4), Appendix B)
writes the metric gµν using only the constrained Bi without using the constrained B̄i. Furthermore,
the self-dual connection Ai is compatible with Bi via dABi = 0, while the anti-self-dual connection
Āi is compatible with B̄i via dĀ B̄i = 0. Here dA is the exterior covariant derivative with respect to
the connection A. By that one may suppose

δ

δB̄i Lmatter = 0,
δ

δĀi Lmatter = 0, (4)

or just writing Lmatter(Bi, Ai).

Definition 2. Let A be the self-dual connection on the so(3,C)-bundle so(3,C)P → M. Let
Lmatter be the Lagrangian of matter fields on M. Then the spin current Jµ

i is defined as

Jµ
i =

δ

δAi
µ

Lmatter.

The matter action, Smatter, is required to be invariant under any infinitesimal local
Lorentz transformation ω I J

µ 7→ ω I J
µ + DµΛI J for infinitesimal transformation parameter ΛI J ∈

Ω0(M; so(3, 1)P). Now, let us assume Smatter has this property. Then one gets the following.

Lemma 1. The spin current Jµ
i given by Jµ

i = δ
δAi

µ
Lmatter in gravity theory is conserved [7].

Proof. Since Smatter is invariant under infinitesimal gauge transformation ΛI J , it is invariant
under (one may suggest the condition (4))

Ai
µ 7→ Ai

µ + DµΛi for Λi = Pi
I JΛ

I J ∈ Ω0(M; so(3,C)P).
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The variation

Smatter

(
Ai + DΛi

)
− Smatter

(
Ai
)
=
∫
M

d4x
(

DµΛi
) δ

δAi
µ

Lmatter

= −
∫
M

d4xΛiDµ

(
δ

δAi
µ

Lmatter

)
+
∫

∂M

d3xµΛi δ

δAi
µ

Lmatter

vanishes for arbitrary Λi only when Dµ

(
δ

δAi
µ

Lmatter

)
= 0, where Λi is considered to vanish

on the boundary ∂M. Thus, the current Jµ
i = δ

δAi
µ

Lmatter is conserved. Actually, the previous

calculation based on the idea that Ai and Āi transform independently under infinitesimal
local Lorentz transformation ω I J

µ 7→ ω I J
µ + DµΛI J , therefore, there is another current that

associates with the connection Āi when the matter Lagrangian depends also on Āi.

One finds the same for the general relativity (GR) action; by using the variables
(Σi, Ai), one obtains the equation∫

M

d4x
(

DµΛi
) δ

δAi
µ

SGR = 0⇒ −
∫
M

d4xΛiDµ
δ

δAi
µ

SGR = 0.

In 3 + 1 decomposition of the space-time manifold M = Σ × R, let Σt be space-like
slice of constant time t, with the coordinates xa, a = 1, 2, 3, let 0 be the time index. In the
Hamilton–Jacobi system, by using the variables (Ea

i , Ai
a, Ai

0) on the slice of constant time Σt,
the equation becomes

−
∫

Σ×R

d4xΛiDa

(
δ

δAi
a

SGR

)
−

∫
Σ×R

d4xΛiD0

(
δ

δAi
0

SGR

)

= −const.×
∫

Σ×R

d4xΛi(DaEa
i + D0(DaEa

i )) = 0,
(5)

which is satisfied when DaEa
i = 0, where Ea

i is conjugate momentum to Ai
a, and the re-

lations Ea
i = const.× δ

δAi
a
SGR and DaEa

i = const.× δ
δAi

0
SGR [5,8,9] are used. In this paper,

one fixes DaEa
i = 0.

Remark 1. To note is that the current Jµ
i is similar to the currents in Yang–Mills theory of

the gauge fields, and one can see this clearly when regards the connection Ai
µ as a gauge field,

by that the current Jµ
i relates to the local Lorentz invariance (local symmetry). The metric

gµν = eI
µeJ

νηI J (ηI J is Lorentz metric) is invariant under arbitrary local Lorentz transforma-

tions, like eI
µ(x) 7→ U I

J(x)eJ
µ(x), for U(x) ∈ SO(3, 1), therefore, the local Lorentz symmetry is

an internal degree of freedom.

Definition 3. The action of BF theory including matter (without cosmological constant) on
SO(3, 1)-principal bundle P→ M is defined to be [10]

S = Stopological + Sconstraints + Smatter,

with
Stopological =

∫
M

Bi ∧ Fi(A), and Sconstraints =
1
2

∫
M

ϕijBi ∧ Bj,
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where ϕ ∈ Γ(M; End(so(3,C)P)) is a traceless matrix of scalar fields ϕij. Actually, it is not
required to be symmetric since a new term to be added to BF Lagrangian (see the discussion
below Equation (23)). The connection A on the Lie algebra bundle so(3,C)P, which is locally a
1-form with values in so(3,C) and its curvature F(A) ∈ Ω2(M; so(3,C)P) are defined in the
Equations (2) and (3). The index contraction is done by using δij, the Killing form on so(3,C).

Hence,

S =
∫
M

(
Bi ∧ Fi(A) +

1
2

ϕijBi ∧ Bj
)
+ Smatter. (6)

Since the matrix ϕ is traceless, one can write ϕij = mij − (m11 + m22 + m33)δij/3, for
some not traceless matrix (mij). The variation of the action with respect to mij produces a
quadratic equation in Bi whose solution turns the theory into general relativity. These are

Bi ∧ Bj =
1
3

δijBi ∧ Bj.

The solutions to this are all of the following form Bi = Pi
I Je

I ∧ eJ , in which the
gravitational fields eI

µ are considered as frame fields [11]. Using the self-dual formula
(Equation (1)), the constrained 2-form Bi is written as

Bi =
1
2

εi
jkej ∧ ej − ie0 ∧ ei = Σi,

this is Bi
∣∣
constrained = Σi, using the notation Σi = Pi

I Je
I ∧ eJ .

The equation of motion with respect to Bi is

Fi(A) + ϕi
jBj +

δSmatter

δBi
= 0,

or
Fi(A) = −ϕi

jBj − δSmatter

δBi
. (7)

Since Fi(A) ∈ Ω2(M; so(3,C)P) is 2-form with values in so(3,C), the δ
δBi

Smatter is also
2-form with values in so(3,C).

Lemma 2. In constrained Bi, the variation δ
δBi

Smatter ∈ Ω2(M; so(3,C)P) has the form

δSmatter

δBi

∣∣∣∣
constraint

= Ti
jΣj + ξ i

jΣ̄j,

for some matrices Ti
j, ξ i

j ∈ Γ(M; End(so(3,C)P)), with Ti
j = T j

i and ξ i
j = ξ̄ j

i (see Appendix B,
for more details).

Therefore, in the vacuum, Ti
j = 0 is set. Using this formula in Equation (7) implies

Fi(A) = −ϕi
jΣj − Ti

jΣj − ξ i
jΣ̄j,

or
Fi(A) = ψi

jΣj − ξ i
jΣ̄j, (8)

for some matrix ψ = −ϕ− T ∈ Γ(M; End(so(3,C)P)) [12].

Since Tr(ϕ) = 0, so Tr(ψ) = −Tr(T), Equation (8) yields

Σµν
i Fi

µν = −Tr(T) for Σi
µνΣµν

j = δi
j, and Σi

µνΣµν
j = 0. (9)
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Thus, in the vacuum, Ti
j = 0, one has: Σµν

i Fi
µν = 0. Σµν

i Fi
µνis called the TrF here.

Equation (9) does not contain the non-physical variable ϕ, but the problem with it is that
the trace process decreasing the number of equations. Therefore, Σµν

i Fi
µν = −Tr(T) is a

condition on the solutions. The (0,2) tensor Σµν
j is inverse of the 2-form Σi

µν (Appendix C).

The equation of motion with respect to the connection Ai is

DBi +
δ

δAi Smatter = 0,

or
εµνρσDνBi

ρσ + Jµi = 0. (10)

where DBi = dBi + εi
jk AjBk.

One can see that εµνρσDνBi
ρσ = 0 cannot be chosen when Jµi 6= 0, but the condition

εµνρσDνBi
ρσ = 0 leads to the constraint DaEai = 0 which is satisfied in the Hamilton–

Jacobi system, Equation (5). One gets DaEai = 0 from εµνρσDνBi
ρσ = 0 by setting µ =

0, so ε0abcDaBi
bc = 0, then ε0abc ≡ εabc is used to get εabcDaBi

bc = 2DaEai = 0, where
Eai = εabcBi

bc/2 is conjugated to the connection Ai
a on space-like slice of constant time on

which the coordinates xa are used. Furthermore, the condition DBi = 0 is necessary when
the connection Ai is flat, by that the 2-form Bi belongs to the twisted de Rham cohomology
classes H2

DR(M, so(3,C)P), and this is necessary for getting a topological theory. One can
solve that problem by adding new terms to the BF action (6) with which there are many
possibilities for controlling Equation (10) for Jµi 6= 0 with choosing DBi = 0. Only some
simple possibilities are chosen below in order to get simple results.

By acting by Dµ on Equation (10), one gets:

εµνρσDµDνBi
ρσ + Dµ Jµi = 0,

and using Dµ Jµi = 0, one obtains

εµνρσDµDνBi
ρσ = εµνρσ[Dµ, Dν]Bi

ρσ/2 = 0,

but [Dµ, Dν] = Fµν(A), therefore,

εµνρσ(Fµν(A))i
jB

j
ρσ = 0.

Then using (Fµν(A))ij = εijkFk
µν(A), implies

εµνρσεijkFj
µν(A)Bk

ρσ = 0. (11)

As it is shown below, one can regard Equation (11) as an equation of motion with
respect to a new field ψi, with the possibility of choosing DBi = 0 with Jµi 6= 0.

In order to include the constraints Dµ Jµi = 0 and DBi = 0 in BF theory, the following
action is suggested.

Definition 4. A new term is added to the BF action (6) to get

S =
∫
M

(
Bi ∧ Fi(A) +

1
2

ϕijBi ∧ Bj
)
+
∫
M

εijkψiBj ∧ Fk(A) + Smatter, (12)

in which
∫
M

εijkψiBj ∧ Fk(A) is added, for some vector field ψi ∈ Γ(M; so(3,C)P). One can relate

the new term to a redefinition like Bi → Bi + εi
jkψjBk in pure BF Lagrangian Bi ∧ Fi(A).
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The equation of motion of this action with respect to the field ψi is

εijkεµνρσBj
µνFk

ρσ(A) = 0, (13)

which is the same as Equation (11). By using (Fµν(A))ij = εijkFk
µν(A), one gets

εµνρσBj
µν(Fρσ(A))i

j = 0,

but [Dµ, Dν] = Fµν(A). Therefore,

εµνρσ[Dρ, Dσ]Bi
µν = 0,

but εµνρσDρBi
µν = 0 (DBi = 0) is chosen as suggested before, thus,

δ

δψi Smatter = 0

is satisfied.
The equation of motion of this action with respect to the connection Ak is

DBk + D
(

εk
ijψ

iBj
)
+

δ

δAk Smatter = 0,

or
εµνρσDνBk

ρσ + εµνρσDν

(
εk

ijψ
iBj

ρσ

)
+

δ

δAk
µ

Smatter = 0. (14)

In this equation, one can choose the condition εµνρσDνBk
ρσ = 0, which is equivalent to

DµΣiµν = 0 in constrained Bi, since Bi
∣∣
constraint = Σi = Pi

I Je
I ∧ eJ and [13,14]

1
2!

e−1εµνρσΣi
ρσ =

(
∗Σi
)µν

=
(
−iΣi

)µν
= −iΣµνi, e = det(eI

µ), (15)

where the Hodge duality theory between the forms and the tensor fields is used; here,
Σi

µν is 2-form and Σiµν is (0,2)-tensor field. One can see that Σµν
i is inverse of Σi

µν, so that
Σµν

j Σi
µν = δi

j (see Appendix C for more details).

With that, the term εµνρσDνBk
ρσ in constrained Bi becomes −iDνΣµνi, and so one can

choose the condition DνΣµνi = 0, which is locally equivalent to DBi = 0 in constrained Bi.
The remaining equation of (14) in constrained Bi is

D
(

εk
ijψ

iΣj
)
+

δ

δAk Smatter = 0,

or
εµνρσεk

ij

(
Dνψi

)
Σj

ρσ +
δ

δAk
µ

Smatter = 0,

hence,
− 2i

(
εk

ijDνψi
)

Σµνj + Jµk = 0, (16)

in which the spin current Jµ
i = δSmatter/δAi

µ is used and the condition DνΣµνj = 0 is
imposed. Below, the condition Dµ Jµk = 0 is discussed. Here, both Σµνj and Jµk are tensor
fields.

Remark 2. To note is that Equation (16) is similar to the current Jµn =
(
∂µ ϕi)Tn

ij ϕj in scalar

field theory with symmetry and generators Tn
ij , so one has J0n =

(
∂0 ϕi)Tn

ij ϕj = πiTn
ij ϕj, where
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πi is conjugate momentum to ϕi. Similarly, Equation (16) gives J0i = 2i(Dµψk)ε
ki

jΣjµ0(for
µ = a = 1, 2, 3), so here Daψi is conjugate momentum to Σia0, noting that the indices raising in
Σjµν is done by using a metric gµν.

The equation of motion of the action (12) with respect to Bi in constrained BF (like
deriving Equation (8)) is

Fi(A) + ϕi
jΣj + εi

jkψjFk(A) + Ti
jΣj + ξ i

jΣ̄j = 0. (17)

Multiplying by Σµν
i , summing over the indices and using Σµν

i Σ̄j
µν = 0, one obtains:

Σµν
i Fi

µν + ϕi
jΣ

µν
i Σj

µν + εi
jkψjΣµν

i Fk
µν + Ti

jΣ
µν
i Σj

µν = 0. (18)

Then, using Σµν
i Σj

µν = δ
j
i to obtain

Σµν
i Fi

µν + Tr(ϕ) + εi
jkψjΣµν

i Fk
µν + Tr(T) = 0.

Since Tr(ϕ) = 0 and εi
jkΣµν

i Fk
µν = 0 (see Equations (13) and (15)), one finds:

Σµν
i Fi

µν + Tr(T) = Tr(F) + Tr(T) = 0. (19)

Equation (17) allows us to write Fi(A) in terms of Σi and Σ̄i, and since εi
jkΣµν

i Fk
µν = 0,

one can write
Fi(A) = χi

jΣj + χ′
i
jΣ̄j, (20)

for some symmetric matrix (χij) and skew-hermitian matrix (χ′ ij). Using this equation in
Equation (19), one obtains:

Tr(χi
j) + Tr(Ti

j) = 0. (21)

In addition to this relation, there is another relation between the vector field ψi and the
symmetric matrix χi

j when Ti
j 6= 0 and Jµi 6= 0, from the conservation of the current (16),

Dν Jνi = 0, one has (for DµΣµνi = 0):

i
2

Dν Jνi =
(

DνDµψk
)
εki

jΣµνj =
1
2
([

Dν, Dµ

]
ψk
)
εki

jΣµνj

= −1
2

F`
µν(A)ε`k

mψmεki
jΣµνj = −1

2
F`

µν(A)ε`kmψmεkijΣµν
j

=
1
2

F`
µν(A)εk`mψmεkijΣµν

j =
1
2

F`
µν(A)ψm

(
δi
`δ

j
m − δi

mδ
j
`

)
Σµν

j

=
1
2

Fi
µν(A)ψjΣµν

j −
1
2

Fj
µν(A)ψiΣµν

j ,

and using Equation (20), one gets:

i
2

Dν Jνi =
1
2

χi
mΣm

µνψjΣµν
j −

1
2

χj
mΣm

µνψiΣµν
j =

1
2

χi
mψjδm

j −
1
2

χj
mψiδm

j

=
1
2

χi
jψ

j − 1
2

ψitr
(

χi
j

)
= 0, for Jµi 6= 0.

(22)

This is another relation between the vector field ψi and the symmetric matrix χi
j

in existence of matter Ti
j 6= 0 with Jµi 6= 0. In this case, the matrix χi

j has to satisfy
det
(
χi

j − Tr(χi
j)
)
= 0 in order to get ψi 6= 0; of course, this condition is not needed in the

vacuum Ti
j = 0, Jµi = 0.

Using Equation (20) in (17), one obtains:

χi
jΣj + ϕi

jΣj + εi
jkψjχk

`Σ
` + Ti

jΣj + (. . . )i
jΣ̄j = 0.
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That yields
χi` + ϕi` + εi

jkψjχk` + Ti` = 0. (23)

This equation relates to the equation of motion δS/δB = 0, and it includes the La-
grangian multiplier ϕij, which is a non-physical variable that makes (23) difficult to solve.
Therefore, one needs to find χ and ψ using the other equations of motion obtained above.
One can see that ϕ is not required to be symmetric matrix since the third term in (23) is
not symmetric in general. The symmetric matrix Tij is assumed to be given using the
matter Lagrangian (Appendix B), thus, the total unknown variables are 3 + 5 + 8 = 16 of
the vector ψ, the symmetric matrix χ (with (21)) and the traceless matrix ϕ. Equation (23)
gives 9 equations, therefore, there are 16− 9 = 7 unknown variables, but when Jµi 6= 0,
they reduce to 6 unknown variables (regarding Equation (22)). However, if one chooses a
solution for which the symmetric matrix χij becomes diagonal, like

χ =
(

Kiδi
j

)
= diag(K1, K2, K3), (24)

for some scalar functions K1, K2 and K3 on M. Thus, the unknown variables reduce to 4
variables and to 3 variables when Jµi 6= 0.

Remark 3. The field ψi is a solution of DµDµψi = 0 (see Appendix C), so if Dµvi = 0, then
ψi + vi is another solution, and that makes the components ψ1, ψ2 and ψ3 of the vector field ψi

independent variables, therefore, one can regard them as the degrees of freedom of the system and
solve the equations of motions in terms of them. Note that ψi 7→ ψi + vi (Dvi = 0) does not change
the current Jνi = 2i

(
Dµψk

)
εki

jΣµνj.

The Bianchi identity DFi = 0 implies
(

Dχi
j
)
∧ Σj = 0 (for DΣi = 0), hence (dKi)δi

j ∧
Σj = 0, where Dδij = 0 is used along with the covariant derivative Dvi = dvi + εi

jk Ajvk.
Therefore, one obtains:

εµνρσ(∂νKi)Σi
ρσ = 0, (25)

where ∂ν ≡ d/dxν. In 3 + 1 decomposition of the space-time manifold M = Σ×R, let Σt
be the space-like slice of constant time t with the coordinates xa with a = 1, 2, 3, and 0 is
the time index. The equation εµνρσDµΣi

νρ = 0 (DBi = 0) decomposes into two equations,

DaEai = 0 and εabcDbBi
c = 0, (26)

in which the vector field Ei and the 1-form Bi:

Eai = ε0abcΣi
bc/2 = εabcΣi

bc/2, Bi
c = Σi

0c, (27)

are introduced on the space-like slice Σt (the field Eai is conjugate to the connection Ai
a).

Equation (25) decomposes into (for ∂0Ki = 0)

ε0abc(∂aKi)Σi
bc = (∂aKi)εabcΣi

bc = 2(∂aKi)Eai = 0,

εabc0(∂bKi)Σi
c0 = −εabc(∂bKi)Bi

c = 0.
(28)

One can solve them by writing (for non-zero curvature Fi(A))

Eai =
1
2

εabc(∂bKi)ri
c, Bi

c = (∂cKi)ui,

for some ri ∈ Ω1(M; so(3,C)P) and ui ∈ Γ(M; so(3,C)P). The functions Ki are scalars, the
indices are just for distinguishing each from the others. Thus, one gets the solutions

Σi
ab = (∂[aKi)ri

b], and Σi
0a = (∂aKi)ui. (29)
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Equation (26) implies Dri = 0 and Dui = 0.
In the static case Ja

i = 0 (zero current) with J0
i 6= 0(non-zero charge), the spin current

formula Jν
k = 2iεkij

(
Dµψi)Σµνj decomposes into two equations:

Jb
k = 2iεkij

(
Daψi

)
Σabj = 0, and J0

k = 2iεkij

(
Daψi

)
Σa0j 6= 0. (30)

One can solve the first equation in terms of ψi by writing Σabi = f v[aDb]ψi, for some
vector v ∈ Γ(M; TΣ) that satisfies vaDaψi = 0, and f is scalar function on M. Including f in
v, one can just write Σabi = v[aDb]ψi. Let us note that Daψi = gabDbψi without a need the
used metric gab to be specified. Regarding the second equation of (30), when J0i = 0, one
gets the solution, Σ0ai = −Σa0i = f Daψi. Furthermore, when J0i 6= 0, we let Σ0ai = f Daξ i

for a vector field ξ i 6= ψi. To note is that no specific metric gab is required for raising and
lowering the indices a, b, . . . on Σt, so let it be the metric coming from pulling back of the
Lorentz metric, where Σt is kept to be immersed in R4.

Lemma 3. By comparing the solutions Σabi = v[aDb]ψi and Σ0ai = f Daξ i of Equations (30) with
the solutions (29), and in order to get a correspondence between that solutions, one finds that

ψi = Kibi, ri
c = vcbi, ξ i = Kiui,

Dbi = 0, Dui = 0, dv = 0, f = 1,
(31)

for some vector fields, bi, ui ∈ Γ(M; so(3,C)P).

By that, one obtains the solutions,

Ei =
1
2

εabcΣi
ab∂c =

1
2

εabcva

(
∂bKi

)
bi∂c ∈ Γ(M; TΣ⊗ so(3,C)P),

Bi = Σi
0adxa =

(
dKi
)

ui ∈ Γ(M; T∗Σ⊗ so(3,C)P),
(32)

without needing to use a specific metric.

Remark 4. Regarding the solutions of Equations (29) and (30), let us note that for every two
solutions of Σi

ab and Σabi, the metric gab satisfies Σi
ab = gaa′gbb′Σa′b′i. Furthermore, the metric

used in Σi
ab = gaa′gbb′Σa′b′i is not necessarily the same metric used in Daψi = gabDbψi for getting

the solutions of (30). It is convenient to start from a solution of Σi
ab, and by using a metric gab, to

obtain the corresponding solution of Σabi.

Remark 5. In solution (32), one can see that ΣI J can be written as eI ∧ eJ , as required in constraint
BF theory to get gravity theory, that is, according to self-dual projection, there are vector fields bI

and K I satisfying Kibi = Pi
I Jb

I(K JbJ), therefore, ΣI J
ab =

(
bIv[a

)
Db]
(
K JbJ), then one can write

eI
a = vabI and eJ

b =
(
∂bK J)bJ . Furthermore, from ΣI J

0a = uI(∂aK J)uJ , one gets: eJ
a =

(
∂aK J)uJ

and eI
0 = v0uI , for v0 = 1. A more general case is to find three vector fields bI

1, bI
2 and K I satisfying

Kibi = Pi
I Jb

I
1(K

JbJ
2), therefore, ΣI J

ab =
(

bI
1v[a

)
Db]

(
K JbJ

2

)
, then one can write eI

a = vabI
1 and

eJ
b =

(
∂bK J)bJ

2. Furthermore, from ΣI J
0a = uI

1
(
∂aK J)uJ

2, one gets eJ
a =

(
∂aK J)uJ

2 and eI
0 = v0uI

1,
for v0 = 1. By that, (32) can be written as Σi = Pi

I JΣ
I J for ΣI J = eI ∧ eJ . However, to note is

that solution (32) is a general solution and one has to find a special solution, like to let bi and ui be
constant fields.
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Using the solution of Σ0ai in Equation (30), one obtains:

J0
k = Qk = −2iεkij

(
bi∂aKi

)(
uj∂aK j

)
= −iεkij

(
bi∂aKiuj∂aK j − bj∂aK jui∂aKi

)
= −iεkij

(
∂aKi

)(
∂aK j

)
(biuj − bjui).

(33)

One can see that J0
k 6= 0 takes place only when b 6= u. Therefore, in the vacuum it

must be b = u. If Ja
k 6= 0, it must be ψi = gibi with gi 6= Ki.

If the charges J0i 6= 0 are given as functions on M, then letting bi ∈ Γ(M; so(3,C)P) be
constant field on M, one can determine the scalar functions Ki using Equation (33), and
obtaining the vector v ∈ Γ(M; TΣ) using va∂aKi = 0. However, to satisfy Dbi = dbi +
εi

jk Ajbk = 0 for a constant vector field bi, the connection Ai
µ must be written as Ai

µ = Aµbi.

Furthermore, ui = bi + f (x)bi + ai is chosen, for a constant ai ∈ Γ(M; so(3,C)P) satisfying
aibi = 0, the function f is needed for satisfying Dui = 0. Examples of determining bi and
ui in spherical and cylindrical symmetries are given below. Then, one obtains Bai and
Eai using Equation (32), and obtain the matrix χ using Equation (24), thus, obtaining the
curvature F = χΣ. Note that vaEi

a = 0, vaBai = 0 and va∂aKi = 0 depend on the symmetry
of the system, for example, spherical symmetry, cylindrical symmetry, and so on. Thus,
one sees that the equations of motion of BF theory can be solved without needing to use a
gravitational metric on the manifold M.

3. Solutions for Spherically Symmetric System

It was shown above that one can solve the equations of motion in BF theory by using
a complex vector field ψi = Kibi ∈ Γ(M; so(3,C)P), which allows us to obtain v, Ei, Bi

and J0i, according to Equations (31)–(33). Here, the solutions to be found for spherically
symmetric system in the vacuum (u = b) and then apply it for matter located at a point. As
it was seen above, the solution of the system regards the symmetry of that system, since
one searches for a vector v ∈ Γ(M; TΣ) that satisfies vaDaψi = 0, vaEi

a = 0 and vaBi
a = 0.

For example, in spherical symmetry, the spherical coordinates (r, θ, ϕ) to be used on the
space-like slice Σt = Σ = R3. Letting the vector field ψi to depend only on the radius r, one
gets (for Dbi = 0):

D2ψi = D2(Kibi) = bi∇2Ki = bi 1
r2

∂

∂r

(
r2 ∂

∂r
Ki
)
= 0⇒ Ki =

ci

r
, (34)

so ψi = cibi/r, for some constants ci ∈ R. Actually, one can include ci in bi and just write
ψi = bi/r. Therefore,

Dψi = bi(dKi) = bi(dr∂r + dθ∂θ + dϕ∂ϕ

)1
r
= − bi

r2 dr,

thus, the 1-form v (dv = 0, gabvaDbψi = 0) is

v = a1dθ + a2dϕ, a1, a2 ∈ R,

where, in the spherical symmetry, a1 and a2 kept to not depend on the coordinates θ and ϕ.
The values of the constants a1 and a2 are not significant since ai = gijaj is the Killing vector,
thus, set a1 = a2 = 1. The used metric gab here is the standard metric in the spherical
coordinates, because no any other metric is defined. In what follows in this Section, the
indices r, θ and ϕ denote the spherical components.

Using Equation (32), one gets the solutions of the 1-form Bi and the vector field Ei,

Bi = (dKi)ui = − bi

r2 dr, f or u = b,
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Ei =
1
2

εabcΣi
bc∂a =

1
2

εabcvb

(
∂cKi

)
bi∂a = −εϕθr bi

2r2 ∂ϕ − εθϕr bi

2r2 ∂θ

= εϕrθ bi

2r2 ∂ϕ + εθrϕ bi

2r2 ∂θ .

By that, one gets:

Σi
0r = −

bi

r2 , Σi
rθ =

bi

2r2 , Σi
rϕ =

bi

2r2 , (35)

while the other components like Σi
0θ , Σi

0ϕ, . . . are zeros.
One obtains the matrix χ using Equation (24) with the solution (34),

χ =
(

Kjδ
i
j

)
=

1
r

diag(c1, c2, c3),

where the constants ci have to be determined in order to satisfy the condition Trχ = 0 (in

the vacuum), so
3
∑

i=1
ci = 0. Thus, one gets the curvature F = χΣ + χ′Σ̄ (with setting χ′ = 0

in the vacuum [15]),

Fi
0r = χi

jΣ
j
0r = −

cibi

r3 , Fi
rθ = χi

jΣ
j
rθ =

cibi

2r3 , Fi
rϕ = χi

jΣ
j
rϕ =

cibi

2r3 . (36)

Now, let us calculate the connection Ai and the field bi, which satisfies Dbi = 0. Using
Fi = dAi + εi

jk Aj ∧ Ak, one obtains:

Fi
0r =

1
2

(
∂0 Ai

r − ∂r Ai
0

)
+ εi

jk Aj
0 Ak

r ,

Fi
θr =

1
2

(
∂θ Ai

r − ∂r Ai
θ

)
+ εi

jk Aj
θ Ak

r ,

Fi
ϕr =

1
2

(
∂ϕ Ai

r − ∂r Ai
ϕ

)
+ εi

jk Aj
ϕ Ak

r .

Since a spherically symmetric system is under consideration, the connection Ai are
considered depending on r only. If the gauge Ai

r = 0 is chosen, then:

Fi
0r = −

1
2

∂r Ai
0, Fi

θr = −
1
2

∂r Ai
θ , Fi

ϕr = −
1
2

∂r Ai
ϕ,

and, therefore, using the solution (36), one obtains:

−1
2

∂r Ai
0 = − cibi

r3 ,
1
2

∂r Ai
θ =

cibi

2r3 ,
1
2

∂r Ai
ϕ =

cibi

2r3 .

However, Dbi = dbi + εi
jk Ajbk = 0 and ∂µbi = 0 for µ 6= r, therefore,

∂rbi + εi
jk Aj

rbk = ∂rbi = 0, ∂0bi + εi
jk Aj

0bk = εi
jk Aj

0bk = 0,

∂θbi + εi
jk Aj

θbk = εi
jk Aj

θbk = 0, ∂ϕbi + εi
jk Aj

ϕbk = εi
jk Aj

ϕbk = 0.

Therefore, the field bi ∈ Γ(M; so(3,C)P) is constant, and one gets the solution,

Ai
0 = − cibi

r2 , Ai
θ = − cibi

2r2 , Ai
ϕ = − cibi

2r2 ,

where εi
jkbjbk = 0 is sued. Thus, in this solution the field bi ∈ Γ(M; so(3,C)P) is constant

on M = Σ×R. Next is to find bi in the case of matter located at a point.
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Solutions for Matter Located at a Point

If there is matter located at a point in Σt = Σ = R3, one, thus, has a spherically
symmetric system in a static case J0

i 6= 0, Ja
i = 0. Let the origin (0, 0, 0) ∈ R3 to be that

point, therefore, the charge (33) is given by Qi(x) = Qi
0δ3(x), so

∫
R3

Qi
0δ3(x) = Qi

0 = const.

(conservation of the charges). In order to get the same solution as in Equations (35) and (36),
the field bi is kept to be a constant, and in Equation (33),

J0
k (x) = Qk(x) = −iεkij

(
∂aKi

)(
∂aK j

)
(biuj − bjui), (37)

Qi(x) = Qi
0δ3(x) is used.

For spherical symmetry, the functions Ki are given by Ki = ci/r (Equation (34)),
therefore,

Qk(x) = −2igrr
(

∂rKi∂rK j
)(

εkijbiuj
)
= −i2

cicj

r4

(
εkijbiuj

)
.

Therefore, in order to get Qi = Qi
0δ3(x), one replaces 1/r4 with 1/(r4 + ε4), for some

infinitesimal parameter ε→ 0+, and looks for a solution for the field uj like

uj = bj + ε f bj + εaj/(−2iπ2
√

2),

for some function f on M that is needed for satisfying Dui = 0 and a constant vector field
ai ∈ Γ(M; so(3,C)P). With that, one obtains (for i, j 6= k):

Qk(r) = −2i
cicj

r4 + ε4 εkijbi
(

bj + ε f bj +
ε

−2iπ2
√

2
aj
)
=

1
π2
√

2
ε

r4 + ε4 εkij(cibi)(cjaj).

Comparing with Qi(x) = Qi
0δ3(x), one finds εk

ij(cibi)(cjaj) = Qk
0 = const., and, by

imposing (ciai)(ciai) = 1 with (cibi)(ciai) = 0:

(cb)2 = (cibi)(cibi) = Q0kQk
0,

thus, cibi = ei
√

Q0kQk
0 are chosen for

∥∥ei
∥∥ = 1, so that the constant field bi is determined

by
√

Q0kQk
0 with free SO(3,C) rotation.

By that (for r > 0, ε→ 0+), one obtains the same solutions as in Equations (35) and (36),

but with cibi = ei
√

Q0kQk
0 for

∥∥ei
∥∥ = 1 and

3
∑

i=1
ci = 0. Since cibi is a finite value, it is not

sufficient to let the constants ci take arbitrary values, so chosen them to be (ci) = (1, 1,−2).
By that, an example for the possibility of solving the equations of motion in BF theory

without needing to use a gravitational metric on M is given, so that one needs just to use a
vector field ψi ∈ Γ(M; so(3,C)P), which is defined in the spin current Jµ

k = 2iεkij
(

Dνψi)Σµνj

of matter, Equation (16). Furthermore, it is shown that the solutions depend on the
symmetry of the system, since one needs some vector v that satisfies va∂aKi = 0, vaEi

a = 0,
vaBai = 0 for obtaining the solutions.

4. Solutions for Cylindrically Symmetric System

In a cylindrically symmetric system, the matter is considered to be homogeneously
located along the Z-axis. Similar to the above-considered spherical symmetry, one searches
for the field ψi = Kibi ∈ Γ(M; so(3,C)P), and then calculates v, Ei, Bi and J0i, according
to Equations (31)–(33). The vector v ∈ Γ(M; TΣ) satisfies vaDaψi = 0, vaEi

a = 0 and
vaBi

a = 0, thus, it is the Killing vector. Here, the solution in the vacuum (u = b) to be
found and, then, to be to be applied to a matter located homogeneously along the Z-axis.
The needed information for solving the equations of motion is only the spin charge Qi(x),
Equation (33). As it was mentioned before, there is no need to use a gravitational metric, a
standard metric to be used instead. In cylindrical symmetry, the cylindrical coordinates
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(ρ, ϕ, z) on the space-like slice Σt = Σ = R3 of constant time t to be used. Letting the vector
field ψi to depend only on the radius ρ, one gets (for D2ψi = 0 and Dbi = 0):

D2ψi = D2(Kibi) = bi∇2Ki = bi 1
ρ

∂

∂ρ

(
ρ

∂

∂ρ
Ki
)
= 0⇒ Ki = ci log(ρ), (38)

so ψi = cibi log(ρ), for some constants ci ∈ R. Therefore,

Dψi = cibi(dKi) = cibi(dρ∂ρ + dϕ∂ϕ + dz∂z
)

log(ρ) =
cibi

ρ
dρ,

thus, the 1-form v (dv = 0, gabvaDbψi = 0) is

v = a1dϕ + a2dz, a1, a2 ∈ R,

where, in the cylindrical symmetry, a1 and a2 are kept not depending on the coordinates z
and ϕ. The values of the constants a1 and a2 are not significant since ai = gijaj is Killing
vector, thus, are set as a1 = a2 = 1. The used metric gab here is the standard metric in the
cylindrical coordinates because no any other metric is defined. In what follows in this
Section, the indices ρ, θ and ϕ denote the cylindrical components.

Using Equation (32), one gets the solutions of the 1-form Bi and the vector field Ei,
namely,

Bi =
ciui

ρ
dρ =

cibi

ρ
dρ, for u = b,

Ei =
1
2

εabcΣi
bc∂a =

1
2

εabcvb

(
∂cKi

)
bi∂a = εϕzρ cibi

2ρ
∂ϕ + εzϕρ cibi

2ρ
∂z.

By that, one gets:

Σi
0ρ = −Σi

ρ0 =
cibi

ρ
, Σi

ρz = −Σi
zρ = − cibi

2ρ
, Σi

ρϕ = −Σi
ϕρ = − cibi

2ρ
, (39)

while the other components like Σi
0z, Σi

0ϕ, . . . are zeros.
The matrix χ is obtained using Equation (24) with the solution (38),

χ =
(

Kjδ
i
j

)
= log(ρ)diag(c1, c2, c3),

where the constants ci have to be determined in order to satisfy the condition Trχ = 0 (in

the vacuum), so
3
∑

i=1
ci = 0. Thus, one gets the curvature F = χΣ + χ′Σ̄ (with setting χ′ = 0

in the vacuum [15]),

Fi
0ρ = χi

jΣ
j
0ρ =

log(ρ)
ρ

cicibi, Fi
ρz = χi

jΣ
j
ρz = −

log(ρ)
2ρ

cicibi, Fi
ρϕ = χi

jΣ
j
ρϕ = − log(ρ)

2ρ
cicibi. (40)

Using the gauge Ai
ρ = 0, with letting Ai depend only on ρ, one obtains

Ai
0 = −(log(ρ))2(ci)2bi, Ai

z = −
1
2
(log(ρ))2(ci)2bi, Ai

ϕ = −1
2
(log(ρ))2(ci)2bi,

where the field bi ∈ Γ(M; so(3,C)P) is constant on M = Σ×R.
As in the spherical symmetry case, one finds bi by using the spin charge Qi(x), which

is given by Equation (33). Since the system is static and the matter homogeneously located
along the Z-axis, the spin charge Qi(ρ, ϕ, z) is given by Qi(ρ, ϕ, z) = Qi

0δ(ρ)/2πρ, which

yields
∞∫
0

2π∫
0

ρdϕdρQi
0δ(ρ)/2πρ = Qi

0 for each point of Z. Here, Qi
0 is the point charge

located at each point of the Z-axis.
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In order to get the same solution, as in Equations (39) and (40), the field bi is kept to
be constant, and in Equation (33):

J0
k (x) = Qk(x) = −iεkij

(
∂aKi

)(
∂aK j

)
(biuj − bjui), (41)

Qi(x) = Qi
0δ(ρ)/2πρ is used.

In cylindrical symmetry, the functions Ki are given by Ki = ci log(ρ), Equation (38),
therefore,

Qk(x) = −2igρρ
(

∂ρKi∂ρK j
)(

εkijbiuj
)
= −2i

cicj

ρ2

(
εkijbiuj

)
.

Therefore, in order to get Qi = Qi
0δ(ρ)/2πρ, one replaces 1/ρ2 with 1/ρρ1−ε, for some

infinitesimal parameter ε→ 0+, and chooses a solution for the field uj like

uj = bj + ε f bj + εaj/(−4iπ),

for some scalar function f on M that is needed for satisfying Dui = 0, with a constant
vector field ai ∈ Γ(M; so(3,C)P). By that, one obtains (for i, j 6= k)

Qk(r) = −2i
cicj

ρρ1−ε
εkijbi

(
bj + ε f bj +

ε

−4iπ
aj
)
=

1
2πρ

ε

ρ1−ε
εkij(cibi)(cjaj).

Comparing with Qi = Qi
0δ(ρ)/2πρ, one finds: εk

ij(cibi)(cjaj) = Qk
0 = const., and, by

imposing (ciai)(ciai) = 1 with (cibi)(ciai) = 0:

(cb)2 = (cibi)(cibi) = Q0kQk
0,

thus, choosing cibi = ei
√

Q0kQk
0 for

∥∥ei
∥∥ = 1, so the constant field cibi is determined by√

Q0kQk
0 with free SO(3,C) rotation.

By that (for ρ > 0, ε→ 0+), one obtains the same solutions as in Equations (39) and (40),

but with cibi = ei
√

Q0kQk
0 for

∥∥ei
∥∥ = 1 and

3
∑

i=1
ci = 0. Since cibi is a finite value, it is not

sufficient to let the constants ci take arbitrary values, so chosen to be (ci) = (1, 1,−2).

5. Conclusions

In this paper, the BF theory has been studied including matter by redefinition of the
2-form Bi as Bi + εi

jkψjBk, so that one can get DBi = 0, with D being a covariant derivative
and Latin letters i, j, . . . = 1, 2, 3, in the case of non-zero spin current of matter fields. The
new field ψi is defined using the spin current vector, Jνi = (Dµψk)ε

ki
jΣµνj, Σµνj being the

frame field and Greek letters µ, ν, . . . = 0, 1, 2, 3, are the space-time tangent indices. It
is shown that one can solve the BF equations by using only the spin current of matter,
that is, it is enough to solve the equations δS/δAi = 0 (for the action variation with the
spin connection Ai), DBi = 0 and Jνi = (Dµψk)ε

ki
jΣµνj without using a gravitational

metric on the M 4-manifold and without a need to solve the equation δS/δBi = 0, which
includes the Lagrangian multiplier φij (a non-physical variable), so that one gets φij by
using the solutions in δS/δBi = 0. It is found that to obtain the solutions of BF theory,
it is enough to use (find) the field ψi and the Killing vector v (satisfies vaDaψi = 0) in
Euclidean coordinates, where it is convenient to describe the spin currents and their lines in
Euclidean coordinates with no need to describe them in curved coordinates. Furthermore,
it is possible to obtain the solutions of BF theory using only the charges J0i 6= 0 when
they are given as functions on M in the static case (discussion below Equation (33)). It is
shown that the singularities appear in solution of ψi, that is related to the idea that the
spin current Jµi is the source for ψi, therefore, ψi has singularities on the line of that spin
current, and the singularities appear by that and not by using a gravitational metric. It is
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found that the solutions of BF theory equations depend on the symmetry of the system
and every two solutions of (Σi

ab, Σi
0a) and (Σabi, Σ0ai) determine a metric (Remark 4), and

those solutions are able to be written as eI ∧ eJ using 1-forms eI , where I, J, . . . = 0, 1, 2, 3
are the Lorentz indices. Finally, the solutions of BF theory are applied to spherically and
cylindrically symmetric systems in static case of matter.
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Appendix A. Verifying the General Relativity Equations in the Vacuum Using BF
Equations

Satisfying of the equation of motion of classical general relativity (GR) in the vacuum
is tested using the solutions in BF theory; the equations do not include the non-physical
variable φ. The GR equations in the vacuum are [5]:

DaEa
i = 0, Ea

i Fi
ab = 0, C = εijkEaiEbjFk

ab = 0. (A1)

Here, the gauge e0
a = 0 is used with the metric gab = δijei

aej
b. Note that DaEa

i = 0 is
satisfied when DBi = 0 is satisfied (see the discussion below Equation (10)).

Using Equation (20), in the vacuum χ′ i j = 0, it reduces to Fi(A) = χi
jΣj, on the

spacelike surface of constant time Σt, it becomes Fi(A)ab = χi
jΣ

j
ab. Using Eai = εabcΣi

bc,
one obtains:

Fi(A)ab = χi
jΣ

j
ab = χi

jεabcEjc.

Multiplying it by Ea
i and summing over the contracted indices, one gets:

Ea
i Fi(A)ab = Ea

i χi
jεabcEjc = χijεabcEaiEjc = 0,

where the fact that the matrix χij is symmetric is used. Therefore, the second constraint (A1)
is satisfied. Using Fi(A)ab = χi

jεabcEjc in C, yields

C = εijkEaiEbjχk
i′ εabcEi′c = χk

i′ εijkεabcEa
i Eb

j Ec
i′ .

Then using Ea
i = eea

i , where ea
i is the inverse of the gravitational field ei

a and e = det(ei
a),

one obtains:
C = e3χk

i′ εijkεabcea
i eb

j ec
i′ = e3χk

i′ εijke−1εiji′ = 2e2Trχ.

However, in the vacuum Trχ = 0 (Equation (21)), thus, C = εijkEaiEbjFk
ab = 0 is

satisfied. By that one finds that the general relativity constraints are satisfied in the vacuum
using the equations of motion of BF theory. In existence of matter, the first two equations
are still satisfied, the third equation becomes C = εijkEaiEbjFk

ab = 2e2Trχ = −2e2Tr(Ti
j).

Appendix B. Calculating δSmatter
δΣi

Starting from

δSmatter

δB`
σ1ρ1

∣∣∣∣∣
constraint

=
δSmatter

δΣ`
σ1ρ1

=
−2√−g

δSmatter

δgµ1ν1

√−g
−2

δgµ1ν1

δΣ`
σ1ρ1

= Tµ1ν1

√−g
−2

δgµ1ν1

δΣ`
σ1ρ1

, (A2)

where Tµν is energy-momentum tensor. Using

δgµ1ν1 =
1√−g

δ
(√
−ggµ1ν1

)
− 1√−g

gµ1ν1 δ
(√
−g
)
,
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one obtains: √
−g

δgµ1ν1

δΣ`
σ1ρ1

=
δ
(√−ggµ1ν1

)
δΣ`

σ1ρ1

− gµ1ν1

δ(
√−g)

δΣ`
σ1ρ1

= I1 − I2. (A3)

Using the Urbantke formula [12],√
−ggµ1ν1 = εµνρσεijkΣi

µ1µΣj
νρΣk

σν1
, (A4)

one gets:

δ
(√
−ggµ1ν1

)
= δ

(
εµνρσεijkΣi

µ1µΣj
νρΣk

σν1

)
= εµνρσεijk

(
δΣi

µ1µ

)
Σj

νρΣk
σν1

+ εµνρσεijkΣi
µ1µ

(
δΣj

νρ

)
Σk

σν1
+ εµνρσεijkΣi

µ1µΣj
νρ

(
δΣk

σν1

)
.

Calculating I1 in (A3):

I1 =
δ

δΣ`
σ1ρ1

(√
−ggµ1ν1

)
= εµνρσεijkΣj

νρΣk
σν1

(
δi
`δ

σ1
µ1 δ

ρ1
µ

)
+ εµνρσεijkΣi

µ1µΣk
σν1

(
δ

j
`δ

σ1
ν δ

ρ1
ρ

)
+ εµνρσεijkΣi

µ1µΣj
νρ

(
δk
`δσ1

σ δ
ρ1
ν1

)
= ερ1νρσε`jkΣj

νρΣk
σν1

(
δσ1

µ1

)
+ εµσ1ρ1σεi`kΣi

µ1µΣk
σν1

+ εµνρσ1 εij`Σ
i
µ1µΣj

νρ

(
δ

ρ1
ν1

)
= ερ1νρσε`ijΣ

i
νρΣj

σν1

(
δσ1

µ1

)
+ εµσ1ρ1σεi`jΣ

i
µ1µΣj

σν1 + εµνρσ1 εij`Σ
i
µ1µΣj

νρ

(
δ

ρ1
ν1

)
= ερ1νρσε`ijΣ

i
νρΣj

σν1

(
δσ1

µ1

)
− εµσ1ρ1σε`ijΣ

i
µ1µΣj

σν1 + εµνρσ1 ε`ijΣ
i
µ1µΣj

νρ

(
δ

ρ1
ν1

)
.

To calculate I2, one uses

√
−g =

i
6

εµνρσδijΣi
µνΣj

ρσ,

hence,

I2 = gµ1ν1

δ

δΣ`
σ1ρ1

(√
−g
)
=

i
6

gµ1ν1 εµνρσδij

(
δi
`δ

σ1
µ δ

ρ1
ν

)
Σj

ρσ +
i
6

gµ1ν1 εµνρσδijΣi
µν

(
δ

j
`δ

σ1
ρ δ

ρ1
σ

)
=

i
6

gµ1ν1 εσ1ρ1ρσδi`Σ
i
ρσ +

i
6

gµ1ν1 εµνσ1ρ1 δi`Σ
i
µν =

i
3

gµ1ν1 εµνσ1ρ1 δi`Σ
i
µν.

Therefore,

√
−g

δgµ1ν1

δΣ`
σ1ρ1

= I1 − I2

= ερ1νρσε`ijΣ
i
νρΣj

σν1

(
δσ1

µ1

)
− εµσ1ρ1σε`ijΣ

i
µ1µΣj

σν1 + εµνρσ1 ε`ijΣ
i
µ1µΣj

νρ

(
δ

ρ1
ν1

)
− i

3
gµ1ν1

(
εµνσ1ρ1 δi`Σ

i
µν

)
.

(A5)
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By this, Equation (A2) reads:

δSmatter

δB`
σ1ρ1

∣∣∣∣∣
constraint

=
−1
2

Tµ1ν1(I1 − I2)

=
1
2

Tµ1ν1 εµσ1ρ1σε`ijΣ
i
µ1µΣj

σν1 −
1
2

Tµ1ν1 εµνρσ1 ε`ijΣ
i
µ1µΣj

νρ

(
δ

ρ1
ν1

)
− 1

2
Tµ1ν1 ερ1νρσε`ijΣ

i
νρΣj

σν1

(
δσ1

µ1

)
+

i
6

Tµ1ν1 gµ1ν1 εµνσ1ρ1 δi`Σ
i
µν

= I1 + I2 + I3 + I4.

(A6)

Using Tµ1ν1 = T I Jeµ1
I eν1

J , the first term of (A6) reads:

2I1 = Tµ1ν1 εµνσ1ρ1 εij`Σ
i
µ1µΣj

νν1 = T I Jeµ1
I eν1

J εµνσ1ρ1 εij`Pi
KLPj

K1L1
eK

µ1
eL

µeK1
ν eL1

ν1

= T I JδK
I δL1

J εµνσ1ρ1 εij`Pi
KLPj

K1L1
eL

µeK1
ν = T I Jεµνσ1ρ1 εij`Pi

ILPj
K1 Je

L
µeK1

ν

= T I Jεµνσ1ρ1 εij`Pi
ILPj

K1 J

(
PLK1

n Σn
µν + P̄LK1

n Σ̄n
µν

)
,

where
eL
[µeK1

ν]
= PLK1

n Σn
µν + P̄LK1

n Σ̄n
µν

is used.
One uses the following property of the self-dual projection:

− 1
2

εij`Pi
I J Pj

KL =
1
4
(
ηJKP`IL − ηJLP`IK

)
− 1

4
(I ↔ J), (A7)

which can be easily checked when I = 0 and J, K, L are spatial indices, and when I = K = 0
and J, L are spatial indices, so the Lorentz invariance asserts that this property is also
satisfied when I, J, K, L are all spatial indices. By using this property, one obtains:

2I1 = T I Jεµνσ1ρ1
−1
2
(
ηLK1 P`I J − ηLJ P`IK1 − ηIK1 P`LJ + ηI J P`LK1

)
eL

µeK1
ν

= T I Jεµνσ1ρ1
−1
2

(
P`I J gµν − ηLJ P`IK1 eL

µeK1
ν − ηIK1 P`LJeL

µeK1
ν + ηI JΣ`µν

)
= T I Jεµνσ1ρ1

−1
2

(
−ηLJ P`IK1 eL

µeK1
ν − ηIK1 P`LJeL

µeK1
ν + ηI JΣ`µν

)
=

1
2

T I Jεµνσ1ρ1
(
ηLJ P`IK1 + ηIK1 P`LJ

)
eL
[µeK1

ν]
− 1

2
ηI J T I Jεµνσ1ρ1 Σ`µν,

hence,

2I1 =
1
2

T I Jεµνσ1ρ1
(
ηLJ P`IK1 + ηIK1 P`LJ

)(
PLK1

i Σi
µν + P̄LK1

i Σ̄i
µν

)
− 1

2
ηI J T I Jεµνσ1ρ1 Σ`µν.

Finally,

I1 =
1
4

T I Jεµνσ1ρ1
(
ηLJ P`IK1 + ηIK1 P`LJ

)(
PLK1

i Σi
µν + P̄LK1

i Σ̄i
µν

)
− 1

4
ηI J T I Jεµνσ1ρ1 Σ`µν.
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Furthermore, the second term of (A6) becomes

2I2 = −Tµ1ν1 εµνρσ1 εij`Σ
i
µ1µΣj

νρδ
ρ1
ν1 = −T I Jeµ1

I eρ1
J εµνρσ1 εij`Pi

KLPj
K1L1

eK
µ1

eL
µeK1

ν eL1
ρ

= −T I JδK
I eρ1

J εµνρσ1 εij`Pi
KLPj

K1L1
eL

µeK1
ν eL1

ρ = −T I Jeρ1
J εµνρσ1 εij`Pi

ILPj
K1L1

eL
µeK1

ν eL1
ρ

= −T I Jεµνρσ1
−1
2
(
ηLK1 P`IL1 − ηLL1 P`IK1 − ηIK1 P`LL1 + ηIL1 P`LK1

)
eρ1

J eL
µeK1

ν eL1
ρ =

1
2

T I Jεµνρσ1
(

P`IL1 gµνeL1
ρ − P`IK1 gµρeK1

ν − ηIK1 P`LL1 eL
µeK1

ν eL1
ρ + ηIL1 P`LK1 eL

µeK1
ν eL1

ρ

)
eρ1

J

=
1
2

T I Jεµνρσ1
(
−ηIK1 P`LL1 + ηIL1 P`LK1

)
eρ1

J eL
µeK1

ν eL1
ρ .

Using εµνρσ1 eL
µeK1

ν eL1
ρ = eεLK1L1 Meσ1

M, where e is the determinant of (eI
µ), one obtains:

2I2 =
1
2

eT I J(−ηIK1 P`LL1 + ηIL1 P`LK1

)
eρ1

J εLK1L1 Meσ1
M

=
1
2

eT I J(−ηIK1 P`LL1 + ηIL1 P`LK1

)
εLK1L1 Me[ρ1

J eσ1]
M

=
1
2

eT I J(−ηIK1 P`LL1 + ηIL1 P`LK1

)
εLK1L1 Meρ1

[J eσ1
M]

=
1
2

eT I J(−ηIK1 P`LL1 + ηIL1 P`LK1

)
εLK1L1 M

(
Pi JMΣiρ1σ1 + P̄i JMΣ̄iρ1σ1

)
.

One uses the self-dual property,

Pi
I Jε

I JKL = −2iPiKL,

to get
2I2 = −ieT I J

(
ηIK1 PK1 M

` + ηIL1 PL1 M
`

)(
Pi JMΣiρ1σ1 + P̄i JMΣ̄iρ1σ1

)
.

Furthermore, using

1
2!

e−1εµνρσΣi
ρσ =

(
∗Σi
)µν

=
(
−iΣi

)µν
= −iΣµνi, e =

√
−g,

one obtains:

I2 = −1
4

T I J
(

ηIK1 PK1 M
` + ηIL1 PL1 M

`

)(
−Pi JMερ1σ1ρσΣi

ρσ + P̄i JMερ1σ1ρσΣ̄i
ρσ

)
.

One gets the third term of (A6) by the replacing σ1 ↔ ρ1 in I2, and, with reversing its
sign:

I3 = +
1
4

T I J
(

ηIK1 PK1 M
` + ηIL1 PL1 M

`

)(
−Pi JMεσ1ρ1ρσΣi

ρσ + P̄i JMεσ1ρ1ρσΣ̄i
ρσ

)
= I2,

therefore,

I2 + I3 = +
1
2

T I J
(

ηIK1 PK1 M
` + ηIL1 PL1 M

`

)(
−Pi JMεσ1ρ1ρσΣi

ρσ + P̄i JMεσ1ρ1ρσΣ̄i
ρσ

)
.

The fourth term of (A6) is

I4 =
i
6

Tµ1ν1 gµ1ν1 εµνσ1ρ1 Σµν`.
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Using Tµνgµν = T I JηI J = T, Equation (A6) reads:

δSmatter

δB`
σ1ρ1

∣∣∣∣∣
constraint

= I1 + I2 + I3 + I4

=
1
4

T I J(ηLJ P`IK + ηIKP`LJ
)(

PLK
i εµνσ1ρ1 Σi

µν + P̄LK
i εµνσ1ρ1 Σ̄i

µν,
)
− 1

4
Tεµνσ1ρ1 Σ`µν

+
1
2

T I J
(

ηIKPKM
` + ηILPLM

`

)(
−Pi JMεσ1ρ1ρσΣi

ρσ + P̄i JMεσ1ρ1ρσΣ̄i
ρσ

)
+

i
6

Tεµνσ1ρ1 Σµν`.

For brevity, this form is written as

δSmatter

δB`
σ1ρ1

∣∣∣∣∣
constraint

= εµνσ1ρ1 T`iΣ
i
µν + εµνσ1ρ1 ξ`iΣ̄

i
µν,

or
δSmatter

δBi

∣∣∣∣
constraint

=
δSm

δΣi = TijΣj + ξijΣ̄j, (A8)

with the complex matrices T and ξ given by

Tij =
1
4

T I J(ηLJ PiIK + ηIKPiLJ
)

PLK
j −

1
2

T I J
(

ηIKPKM
i + ηILPLM

i

)
PjJM

+ T
(

i
6
− 1

4

)
δij

= −1
2

(
PiIKPjJ

K
)

T I J +

(
i
6
− 1

4

)
Tδij,

(A9)

and

ξij =
1
4

T I J(ηLJ PiIK + ηIKPiLJ
)

P̄LK
j +

1
2

T I J
(

ηIKPKM
i + ηILPLM

i

)
P̄jJM

=
3
2

(
PiIK P̄jJ

K
)

T I J .

The self-dual projection matrices Pi
I J are given in Equation (1),

Pi
I J =

1
2

εi
jk, for I = i, J = j, and Pi

0j = −Pi
j0 = − i

2
δi

j, for I = 0, J = j 6= 0. (A10)

and P̄i
I J are their complex conjugate. One finds:(

PiIKPK
jJ

)
T I J =

(
PiI0P0

jJ + PiI`P`
jJ

)
T I J

= Pi`0P0
jmT`m + Pi0`P`

j0T00 + Pim`P`
j0Tm0 + Pi0`P`

jmT0m + Pin`P`
jmTnm

= −Pi`0Pjm0T`m + Pi0`P`
j0T00 + Pim`P`

j0Tm0 + Pi0`P`
jmT0m + Pin`P`

jmTnm

= − i
2

δi`
i
2

δjmT`m +
−i
2

δi`
−i
2

δ`j T00 +
1
2

εim`
−i
2

δ`j Tm0 +
−i
2

δi`
1
2

ε`jmT0m +
1
2

εin`
1
2

ε`jmTnm

=
1
4

Tij −
1
4

δijT00 +
−i
4

εimjTm0 +
−i
4

ε jmiT0m +
1
4
(
δijδnm − δimδnj

)
Tnm

=
1
4

Tij −
1
4

δijT00 +
−i
4

εimjT0m +
−i
4

ε jmiT0m +
1
4

δijδnmTnm − 1
4

Tji

= −1
4

δijT00 +
1
4

δijδnmTnm =
1
4

δijη00T00 +
1
4

δijηnmTnm =
1
4

δijηI J T I J =
1
4

δijT.
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Using this in Equation (A9), one gets:

Tij = −
1
8

δijT +

(
i
6
− 1

4

)
Tδij =

(
i
6
− 3

8

)
Tδij. (A11)

Appendix C. Calculating ψi

Here, it is verifired that the (0,2)-tensor field Σµνi defined in

−iΣµνi =
1
2!

e−1εµνρσΣi
ρσ, e = det(eI

µ),

is inversion of the 2-form Σi
µν, that is Σi

µνΣµν
j = δi

j. Multiplying by Σµνj and summing up
over contracted indices, one gets:

−iΣµνjΣµνi =
1
2

e−1εµνρσΣµνjΣi
ρσ.

Then, using Σi
µν = Pi

I Je
I
µeJ

ν, one finds:

−iΣµνjΣµνi =
1
2

e−1εµνρσPjI J Pi
KLeI

µeJ
νeK

ρ eL
σ .

Using εµνρσeI
µeJ

νeK
ρ eL

σ = eεI JKL, one gets:

−iΣµνjΣµνi =
1
2

e−1PjI J Pi
KLeεI JKL =

1
2

PjI J Pi
KLεI JKL.

Then, one uses the self-dual projection property,

Pi
I Jε

I JKL = −2iPiKL,

to obtain
−iΣµνjΣµνi =

1
2

PjI J(−2iPiI J) = PjI J(−iPiI J).

Therefore,
ΣµνjΣµνi = PjI J PiI J = δi

j,

where the self-dual projection property, PjI J PiI J = δi
j is used. The sum is over the contracted

indices.
Now, let us calculate the vector field ψi, which is given in Jµ

k = 2iεkij
(

Dνψi)Σµνj,
therefore, it is related to the current Jµi, or, in other words, the current is source for ψi.
If Jµ

k = 2iεkij
(

Dνψi)Σµνj is multiplied by Σk
µρ and summed up over contracted indices,

one obtains:

Σk
µρ Jµ

k = 2iεkij

(
Dνψi

)
Σk

µρΣµνj = 2iεkij

(
Dνψi

)(
Pk

I Je
I
µeJ

ρ

)(
Pj

KLeµKeνL
)

= 2iεkijPk
I J Pj

KL

(
Dνψi

)
η IKeJ

ρeνL = −2iη IKεikjPk
I J Pj

KL

(
Dνψi

)
eJ

ρeνL.
(A12)

Using Equation (A7):

εikjPk
I J Pj

KL = −1
2
(
ηJKPiIL − ηJLPiIK

)
+

1
2
(
ηIKPi JL − ηILPi JK

)
.

Multiplying by η IK and summing over I, K, one gets:

η IKεikjPk
I J Pj

KL = −1
2
(

Pi JL − 0
)
+

1
2
(
4Pi JL − Pi JL

)
= Pi JL.
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Using this formula in (A12), one finds:

Σk
µρ Jµ

k = Pk
I Je

I
µeJ

ρ Jµ
k = −2iPi JL

(
Dνψi

)
eJ

ρeνL.

Multiplying by eρ
K(inverse of eI

ρ), one gets Pk
IKeI

µ Jµ
k = −2iPiKL

(
Dνψi)eνL. From this

equation, one can see that Jµi = 2igµνDνψi + vµi, for some vector vµi satisfying vµieI
µ = 0.

However, DµΣµνi = 0, so DνeI
µ = 0, therefore, eI

µDνvµi = 0, and thus, one can choose
Dνvµi = 0 which allows us to calculate vµi and then, to calculate ψi in terms of Jµi and Ai

µ.
The equation Dµ Jµi = 0 implies DµDµψi = D2ψi = 0. Let us note that a specific metric gµν

defined by eI
µ = gµνeνI is used, but, according to the Remark 4, there is a metric for every two

solutions of (Σi
ab, Σi

0a) and (Σabi, Σ0ai), and also the equation D2ψi = 0 is invariant under
any coordinates transformation x → x′, ψ′ i(x′) = ψi(x), so that the same equation D2ψi = 0
is valid for other metric g′µν.
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