
Citation: Muhati, E.; Rawat, D.

Data-Driven Network Anomaly

Detection with Cyber Attack and

Defense Visualization. J. Cybersecur.

Priv. 2024, 4, 241–263. https://

doi.org/10.3390/jcp4020012

Academic Editors: Feng Wang and

Yongning Tang

Received: 20 January 2024

Revised: 5 April 2024

Accepted: 8 April 2024

Published: 9 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Data-Driven Network Anomaly Detection with Cyber Attack and
Defense Visualization
Eric Muhati * and Danda Rawat

Data Science and Cybersecurity Center (DSC2), Department of Electrical Engineering and Computer Science,
Howard University, Washington, DC 20059, USA
* Correspondence: eric.muhati@howard.edu

Abstract: The exponential growth in data volumes, combined with the inherent complexity of network
algorithms, has drastically affected network security. Data activities are producing voluminous
network logs that often mask critical vulnerabilities. Although there are efforts to address these
hidden vulnerabilities, the solutions often come at high costs or increased complexities. In contrast,
the potential of open-source tools, recognized for their security analysis capabilities, remains under-
researched. These tools have the potential for detailed extraction of essential network components,
and they strengthen network security. Addressing this gap, our paper proposes a data analytics-
driven network anomaly detection model, which is uniquely complemented with a visualization
layer, making the dynamics of cyberattacks and their subsequent defenses distinctive in near real-time.
Our novel approach, based on network scanning tools and network discovery services, allows us to
visualize the network based on how many IP-based networking devices are live, then we implement
a data analytics-based intrusion detection system that scrutinizes all network connections. We then
initiate mitigation measures, visually distinguishing malicious from benign connections using red
and blue hues, respectively. Our experimental evaluation shows an F1 score of 97.9% and a minimal
false positive rate of 0.3% in our model, demonstrating a marked improvement over existing research
in this domain.

Keywords: anomaly detection; data analytics; TCP connections; cyber visualization

1. Introduction

Despite significant investments in cybersecurity infrastructures, the occurrence of
successful cyberattacks remains significant. The evolving landscape of cyber threats consis-
tently leans in favor of attackers, as they exploit the intricate nature of traditional network
protocols and adapt rapidly to emerging security mechanisms [1]. This prevailing imbal-
ance is exacerbated by defenders often grappling with complex and overly specialized
cybersecurity tools, which, while sophisticated, can introduce overheads that result in
slower response times and fragmented investigative processes. Moreover, the sheer in-
tricacy of such tools can overwhelm defenders, inadvertently providing a window of
opportunity for cyber adversaries [2]. In response to these escalating threats, our research is
driven by research questions on how can we enhance real-time anomaly detection through
improved, low-cost data extraction and visualization techniques? In addition, what role
can effective visualization play in identifying and responding to prevalent threats? These
questions underscore the urgent need for cybersecurity tools that are not only advanced in
their capabilities but are also accessible and efficient in practice.

Network intrusion detection systems (NIDSs) play a crucial role in detecting and
mitigating network compromises. Data analytics-based NIDSs utilize algorithms and large
datasets to identify malicious activities, offering a promising approach to cybersecurity.
However, the dynamic nature of cyber threats presents challenges. Many existing NIDSs
struggle with timely updates and adaptation to novel malware patterns, leading to po-
tential vulnerabilities [3]. Moreover, the responses of some systems can inadvertently

J. Cybersecur. Priv. 2024, 4, 241–263. https://doi.org/10.3390/jcp4020012 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp4020012
https://doi.org/10.3390/jcp4020012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0002-3269-0363
https://orcid.org/0000-0003-3638-3464
https://doi.org/10.3390/jcp4020012
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp4020012?type=check_update&version=1

J. Cybersecur. Priv. 2024, 4 242

reveal defensive mechanisms to attackers, providing them with information that could be
exploited in future attacks [4]. Additionally, the vast amount of data generated by modern
networked systems can strain the processing capabilities of NIDSs, affecting their real-time
detection performance [5].

In response to these challenges, there is a growing inclination in the cybersecurity
domain towards the integration of visualization techniques with traditional NIDSs [6–8].
Despite this interest, many current visualization approaches fall short in effectively repre-
senting the technical ramifications of cyberattacks [6–8]. There remains a significant need
for a cyber visualization tool that seamlessly integrates with NIDS alerts and provides
real-time comprehensive insights into the threat landscape.

In the context of these cybersecurity challenges, a synergy between streamlined ab-
straction and the visualization of security events may offer a robust solution for network
anomaly detection [9]. The adversarial tactics, techniques, and procedures detailed in [10]
span seven distinct phases. Within this schema, adversaries first undertake reconnaissance,
subsequently weaponize malware, devise a delivery mechanism, exploit identified vul-
nerabilities, and eventually escalate and sustain the attack while maintaining persistent
network connectivity. Notably, the execution of the latter five stages hinges on a successful
breach, emphasizing the significance of network connectivity and the absence of effective
NIDS intervention. Given that adversarial actions invariably leave detectable footprints
within network traffic [11], an incisive focus on specific traffic patterns and behaviors can
prevent sub-optimal network traffic analysis. “Footprints” are signs that indicate potential
security threats within network traffic, including unusual patterns like spikes in traffic
or unexpected request types, which can suggest malicious activities. For instance, if a
server typically receives 100 connection requests per time interval but suddenly receives
10, 000 requests/probes as an outlier considering all other network constants, that can be a
clear footprint of a potential distributed denial of service (DDoS) attack.

In light of the aforementioned context, our research introduces a novel model charac-
terized by the following model objectives (MO):

• MO-1: We present a low-cost and straightforward technique for extracting network data
using open-source scanning tools designed to dynamically capture network connections,
facilitating the efficient identification of potentially malicious hosts.

• MO-2: We automate the network data extraction mechanism to ensure its replicability
for subsequent research endeavors.

• MO-3: We overlay our anomaly detection framework with a cyber visualization layer,
capturing benign or malicious connections. This visualization granularity is derived
from computed attack and defense metrics, as illustrated in Figure 1.

• MO-4: Finally, we incorporate proactive mitigation strategies within our visual module,
where link hues transition from red to blue, signifying the successful counteraction of
cyber threats, and conversely from blue to red upon detecting malicious activities.

Our proposed model case study can be described as an analysis of temporal and be-
havioral patterns’ network traffic, distinguishing between normal operations and potential
threats. An anomaly is detected when a surge in failed connection attempts is observed,
deviating from a baseline of established connections typically seen from benign hosts.
Unlike traditional systems that might flag this as a mere spike in traffic, our proposed
model assesses the failure rate in conjunction with established connections to flag attack
attempts.This is also summarized in Figure 1 to depict the novelty of the model’s ability to
accurately identify threats by analyzing nuanced patterns of network interactions, thereby
giving an improved and effective NIDS.

J. Cybersecur. Priv. 2024, 4 243

The essence of our paper revolves around addressing specific and prevalent threats
related to DoS and malware probing. It is pertinent to emphasize that while the cyberse-
curity domain is vast and multifaceted, zooming in on specific threat vectors offers the
advantage of depth, precision, and optimized solutions. While there exists a multitude of
cyber threats like malware command and control, command/SQL injection, and drive-by
download attacks, our targeted approach is towards DoS and malware probing threats.
This focus is substantiated by evidence of their disruptive capabilities on cyber–physical
systems, as highlighted in [12]. DoS attacks, for example, are shown to significantly impair
communications between physical and computing systems, thereby demonstrating their
potential to disrupt operations. Focusing our analytical techniques on these specific threat
vectors allows us to deliver a highly refined and effective detection mechanism [12].

Figure 1. Model flow diagram.

TCP connectivity-based analysis, in particular, has shown to be adept at uncovering
the subtle nuances and patterns related to these threats [13]. Integrating machine learning
(ML) techniques or rule-based detection mechanisms can provide an enriched detection
landscape [1]. However, introducing them without a well-defined scope might lead to a
dilution of precision, increased false positives and potential inefficiencies [3,11]. Our current
approach sets a strong foundation upon which subsequent research can build, expanding
to other threats and incorporating diverse detection mechanisms. TCP connectivity-based
analysis, in particular, has shown to be adept at uncovering the subtle nuances and patterns
related to these threats.

The remainder of this paper is organized as follows: Section 2 delineates the existing
research gap; Section 3 provides the foundational background; Section 4 details our model’s
implementation. Our performance evaluation and its empirical results are presented in
Section 5, while Section 6 describes the design of our visual prototype. We conclude the
paper in Section 7.

J. Cybersecur. Priv. 2024, 4 244

2. Related Work

Network complexities and cost implications are pivotal in network security models.
Due to technical challenges, including cost and network complexities, many existing models
are grouped on techniques, algorithms, system types, and available datasets [14]. Our
spectrum of scope in this section considers approaches based on network data types and,
more so, transmission control protocol (TCP) connections that form the crux of several NIDS
approaches. To distinguish between these, we categorize them based on their treatment
of TCP data in terms of feature extraction and classification. Approaches such as [15–19]
emphasize extracting features from TCP connections and labeling data. These processed
data are then utilized to classify network traffic as malicious or benign.

• Anomaly Detection with AdaBoost: The AdaBoost-based solution [15] deploys an on-
line AdaBoost algorithm, leveraging both extracted network data and global detectors.

• Boosted Decision Trees: Both Ruan et al. [16] and the Hierarchical SOM method [17]
use a similar foundational model but enrich it by integrating boosted decision trees,
leading to multiple decision classifiers.

• Support Vector Machines (SVM): refs. [18,19] exploit the SVM algorithm post extensive
training from TCP feature extracted data. Particularly, ref. [19] melds kernel principal
component analysis and the genetic algorithm, while the multi-level hybrid SVM and
extreme learning machine (ELM) introduces a modified k-means algorithm.

Each method offers its unique strengths, but a common lacuna is the absence of an
affordable, nonproprietary, on-the-fly data probing and collection mechanism that operates
sans extensive training. Our proposal fills this gap using open-source service discovery tools
for network extraction and intrusion detection. Additionally, our model does not require
extensive training and is differentiated with a visualization module offering enhanced
portrayal of NIDS outputs.

Addressing SYN-ACK-based attacks is a topic of much debate. The brute-force method,
as described in [20], aims to inflate the data structure for TCP connections awaiting ac-
knowledgment, making it cumbersome for average attacker requests to sustain bandwidth
constraints. While effective, this method is not without its pitfalls. The survey [21] flags
issues like sluggish response times during connection look-ups, owing to the sheer volume
of TCP data structures housed in vast spans of protected kernel memory. Moreover, un-
warranted memory allocation might inadvertently modify TCP signaling behaviors. Our
proposal counters these challenges by offering an economical and simplified approach. By
monitoring TCP connections via open-source tools, we boost intrusion detection efficiency,
merging the dual strengths of combined failure rates and pre-established TCP connections.

Visualization remains an under-explored territory in intrusion detection. Our method
stands out by integrating a visual module that augments information processing, an em-
phasis not universally applied. For instance, Bhardwaj and Singh [22] leverage supervised
data mining for network data extraction but offer limited details on live packet capture
parameters, performance metrics, or validation data. In contrast, our approach ensures
transparency by utilizing service discovery tools for automated network data mining.

Other notable endeavors include Ohnof et al.’s [23] methodology, which focuses on
visualizing IP addresses related to cyberattacks by analyzing attack timing, source, and
type with network sensors yet primarily targets Internet-worm attacks with a narrow visual
scope. Ulmer et al. [24] develop a web-based prototype analyzing Geo-IP data changes
to identify unusual behavior, focusing on historical threat source visualization rather
than networked assets’ current state. Our approach surpasses these models by not just
visualizing security events for informed cyber decisions but also a visual representation of
the extent to which cyber assets are affected, showing the total effects of cyberattacks (TCE).

J. Cybersecur. Priv. 2024, 4 245

3. Background
3.1. Reliable Network Reconstruction

To improve the reliability of network data reconstructions, advanced filtering algo-
rithms can be employed to reduce noise, while anomaly detection techniques can help
in identifying erroneous data patterns. However, challenges arise when statistical anal-
yses, like packet sniffing in [22], yield data with compromised timeliness, making them
unsuitable for many research applications [25]. True reconstruction of mutable network
entities remains a demanding task [26]. Efforts like [27] grappled with these issues but
depended heavily on extensive training data, which might not always be available. Thus,
in our pursuit of MO-1 and MO-2, we utilize nmap [28] as a more efficient alternative that
bypasses the need for vast training datasets. Nmap is an open-source tool widely used for
high-speed network scans using raw IP packets to determine running service applications,
operating system (OS) versions, and type of packet filter/firewall network device.

3.2. Connectivity

An actual network process is difficult to simulate because of enormous infrastructures
and immeasurable nonlinear, nonstationary variables, whereas an inaccurate represen-
tation of network statistical characteristics could induce errors in our proposed model
performance, as stated in [29]. Simulating a precise network process is inherently challeng-
ing due to the sheer size of the infrastructures involved and the unpredictable nature of
nonlinear, non-stationary variables. Moreover, an erroneous portrayal of network statistical
attributes can detrimentally affect our model’s performance, as mentioned in [29]. We
navigate these intricacies by operating under the presumption that every TCP connection
undergoes a three-way handshake for benign data transmission between a client and target
host. Notably, specific connection parameters are essential precursors to the actual data
exchange. Typically, certain connection parameters must be established before the exchange
of application data.

The client host randomly picks a sequence number a and sends a synchronize (SYN)
packet with supplementary TCP flags and options. The target host increments a by one,
chooses its random sequence number b, appends distinct flags and options, and replies with
a SYN Acknowledgement (SYN-ACK). The client host wraps up the handshake by adding
one to both a and b and dispatching the final ACK packet. Upon a benign handshake,
i.e., when ACKFlag == 1, both the client and target host are primed for data exchange,
although either could be malicious. This insight equips our methodology to evade network
performance mishaps affecting MO-1 and MO-2, ensuring connectivity recognition after the
last ACK is sent.

3.3. Threat Description

Although encryption algorithms have been relied on to protect sensitive data, the
statistical patterns of underlying ciphers that successfully reveal encryption keys have
become common [30], meaning that billions of terabytes of data transmitted daily over
computer networks face many internet-based threats. In addition to the difficulty in
ensuring a secure network environment, multi-agent systems are vulnerable to complex
distributed attacks from multiple adversaries.

The traditional information security model characteristics, i.e., confidentiality, in-
tegrity, and availability, inspire our threat classification scope of understanding threats
that vary from passive hidden communication lines that attack confidentiality or active
adversaries that affect real-time data exchange. Both attacks aim at confidentiality, integrity,
or availability categories. Our threat model considers both active and passive attackers
who obtain unauthorized network connectivity. Our primary focus is on the availability
of a computing resource flagged as unavailable when the device is under attack. Notably,
although availability is the primary focus of our defense system, an attack connection could
translate to the loss of confidentiality and integrity as well. Our focus is mainly on exposing
the consequences of cyberattacks on the technical space, i.e., on computing resources [8].

J. Cybersecur. Priv. 2024, 4 246

We describe the following malware mechanisms that have severe high impacts.

3.3.1. Worms

These can cause greater damage to networks than viruses because, in a small burst of
time, a worm attack can automatically infect millions of hosts [31]. Worms autonomously
exploit vulnerabilities in the target system, as well as penetrate and replicate them subject
to the conditions stated in Section 3.2. A worm propagation model involves the target
acquisition, elevation of privilege, and infection phase [32]. Sophisticated worm attacks on
both applications and protocols are quickly evolving and resulting in greater vulnerability
exploits from minimized low-cost attack efforts [33,34].

3.3.2. TCP-SYN Flood Attack

This is a denial-of-service (DoS) attack to exhaust resources and render a targeted
host unresponsive during the standard TCP three-way handshake. The attack involves
repeatedly sending SYN packets to all target host ports, causing the target host to try to
respond with an SYN-ACK packet from each open port. The result is that legitimate clients
are denied service because of an overflow in the host’s connection tables.

4. Methodology and Implementation
4.1. Automated Service Discovery

Information about the actual state of devices in a networked system can be obtained
through network scanning. In this section, we explain MO-2, i.e., how our model actively
probes and gathers network information on the fly without requiring extensive training
data. We automate service discovery by compiling the following commands in a bash script.
First, we dynamically discover the network IP class; secondly, we scan for all active IPs in
the network, followed by a fingerprint scan for the OS version. This bash script enables us
to extract a network topology on the fly based on active IPs as input to our model. Hence,
our experiment can be easily replicated elsewhere as per MO-2, as follows:

IPs = $(ip addr show | grep ’inet’ | awk ’{print $2}’ | cut -d/ -f1 | head

-n 1)

Then, obtain a list of all active IPs

nmap -n -sn $IPs -oG - | awk ’/Up$/print $2’

Loop through each IP and obtain the OS version’

nmap -O -T2 $Each_ip | grep "Device" | awk ’print $3’ » scan.txt

Additionally, through Wireshark [35], a commonly available open-source network pro-
tocol analyzer, we execute remote packet capture to extract network traffic, applying
TCP. f lags() SYN, ACK, and FIN to filter all established TCP connections per device. The
Wireshark output becomes an input network model to our visualization system set to
update in real time, depending on network activities. We selected Wireshark capture on
the basis of the knowledge that the identification of connectivity from such a network-level
view, same as stated in [36], would provide a realistic network model for Algorithm 1,
instead of ineptly considering all relevant network aspects (e.g., user behavior and size).

J. Cybersecur. Priv. 2024, 4 247

Algorithm 1 Visualization of TCE (S, t)

Require: All hosts S, time-intervals t
Ensure: Total Cyberattack Effect (TCE%)

1: Start Timer
2: for i← 1,t do
3: for j← 1,S do ▷ hosts ordered by IP address
4: if Timer > ti then ▷ Check in intervals
5: break;
6: end if
7: if Solve (14)j then
8: Solve (15)j
9: ∀j(TCP) ← Solve (21) Color Red;

10: ∀j(TCP) ← LineWidthSize Double
11: else
12: ∀j(TCP) ← Solve (21) Color Blue;
13: ∀j(TCP) ← LineWidthSize Single;
14: end if
15: Solve (16)
16: TCE[i] += Solve(17)
17: end for
18: end for
19: Stop Timer
20: return (TCE)

4.2. Malicious Hosts

To simulate the described attacks in our network model, we need to arbitrarily select
random hosts as malicious hosts, attempting both worm and TCP-SYN flood attacks. Ran-
domness is challenging to characterize mathematically because of process unpredictability,
but it is a critical feature of nature and crucial for many scientific applications [37]. Inac-
curacies or failures in the theoretical modeling of such processes, e.g., from adversarial
attacks, restrict random number generators’ reliability through weaknesses that are difficult
to detect and control. We use a randomness generation model verified by Bell inequality
violation from [38] in Equation (1) to obtain designated attack hosts for our network model.

Z = ∑
i,j
(−1)ij[P(x = y|ij)− P(x ̸= y|ij)] (1)

where P(x = y|ij) represents the probability of x = y if sets (x, y) are selected and
P(x ̸= y|ij) is analogously defined. Therefore, Z becomes the summation outcome that
quantifies the contrast in probabilities over certain network behavior conditions, and we
use i and j as summation indices when iterating over the network model. x and y denote
variables within the probability functions P, where these could represent specific network
states, behaviors, or outcomes being analyzed.

4.3. Attack Dataset

The underlying choice of the dataset in NIDS research is not purely about moder-
nity, but rather the comprehensiveness, applicability, and the depth of provided features.
While our selected dataset KDDCUP’99 [39] might be considered historically grounded, its
continued significance in recent research endeavors is evident [40–42]. As delineated in
Sections 1 and 2, our study focuses on particular malicious activities and behaviors within
network settings. Many of these behaviors echo the characteristics found in the KDD-99
dataset, indicating that foundational threat vectors remain deeply embedded in contem-
porary attack patterns. Furthermore, the mechanisms employed by computer worms are
still pivotal in elucidating the propagation dynamics of infections in current computational
models [43–46].

J. Cybersecur. Priv. 2024, 4 248

For experiment replicability and reliability purposes, it is essential to select a well-
known but vast attack dataset publicly available to other researchers. The KDDCUP’99 [39]
dataset developed by the MIT Lincoln Labs is widely used to validate most proposed
NIDSs [47]. This dataset of approximately 2,000,000 network records has approximately
4,900,000 single connection threat vectors, with each threat vector having 41 normal or
attack labeled features. Based on our selected threat description, we choose attacks that
fall into the DoS category, and probing attacks as shown in Table 1. The malicious hosts
selected in Section 4.2 are simulated as inimical source nodes performing an attack. The
attack dataset we use has a wide range of DoS and probing attack vectors, as detailed
in Table 1, which allows our model a comprehensive array of attack scenarios, thereby
enabling a rigorous validation of our detection capabilities against both volumetric (DoS)
and reconnaissance (probing) activities.

Table 1. Selected KDDCUP’99 dataset [39].

Attack Label Attack Types Instance Count Total Instances

DoS

Neptune 101,201

386,203

Back 2203

teardrop 979

Apache2 737

Mailbomb 293

Smurf 280,790

Probe

IPsweep 1247

3514

Nmap 231

Mscan 996

Portsweep 1040

Grand Total 389,717

4.4. Network Model

To effectively design and evaluate our model’s essential constituents, we need to
evaluate the network prerequisites in terms of handling communication latency. This
is crucial for Algorithm 2, where a resolve module is triggered to hosts with anomalous
connections as part of MO-4. In this section, we abstractly describe our consideration of a
dynamic step model [48] network simulation approach using the network state we derived
through the process in Sections 3.2 and 4.1. We place fixed latency estimation values used
to consider routing decision time as routing delay (Rd), router passing cycle-time as switch
delay (Sd), link passing cycle-time as link propagation delay (Ld), and link bandwidth (Lb).

All packets sent at time intervalΔt use a modeled average latency L or fixed network
parameters. For different network parameters, the implementer would need to recompute
L and cover expanded areas, such as routing algorithms or different policies. Applying the
queue and regression models from [49], we quantify source–destination packet behavior in
our model network and describe the resolve module latency to a selected destination host
as follows:

Li = f (P) + ξ(D) (2)

where f (P) represents the minimal source–destination path physical latency accumulated
by a particular packet. We assume f (P) is given only by network constraints, e.g., the
distance between hosts, meaning that there is no resource contention among packets. ξ(D)
represents the dynamic contention interaction of packets given network constraints, e.g.,
link bandwidth.

J. Cybersecur. Priv. 2024, 4 249

Algorithm 2 Visualization of defense effects (S, t)

Require: All hosts S, time-intervals t
Ensure: Total Cyberattack Effect (TCE%)

1: Start Timer
2: for i← 1,t do
3: for j← 1,S do ▷ hosts ordered by IP address
4: if Timer > ti then ▷ Check in intervals
5: break;
6: end if
7: if Solve (14)j then
8: De f enseModule (Solve (2)j) ▷ Section 4.8
9: ∀j(TCP) ← Solve (21) Color Blue;

10: ∀j(TCP) ← LineWidthSize Single;
11: Solve (16)
12: TCE[i] += Solve (17)
13: end if
14: end for
15: end for
16: Stop Timer
17: return (TCE)

4.4.1. Physical Delays (f (P))

In our calculation of the source–destination path P, we define the time taken to cross a
link by the first packet header byte as burst time(Bt) and time taken for one packet to cross
a switch as switching time (Ht) over a path containing W switches. Switching techniques
are essential considerations, as they determine how internal switches connect the input to
output and message transfer time. We adopt Virtual Cut-Through [50], which is highlighted
by Duato et al. [51] as the most used switching technique. Hence, our calculations use
the following:

f (P) = Bt +
Pks

Lkb
+ W

(
Bt + (Ht +

Pkh
Lkb

)
(3)

where Pks denotes the packet full size in bits, Pkh denotes the packet header size in bits,
and Lkb denotes the link bandwidth in bit/sec.

4.4.2. Contention Delays (ξ(D))

We assume that network synchronization occurs at fixed time intervals, as this aug-
ments simulation speed with minimal accuracy loss, as described in [52]. Consequently,
packets are sent to the network asynchronously until the next synchronization interval
Δt. Our model calculates ξ(D) by evaluating simulated destination hosts using a uniform
distribution of arrival times, which represents a queue over the time interval Δt. This can
introduce additional delays if consecutive packets overlap upon arrival. For each packet at
a time interval, we identify the simulated destination host and compute distributed arrivals
including new packets, and then, as per the destination queue and network synchroniza-
tion, we compute ξlatency. To avoid recursive dependencies, we define an initial latency,
ξ0, which represents the system latency at the start of the simulation or the latency of the
first packet when the queue is empty. The ξ(D) of packet y per destination n as follows:

ξ(D)y =

ξ[y− 1] + f (P)(y−1) +
Ti

TPks
, if ξ[y− 1] > 0

f (P)(y−1) +
Ti

TPks
, if ξ[y− 1] ≤ 0

(4)

where ξ0 is the latency before any packets are processed, f (P)(y−1) denotes the physical
delay of the previous packet in the queue, i.e., y− 1, ξ[y− 1] denotes the contention delay
of the previous packet, Ti denotes the synchronization time interval, and TPks denotes total

J. Cybersecur. Priv. 2024, 4 250

packets processed in Ti, all with simulated destination n. The condition ξ[y− 1] ≤ 0 could
occur if a packet is processed without any queuing delay, in which case its latency is only
due to processing and transmission times. The initial condition ξ0 is a predetermined
latency that is assigned before the arrival of the first packet. This latency could be due to
various factors such as initial processing delay, propagation delay, or any inherent delays
present in the network. The condition ξ[y− 1] ≤ 0 would imply that the preceding packet
encountered no queuing delay and was processed within its synchronization interval,
which could occur under light network load conditions or when a packet arrives exactly
at the synchronization boundary. These conditions ensure that ξ(D)y represents the total
latency experienced by packet y, considering both queuing and processing times. These
approaches allow us to test network behavior under different realistic inputs, providing
insightful results for our proposed solution. We are also able to model the accumulation of
delays due to contention in the network and test behavior under different realistic inputs,
providing great results for our proposed solution.

4.5. Intrusion Detection

There are two widely used intrusion detection techniques: anomaly and signature-
based detection. An anomaly-based detection approach is based on the hypothesis that any
intrusive activity will be distinctive from normal activities. Meanwhile, signature-based
detection assumes that each attack has an associated pattern that can be referenced for
identification. Before visualizing the effects of a cyberattack, a model has to be adept in
various attack detection including DoS [53], which is the limitation of signature-based
detection techniques. The collection of intrusion signatures for comparison is not only
reactive but also onerous with the current growing number of threats.

We innovate our network anomaly detection by analyzing the temporal behavior
of network traffic, focusing on the dynamic nature of network interactions, allowing a
real-time adaptation to what is considered normal behavior while enabling the detection
of anomalies not just based on static patterns but on evolving network conditions. By
extracting sufficient TCP connections and network packets from our Wireshark capture, we
enhance the traditional anomaly detection model to include a novel data analytics-based
technique. The novelty of our model is highlighted in the ability to dynamically interpret
network behavior and giving granular analysis of network traffic patterns to improve
conventional anomaly detection through open-source tools.

Therefore, as part of MO-2, we select the anomaly-based detection technique for our
intrusion detection based on the available dataset and how it significantly influences
data analytics-based techniques. We adopt this consideration from successfully improved
performance reviews in [54], using temporal data to handle anomaly detection. After
extracting sufficient TCP connections and network packets from our Wireshark capture, we
transition our model to include a novel data analytics-based anomaly detection technique.
To differentiate success rates between intruders and benign hosts based on targeted services
running, we combine part a) failure rate (FR) and part b) established connections (ECs)
to develop a failure rate and established connections-based network intrusion detection
system named FREC-NIDS. Within the scope of our proposed model, the failure rate and
established connections-based network intrusion detection system (FREC-NIDS) employs
a unique blend of network data analytics to identify potential threats. By definition, FREC-
NIDS analyzes network traffic through two primary lenses as described: the failure rate
(FR) of connection attempts and the volume of successfully established connections (ECs).
This dual analysis allows for enhanced detection of sophisticated intrusion attempts.

We consider that malicious hosts have a higher number of failed connections at-
tempting many different host connections within a short period than non-malicious hosts.
Malicious connection requests are mostly rejected because not all hosts would be running
the targeted service, resulting in a low connection success rate. By contrast, non-malicious
hosts attempt connection requests with near certainty for positive response, resulting in a
high success rate.

J. Cybersecur. Priv. 2024, 4 251

4.6. Failure Rate (FR)

The FR comparison allows us to check “apples to apples” on client nodes requesting
data exchange to a particular active host, instead of comparing client nodes to all active
hosts. This is crucial because not all active hosts are identical in operations, although data
exchange from a particular host might be similar to different client nodes. For example, in a
real-life scenario, when a computer user cannot connect to a mail server, they will confirm
with their colleagues if access is impossible on their computers too. Thus, the FR of all
computers trying to connect to the mail server in that subnet will be similar, whereas it
would be odd if other computers can connect except one computer.

Malicious hosts try maximizing their exploits by attempting sundry connections
within a short period. Thus, we stratify normal and anomalous network connections
considering the ratio of failed connections Fr to overall connections Ov as the number
of connections made within a particular time window ti. If we depict the network with
k number of client nodes as C = {C1, C2, C3, . . . , Ck} and m number of active hosts as
H = {H1, H2, H3, . . . , Hm}, a successful TCP connection is confirmed when an ACK from
an active host Hm is received for a particular Ck SYN request:

BenignConnectioni = BCi = SYN sent by Ci and ACK received f rom Hm (5)

Similarly, the failure of a client node requesting a TCP connection is confirmed when
there is a timeout response from an active host Hi to a particular SYN request:

Failure = FCi =

{
1 if SYN request by Ci times out,
0 otherwise.

(6)

Overall connections initiated to a particular active host Hm are obtained through:

OverallConnections = OvCi
= BCi + FCi (7)

Now, we define the FR C fr1
of client C1 in the network as the ratio of the number of

failures in C from each active host Hi which is

C fr1
=

FC1

OvC1

, C fr2
=

FC2

OvC2

, . . . , C frk
=

FCk

OvCk

(8)

where i = 1, 2, . . . , k. The average FR denoted as A fr of all client nodes to Hi in the network
is defined as a threshold τ, which is the ratio of the sum of client FRs to all clients present
in the network at a constant time interval ti.

A fr (ti) =
1
k

k

∑
j=0

C fr j
(ti) (9)

Threshold τ is dynamically determined to effectively distinguish between benign and
malicious network connection through A fr of all network connections within a predefined
timeframe. In our experiment description, Section 5, we will give a sample predefined
timeframe. By analyzing historical network traffic data, τ is calibrated to reflect the
network’s typical behavior, ensuring that only significant deviations, which could indicate
malicious intent, are flagged. Our adaptive thresholding approach allows FREC-NIDS to
maintain high sensitivity to the attack dataset while minimizing false positives. Based on τ,
we compare A fr with individual client nodes FRs. A client node Ci is classified as malicious
when C fr i

is greater than our threshold τ as follows:

C fr1
> τ, C fr2

> τ, . . . , C frk
> τ (10)

J. Cybersecur. Priv. 2024, 4 252

However, this is insufficient, as C frk
> τ cannot be examined in isolation in a net-

worked environment. It is important to examine FRs from all clients in the network to
positively identify a malicious client node. We use the comparison in Equation (10) to
process respective FR events distances in an empirical distribution function. We assigned
the FR of each client as p independent and identically distributed arbitrary variable set
Xi ∈ {X1 ← C fr1

, X2 ← C fr2
, X3 ← C fr3

, , Xp ← C fr p
}. The FR distribution function

is as follows:

Gp(x) =
1
p

k

∑
i=1

I[−∞,x](Xi) (11)

where I[−∞,x] denotes the indicator function that differentiates between malicious clients
whose Fr is greater than the threshold τ and a benign client whose Fr is less than the
threshold τ. Thus, the indicator function I[−∞,x] is 1 when the given random variable x is
greater than Xi, ranging from [−∞, x]; otherwise, it is 0.

I[−∞,x] =

{
1, if x ≥ Xi

0, otherwise
(12)

To quantify the distance among client nodes’ FRs, we apply the Kolmogorov–Smirnov
(KS) two-sided test statistic [55] based on the difference between the empirical distribution
function and cumulative distribution function.

Dk = supx |Gk(x)− G(x)| (13)

where supx of a subset XS in a partially ordered set Xi is the least element in Xi, which
is greater than or equal to all elements of XS ⊆ Xi, and G(x) represents the cumulative
distribution function. Finally, FR is classified as malicious if

FRC =

{
malicious, if Dk ≥ τ

benign, otherwise
(14)

To better understand the context of these equations, Equation (11) calculates the
empirical distribution of failure rates across network client nodes to help in visualizing
and understanding the distribution of connection failures, which is critical for identifying
patterns that may indicate malicious activity. By assessing how these failure rates spread
across the network, the model can better distinguish between normal and suspicious
behaviors. Additionally, we use the indicator function Equation (12) to classify network
connections based on their failure rates, comparing them against a predefined threshold.
This aids in filtering out benign activities from potentially malicious ones. If a connection’s
failure rate exceeds the threshold, it is flagged for further inspection, ensuring that the
model focuses on connections that more likely represent genuine threats. In KS test statistic,
Equation (13) measures the maximum deviation between the empirical distribution of
observed network behaviors and the expected distribution under normal conditions to
assess the significance of observed anomalies and confirm whether observed patterns of
network behavior deviate from what is typically expected in a way that suggests malicious
activity. Finally, Equation (14) applies the KS test results to make a decision on whether a
network behavior is considered normal or anomalous by providing a concrete criterion that
flags nodes as potentially malicious based on statistical evidence. This enables our mode to
take action on connections that most strongly deviate from normal behavior patterns.

4.7. Established Connections (ECs)

Because TCP defines ECs to be maintained until data exchange or transfer between a
client and a host is complete, it is essential to obtain all existing connections in the network
following an FR alert for a malicious host. To ensure that the malware is not replicated
to other hosts, an aggregate of hosts in the network connected to the malicious host is

J. Cybersecur. Priv. 2024, 4 253

obtained. As mentioned before, we induce random generated network malicious hosts into
the network running the KDDCUP’99 attack data. Once we receive an alert from the FR
part of FREC-NIDS, we need to check all hosts connected to the malicious client and flag
them as unavailable. We assume that having infiltrated a network host, connections to the
malicious host would be under the attacker’s control and malware is replicated. To present
a lucid picture of actualized threats in the realization of MO-2 and MO-3, our visual display
system will output all affected connections as described in Section 4.9.

We model the FREC-NIDS parameters in our simulated environment to visualize cy-
berattack effects through Algorithm 1 and Equation (21), as will be explained in Section 4.9.
The relationship between our visualization parameters defines L = C ∪ H as the set for
the total number of network hosts, including all client nodes and active hosts, and as
per Equation (5), then, the total number of hosts is given by S = m + k at a set of time
intervals t = {t1, t2, . . . , tn}. For each tn, let G(tn) be an undirected graph with vertex set
V = {v1, v2, . . . , vm} as connections to other hosts, with edge set E(tn). The degree δ(v) of a
vertex v is the number of edges incident to it. Malicious connections Mc in the EC part of
FREC-NIDS are given by

γMc(tn)
=

S

∑
i=0

δ(vi)
, if FRc is malicious (15)

where S denotes the number of nodes at time interval tn; with this, we calculate the network
capacity as:

βY(tn)
=

n

∑
i=1

(
Si ·Oi

vCk

)
(16)

where OvCk
denotes the total number of connections at time interval tn. Then, the network

capacity helps obtain average network unavailability, the calculated comparison of all
established malicious connections, to the network capacity at tn

This gives the security analyst all cyber-assets affected as the TCE%.

TCEtn =
γMc

βY(tn)

(17)

4.8. Malicious Connection Defense

A simple mitigation approach for dealing with malicious connections would include
the termination of malicious connections, but this can be insolent, particularly for false
positives. Additionally, the termination only gives an attacker feedback to try other op-
tions. One of the best alternatives we found and adopted to achieve high resilience to
compromised hosts without relying on static or localized network information is [56],
which proposes a polynomial-based compromise-resilient en-route filtering scheme against
false data. Therefore, to achieve MO-4, i.e., mitigation of attacks in the resolve-module, we
place a compromised hosts report RFRCi

from Equation (14) on the main network controller
verifiable by intermediate hosts through: Condition 1: Message authentication polynomial
(MAP) on the compromised host FRCi , Condition 2: Timestamp T on network controller.
RFRCi

is obtained by:

RFRCi
= authCi |T (18)

where authCi is the MAP stored in host i. Using the proposed approach of handling
malicious connections in [57] that takes over malicious connections as a transparent proxy
by migrating TCP states to a user-level TCP stack, we design our malicious connection
resolve module to attract packets from compromised hosts by fallaciously claiming fresh
shortest packet routes but not forwarding them onward. This is achieved through a
neighboring host having an EC to the compromised host, as described in Section 4.7,

J. Cybersecur. Priv. 2024, 4 254

always responding to a malicious host FRCi route request (RREQ), with the best alternative
route reply (RREP).

Despite the process just described, to stop routing packets through a compromised
connection, any RREP of a fresh route from any malicious host is dropped. We assume
that this process continues until the security analyst takes the compromised host off the
network for subsequent malware check. To prevent resource lock-up in case of a delayed
malware check response from a security analyst, we purge malicious connections through
timeout guidelines proposed in [58]. We use a timeout configuration that accommodates
RFC 2988 [59] dynamics as 1.0 ≤ τ ≤ 11.0, where τ is the timeout value in seconds. The
value for τ is adaptively set based on different settings checked at time t, with the total
number of entries Et given by:

Et = Nt + λτ (19)

where Nt denotes the benign connection and λ denotes the malicious connection rate.
Effectively, FRCi cannot process the threats described in Section 3.3 as the packets are
absorbed and dropped without forwarding. As the attack is mitigated, Algorithm 2
explains this module together with our stated parameters to show how available resources
are visually recognized at given time intervals. We propose this defense strategy to handle
all malicious connections and then, in our display system, transform the connection color
from red to blue, and size from double to single, once malicious connection activities are
nulled with dropped packets.

The implemented code snippet after our FREC alerts is:

FREC alerts ← Solve(14)
GenerateReport(R) ← Solve(18)
//check for a hostcompromised host
while FRCi == malicious {

Veri f yReport(R)
if SRHCi == RREQ() {

//get existing host connection
//send false fresh route
q ← sendFalseRREP(in(Solve(15)Ci),True)
drop(q.packets)

}
if SRHCi == RREP() {

drop(SRHCi .packets)
}

}//SRH is Segment Request Header

4.9. Visual Display

Our visual display module involves real-time visualization of network activities
reported from FREC with two state declaration flags, normal and malicious connections,
to disambiguate our structured representations and facilitate easy user comprehension.
As much as NIDS gives intrusion alerts, it is crucial to visualize the network system state
holistically rather than via single intrusion alerts. The best technique to determine the true
severity of a cyberattack on technical assets is to critically monitor all malicious hosts in the
network compared with all benign hosts. To achieve simplicity in deducing the severity of
a cyberattack and cyber-defense effects through our visualization module, we consider a
cyberattack parameter β and a cyber-defense parameter δ.

To express the status of host i in multiple dimensions within a single function as
the cyberattack and cyber-defense are in progress, we consider the vector function of
r⃗ ′(t) = ⟨β′(t), ⟩δ′(t), where β′(t) and δ′(t) denote the coordinate functions of time
t. Notably, r⃗ ′(t) has a limit given by the vector L when t approaches t0, denoted as
limt→t0 r⃗ ′(t) = L iff for every ϵ > 0 there exists δ > 0 such that 0 < |t − t0| < δ ⇒

J. Cybersecur. Priv. 2024, 4 255

|r′(t)− L| < ϵ. We use Ṡ(t) for the time derivative of r⃗ ′(t) with continuous-time S(t), and
because we expect abrupt changes in values, we consider the r⃗ ′(t) of discrete-time Sm with
the superscript indicating time step of S. We apply two discrete-time models to obtain the
granularity of attack and defense effects reflected in the visual representation. We derive
the first discrete-time model from a continuous-time model:

Ṡt = βi(1− Si)
n

∑
j=1

EijSj − δixi (20)

where xi denotes the attack level in host i, βi denotes the attack rate, δi denotes the de-
fense rate, and Eij denotes the edge weights between hosts. Afterward, we apply Euler’s
method [60] to Equation (20) to derive the second discrete-time model with time index m
and a random sample Z > 0 as:

Sm+1
i = Sm

i + Z

(
βi(1− Sm

i)
n

∑
j=1

EijSm
j − δiSm

i

)
(21)

To achieve MO-3 and MO-4, we use the granularity obtained from Equation (21) to
display blue lines with single-width sizes for normal connections and red with double-
width sizes for anomalous connections. The granularity depth represents the severity of the
attack, i.e., the ratio of compromised host connections to total network connections, or the
effectiveness of defense measures, i.e., the ratio of benign host connections to total network
connections. This choice of colors leverages common associations of red with danger and
blue with safety, thereby utilizing established psychological principles to enhance user
comprehension and response efficiency. The width is an additional layered property to
help users who might be color blind, primarily when visualizing an extensive network
with many connections.

From the visual system, we assume that initially, when network service discovery
is made, everything is normal, and host connections are displayed in blue. Later, when
an intrusion occurs, hosts connected to a malicious host are indicated with red color as
described in Algorithm 1. Because real attacks might not occur simultaneously in a network,
we introduce all induced malicious hosts simultaneously for a finite experiment setup. The
granularity of the network connection colors, i.e., blueish or reddish, changes on the fly as
attacks are detected and as our defense module neutralizes the malicious connections.

5. Results and Performance Evaluation

To evaluate our prototype and mitigation strategy, we implemented our experiment
inside our Data Science and Cybersecurity Center (DSC2) lab, Howard University, Wash-
ington, DC 20059, USA, on a MS Windows server 2016 Intel(R) Xeon CPU E5-2676 v3
@2.40GHz with 4GB RAM. We extracted a network topology from our (DSC2) computer
lab as per service discovery described in Section 4.4 to obtain 101 computing devices in two
subnets, as summarized in Figure 2. The network module in our visual display system
contains information about network devices and topology from the computer running
the application.

We designate 5% attack hosts launched to the network simultaneously to perform
the probing and DoS attack described in Section 4.3. Each attack host simulates the attack
data in a 3-low rate (0.1, 1, 10 packets/s) and 2-high rate (100, 1000 packets/s) instance,
up to a period where the experiment output is stable and does not vary much, i.e., 5 min.
This time interval allowed collection of sufficient data to accurately identify anomalies
without overwhelming our analysis process, but any subsequent research can vary the
interval appropriately. Each attack packet IP header is distinctively labeled by setting a
reserved bit. Our experiment closely mimicked an actual network environment having
the performance evaluation executed on a real-time environment with a finite target. We
assume the network obtains no new connections once the experiment starts, but we surmise

J. Cybersecur. Priv. 2024, 4 256

that the scenario could be different in the real world. The prevalent strategy for identifying
anomaly-based cyberattacks is using outlier detection.

Figure 2. Extracted network model through service discovery

To demonstrate a clear identification of a malicious host having undefined arbitrary
connection attempts as with the case of worm attacks, Figure 3 shows a malicious sample
host C1 detected as an outlier to seven other active hosts. The malicious host C1 tries
maximizing the exploit by attempting sundry connections within a short period. However,
the connection requests sent from C1 are mostly rejected, as not all hosts would be running
the targeted service, resulting in a low connection success rate; meanwhile, the other non-
malicious hosts attempt connection requests with near certainty for a positive response,
resulting in a high success rate. Client C2 and C3 have slightly higher failure rate than
Client C4 and C5 because of normal network resource contention, but they are not flagged
as outliers.

1 2 3 4 5

Minutes

0

10

20

30

40

50

60

70

80

90

100

F
a

ilu
re

 R
a

te
(%

)

client-1

client-2

client-3

client-4

client-5

Figure 3. Failure rate for malicious client C1 and benign clients C2 to C5.

J. Cybersecur. Priv. 2024, 4 257

Therefore, with a finite target, precision, recall, and F1 score become crucial to our
analysis based on the attack dataset. Accuracy is our first step to understanding what we
are obtaining correctly or incorrectly numerically. We extract true and false positives at
different time intervals when FREC-NIDS is running and calculate precision and recall as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(22)

where TP, FP, and FN denote true positive, false positive, and false negative, respectively.
Subsequently, precision and recall in Equation (22) help us evaluate if our model

identifies most attack data without pulling many false positives, i.e., only what is relevant
to the attacks. As shown in Figure 4, our false positive rate (FPR) at the beginning of the
experiment is 5.1% but improves to 0.3% at the end of the experiment. TP at the beginning
of the experiment was 89.8% and ended at a good ratio of 99.7%. The FPR experimental
results summarized in Table 2 show a higher overall precision and recall for FREC-NIDS
than the models from [15–19] described in Section 2. We apply the same attack dataset
and experiment setup to all algorithms in the selected related works. For any related
model that did not specify the percentage of attack dataset used in their implementation,
we applied the full attack dataset, and we applied the same to our FREC-NIDS, while
following revisions on the dataset given by [61]. By invoking 100% of the dataset, we
demonstrated the replicability of implementing FREC-NIDS to real-world attack datasets
without selecting which parts of the datasets can apply. Depending on the cost of FN, recall
is essential as a consideration of attacks incorrectly predicted as benign. However, the
weighted average (or harmonic mean) of precision and recall, calculated as the F1 score,
provides a better overall performance balance. We obtain F1 score as:

F1Score = 2×
(

Precision× Recall
Precision + Recall

)
(23)

Table 2. Performance comparison to related works using the KDDCUP’99 dataset.

Model
Packets% Performance

DoS Probe Precision Recall

AdaBoost-based [15] 100 100 0.922 0.956

Ruan et al. [16] N/A * N/A * 0.895 0.894

Hierarchical SOM [17] 96.90 N/A * 0.857 0.954

Multi-Level Hybrid
SVM and ELM [18] 98.13 99.54 0.981 0.949

Velliangiri [19] N/A * N/A * 0.990 0.921

FREC-NIDS 100 100 0.997 0.963

* Not specifically mentioned in that research.

Figure 5 summarizes the F1 score results, where FREC-NIDS starts with an F1 of 96.8%
and ends with a high value of 97.9%. Multi-level hybrid SVM [18] finished closest to FREC-
NIDS with 96.4% but having started with a low value of 88.6%. Actually, most models
compared in our experiment started with a low performance score, possibly because of
the required extensive training. Our network model, shown in Section 4.4, is a complex
network model to subject all related models, as well as FREC-NIDS, to a robust experiment.

Ruan et al. [16] start the experiment with the worst performance, followed by Hier-
archical SOM [17] and Velliangiri [19], having performance scores between 89% and 95%.
The difference in performance between Bagged C5 and the other related models [15–19] is
possibly due to the different classifiers from multiple decision trees. Notably, although we
used the full KDDCUP’99 dataset, FREC-NIDS achieved better results.

J. Cybersecur. Priv. 2024, 4 258

Figure 4. True and false positive rates comparison.

Figure 5. F1 score compared to other models [15–19].

The core objective of our research was articulated through MO-1 in Section 1, aiming
at presenting a low-cost and straightforward technique for dynamic network data extrac-
tion then significantly enhancing network anomaly detection. Our findings in Section 5,
demonstrating an F1 score of 97.9% and a minimal false positive rate of 0.3%, not only
corroborate the achievement of this objective but also represent a critical step in network
security. These outcomes directly address the prevailing challenges highlighted by Ferrag
et al. [1] and Chowdhury & Gkioulos [2], where traditional NIDS often lag in adapting
to the fast-evolving cyber threats. Our approach for MO-1 further elaborated in Section 4
utilizes open-source tools for network data extraction, coupled with a data analytics-based
intrusion detection system, which enables us to achieve MO-2 by ensuring replicabil-

J. Cybersecur. Priv. 2024, 4 259

ity and operational efficiency without necessitating extensive training data or bespoke
closed-source solutions.

6. Prototype

This paper includes an exploratory proof-of-concept demonstration developed as
a web service that queries required data from a MySQL database and sends them to a
visual display. The front-end is developed through a combination of JavaScript and C#
published as a WebGL project from the new Unity software Entity Component System
(ECS) [62]. Figure 6 shows our high-fidelity prototype with self-explanatory iconography
and simple categorization of system functions. System navigation is placed on the left side
with the following:

• Network Discovery: This executes an automated bash script described in Section 4.1. In
case of network discovery performed outside our prototype, the data can be loaded as
a CSV file through the select file icon on the bottom left side of the page.

• Network Model: This displays the scanned network topology.
• Attack Data: This allows loading the attack data described in Section 4.3. These data

can be 100% completely loaded as used in our experiment but can also be modified
for different studies.

• Reports: This summarizes exportable data from the experiment.
• Refresh: This allows a new experiment to be conducted.
• GET TCE%: This calculates the TCE and displays it on the top right side of the page.
• Resolve: This runs the defense mitigation strategy described in Section 4.8.

Figure 6. Snapshot of the proposed prototype.

The top dashboard summarizes our experiment including 3857 TCP connections, a
total experiment time of 5 min, and an initial TCE of 8%. However, in a real environment,
immediate defense and mitigation should occur on detection, and our visual system is
set only to deploy the resolve module on Section 4.8 on execution from the user so that
cyberattack effects can be viewed first.

These technical details and functional aspects of our proof-of-concept prototype build
on our prototype’s topology, as summarized in Figure 6, that depicts a real-time interactive
network model having an array of network devices and connections. This high-level
overview demonstrates the prototype’s structural and operational accuracy, reflecting a

J. Cybersecur. Priv. 2024, 4 260

complex network. As explained, the technical backbone combines a MySQL database
queried by a web service, with a responsive front-end JavaScript and Unity’s ECS interface,
emphasizing real-time data processing. For a practical demonstration of the system’s
versatility, the prototype incorporates various simulated attack scenarios. The attack data
function facilitates the loading of specific attack types from the KDDCup’99 dataset, such
as DoS and probing attacks, to validate the detection and visualization mechanisms.

The prototype’s layout, with dedicated controls for network discovery, data loading,
and mitigation strategy implementation (“Resolve”), provides real-time observations of
threats, thus verifying the prototype’s effectiveness and practical contribution within the
field of cybersecurity visualization. The introduction of a real-time visualization layer
achieves our MO-3 by presenting a novel mechanism for network security monitoring that
enables informed decision-making. This feature directly addresses the gap in effective
threat visualization noted in existing NIDS solutions and marks a significant step in layering
effective threats identification and mitigation. The utilization of color-coded connection
statuses simplifies the complexity associated with network monitoring amid massive
network events. The prototype’s design also achieves our MO-4 through changing network
link colors from red to blue, indicating the mitigation of threats in real time. This feature
directly reflects our objective to not only detect but also visually signify the neutralization
of network threats for enhanced clarity and immediacy of security responses.

7. Conclusions

In light of the challenges posed by intricate NIDS schemes, there has been a surge
in network breaches. Multilayered strategies that embed cyber visualization of NIDS
alerts have emerged as a countermeasure, albeit accompanied by inherent constraints.
Recognizing that most cyberattacks stem from unauthorized network connections, we
introduced a novel NIDS, which gleans network information through processes easily
replicated from network scanning utilities. Our approach monitors TCP connections,
handshake FR, and the count of ECs at specific intervals, generating alerts to identify
benign or malicious network connections. In our strategy, a visual-interactive prototype
is designed to highlight suspicious connections, with color-coded outcomes based on
cyberattack and cyber-defense rates. This enhancement provides cyber-analysts with a
more informed decision-making tool, especially in situations where rapid termination
of malicious connections prompts attackers to constantly switch targets. Central to our
defense approach is the introduction of a verified report on compromised hosts, presented
on the primary network controller. This is complemented by the deceptive broadcast of
incorrect packet destination routes to compromised entities.

Once a false route is accepted by the malicious hosts and packets forwarded, these
packets are subsequently dropped. Our visual tool provides the status of networked hosts’
availability at given intervals rather than mere visualization of cyberattack effects on the
physical world, i.e., non-technical space. Our experiment shows a significant improvement
in F1 score compared with other models [15–19], which have a lowest performance score
of 86.5%. Our model showed only a 0.3% FPR and a high F1 score of 97.9%. However, we
are limited in differentiating high-level network components, such as hubs and network
switches, that might not operate the same as data point networked hosts. Nonetheless,
main network controllers have in the past been poorly configured and breached as high-
priced attack targets, necessitating special attention. Our future work will cluster network
components differently, including network computing hosts handled diversely like main
network controllers.

Testing our model in expansive networks will yield more detailed data on network
events, potentially enhancing our false positive rate metrics. A controlled network environ-
ment allowed us to closely monitor the model’s performance and fine-tune its detection
mechanisms but does not offer the ability to capture important computation complexity
metrics. Recognizing the importance of this aspect for real-world applications, our future
works will include processing time and memory usage processing as the model analyzes

J. Cybersecur. Priv. 2024, 4 261

live network traffic over time. This will set up the stage for future investigations into its
computational complexity. This next step is crucial for ensuring FREC-NIDS meets the
dynamic demands of modern network security challenges. Our future plans also involve
expanding our model to include behavioral analysis for anomaly detection that will en-
hance the model’s ability to analyze patterns of behavior within the network traffic and
adapt to new patterns of network behavior over time. Furthermore, as an expansion of
our mitigation strategy, future iterations of our model will consider integration with other
security systems such as open-source firewalls and intrusion prevention systems. This
integrated approach will advance our model’s fingerprint of malicious connections in a
holistic defense approach.

Author Contributions: Conceptualization, E.M. and D.R.; methodology, E.M. and D.R. formal
analysis, E.M. and D.R.; validation, E.M. and D.R.; Evaluation, E.M. and D.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is partly supported by the U.S. Air Force Research Lab through Radiance
Technologies, the U.S. NSF under grants CNS 1650831, and HRD 1828811, and by the U.S. Department
of Homeland Security under grant DHS 2017-ST-062-000003. However, any opinions, findings, and
conclusions or recommendations expressed in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or implied, of the
funding agencies.

Data Availability Statement: The data and prototype presented in this study are available on request
from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches,

datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [CrossRef]
2. Chowdhury, N.; Gkioulos, V. Cyber security training for critical infrastructure protection: A literature review. Comput. Sci. Rev.

2021, 40, 100361. [CrossRef]
3. Chapaneri, R.; Shah, S. A comprehensive survey of machine learning-based network intrusion detection. In Smart Intelligent

Computing and Applications, Proceedings of the Second International Conference on SCI 2018, Bhubaneswar, India, 21–22 December 2018;
Springer: Singapore, 2018; pp. 345–356.

4. Silva, A.R.; McClain, J.T.; Anderson, B.R.; Nauer, K.S.; Abbott, R.; Forsythe, J.C. Factors Impacting Performance in Competitive Cyber
Exercises; Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2014.

5. Kashyap, R.; Piersson, A.D. Impact of big data on security. In Handbook of Research on Network Forensics and Analysis Techniques;
IGI Global: Hershey, PA, USA, 2018; pp. 283–299.

6. Zhao, H.; Tang, W.; Zou, X.; Wang, Y.; Zu, Y. Analysis of Visualization Systems for Cyber Security. In Recent Developments in
Intelligent Computing, Communication and Devices; Springer:Berlin/Heidelberg, Germany, 2019; pp. 1051–1061.

7. Shiravi, H.; Shiravi, A.; Ghorbani, A.A. A survey of visualization systems for network security. IEEE Trans. Vis. Comput. Graph.
2011, 18, 1313–1329. [CrossRef] [PubMed]

8. Damaševičius, R.; Toldinas, J.; Venčkauskas, A.; Grigaliūnas, Š.; Morkevičius, N.; Jukavičius, V. Visual Analytics for Cyber
Security Domain: State-of-the-Art and Challenges. In Proceedings of the International Conference on Information and Software
Technologies, Vilnius, Lithuania, 10–12 October 2019; pp. 256–270. Author: We couldn’t confirm the location

9. Ware, C. Information Visualization: Perception for Design; Morgan Kaufmann: Amsterdam, The Netherlands, 2012.
10. MITRE. Threat-Based Defense. 2024. Available online: https://attack.mitre.org (accessed on 16 March 2024).
11. Kim, S.; Park, K.J.; Lu, C. A survey on network security for cyber–physical systems: From threats to resilient design. IEEE

Commun. Surv. Tutor. 2022, 24, 1534–1573. [CrossRef]
12. Neupane, S.; Ables, J.; Anderson, W.; Mittal, S.; Rahimi, S.; Banicescu, I.; Seale, M. Explainable intrusion detection systems (x-ids):

A survey of current methods, challenges, and opportunities. IEEE Access 2022, 10, 112392–112415. [CrossRef]
13. Kapustin, V.; Paulauskas, N. Analysis of TCP flood attack using NetFlow. Moksl.-Liet.-Ateitis/Sci.-Future Lith. 2023, 15. [CrossRef]

Author: Hello, looks like it is not available.
14. Moustafa, N.; Hu, J.; Slay, J. A holistic review of network anomaly detection systems: A comprehensive survey. J. Netw. Comput.

Appl. 2019, 128, 33–55. [CrossRef]
15. Guo, W.; Luo, Z.; Chen, H.; Hang, F.; Zhang, J.; Al Bayatti, H. AdaBoost Algorithm in Trustworthy Network for Anomaly

Intrusion Detection. Appl. Math. Nonlinear Sci. 2022, 8, 1819–1830. [CrossRef]

http://doi.org/10.1016/j.jisa.2019.102419
http://dx.doi.org/10.1016/j.cosrev.2021.100361
http://dx.doi.org/10.1109/TVCG.2011.144
http://www.ncbi.nlm.nih.gov/pubmed/21876227
https://attack.mitre.org
http://dx.doi.org/10.1109/COMST.2022.3187531
http://dx.doi.org/10.1109/ACCESS.2022.3216617
http://dx.doi.org/10.3846/mla.2023.18847
http://dx.doi.org/10.1016/j.jnca.2018.12.006
http://dx.doi.org/10.2478/amns.2022.2.0171

J. Cybersecur. Priv. 2024, 4 262

16. Ruan, Z.; Miao, Y.; Pan, L.; Patterson, N.; Zhang, J. Visualization of big data security: A case study on the KDD99 cup data set.
Digit. Commun. Netw. 2017, 3, 250–259. [CrossRef]

17. Kayacik, H.G.; Zincir-Heywood, A.N.; Heywood, M.I. A hierarchical SOM-based intrusion detection system. Eng. Appl. Artif.
Intell. 2007, 20, 439–451. [CrossRef]

18. Al-Yaseen, W.L.; Othman, Z.A.; Nazri, M.Z.A. Multi-level hybrid support vector machine and extreme learning machine based
on modified K-means for intrusion detection system. Expert Syst. Appl. 2017, 67, 296–303. [CrossRef]

19. Velliangiri, S. A hybrid BGWO with KPCA for intrusion detection. J. Exp. Theor. Artif. Intell. 2020, 32, 165–180. [CrossRef]
20. Feng, Y.; Li, J.; Nguyen, T. Application-layer DDoS defense with reinforcement learning. In Proceedings of the 2020 IEEE/ACM

28th International Symposium on Quality of Service (IWQoS), Hangzhou, China, 15–17 June 2020.
21. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE

Commun. Surv. Tutor. 2015, 18, 1153–1176. [CrossRef]
22. Bhardwaj, A.K.; Singh, M. Data mining-based integrated network traffic visualization framework for threat detection. Neural

Comput. Appl. 2015, 26, 117–130. [CrossRef]
23. Ohnof, K.; Koikef, H.; Koizumi, K. IPMatrix: An effective visualization framework for cyber threat monitoring. In Proceedings of

the Ninth International Conference on Information Visualisation (IV’05), London, UK, 6–8 July 2005; pp. 678–685.
24. Ulmer, A.; Schufrin, M.; Sessler, D.; Kohlhammer, J. Visual-Interactive Identification of Anomalous IP-Block Behavior Using

Geo-IP Data. In Proceedings of the 2018 IEEE Symposium on Visualization for Cyber Security (VizSec), Berlin, Germany,
22 October 2018; pp. 1–8.

25. Small, S.G.; Medsker, L. Review of information extraction technologies and applications. Neural Comput. Appl. 2014, 25, 533–548.
[CrossRef]

26. Ren, B.; Song, Y.; Zhang, Y.; Liu, H.; Chen, J.; Shen, L. Reconstruction of Complex Networks Under Missing and Spurious Noise
Without Prior Knowledge. IEEE Access 2019, 7, 45417–45426. [CrossRef]

27. Zhang, Z.; Zhao, Y.; Liu, J.; Wang, S.; Tao, R.; Xin, R.; Zhang, J. A general deep learning framework for network reconstruction
and dynamics learning. Appl. Netw. Sci. 2019, 4, 4950. [CrossRef]

28. Lyon, G.F. Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning; Association for
Computing Machinery (ACM): New York, NY, USA, 2009.

29. Kim, M.; Leskovec, J. The network completion problem: Inferring missing nodes and edges in networks. In Proceedings of the
2011 SIAM International Conference on Data Mining, SIAM, Mesa, AZ, USA, 28–30 April 2011; pp. 47–58.

30. Chen, J.; Teh, J.; Liu, Z.; Su, C.; Samsudin, A.; Xiang, Y. Towards Accurate Statistical Analysis of Security Margins: New Searching
Strategies for Differential Attacks. IEEE Trans. Comput. 2017, 66, 1763–1777. [CrossRef]

31. Koganti, V.S.; Galla, L.K.; Nuthalapati, N. Internet worms and its detection. In Proceedings of the 2016 International Conference
on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 16–17 December
2016; pp. 64–73.

32. Bo, C.; Fang, B.X.; Yun, X.C. Adaptive method for monitoring network and early detection of internet worms. In Proceedings of
the International Conference on Intelligence and Security Informatics, San Diego, CA, USA, 23–24 May 2006; pp. 178–189.

33. Middleton, A. Stuxnet: The World’s First Cyber... Boomerang? Interstate-J. Int. Aff. 2016, 2015/2016, 1/1.
34. Moore, D.; Paxson, V.; Savage, S.; Shannon, C.; Staniford, S.; Weaver, N. Inside the slammer worm. IEEE Secur. Priv. 2003, 1, 33–39.

[CrossRef]
35. Foundation, W. Wireshark. 1998. Available online: https://www.wireshark.org (accessed on 18 April 2023).
36. Molina, M.; Castelli, P.; Foddis, G. Web traffic modeling exploiting TCP connections’ temporal clustering through HTML-REDUCE.

IEEE Netw. 2000, 14, 46–55. [CrossRef]
37. Knuth, D.E. Seminumerical Algorithms, Vol. 2: The Art of the Computer Programming; Addison-Wesley: Boston, MA, USA, 1981.
38. Pironio, S.; Acín, A.; Massar, S.; de La Giroday, A.B.; Matsukevich, D.N.; Maunz, P.; Olmschenk, S.; Hayes, D.; Luo, L.; Manning,

T.A.; et al. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021. [CrossRef]
39. KDD Cup 1999: Computer Network Intrusion Detection. Available online: https://www.kdd.org/kdd-cup/view/kdd-cup-1999

/Data (accessed on 18 March 2023).
40. Priyalakshmi, V.; Devi, R. Analysis and Implementation of Normalisation Techniques on KDD’99 Data Set for IDS and IPS. In

Proceedings of the International Conference on Data Science and Applications: ICDSA 2022, Kolkata, India, 26–27 March 2022;
pp. 51–70.

41. Prajapati, P.K.; Singh, I.; Subhashini, N. Network Intrusion Detection Using Machine Learning. In Futuristic Communication and
Network Technologies: Select Proceedings of VICFCNT 2021; Springer: Singapore, 2023; Volume 1, pp. 55–66.

42. Keserwani, P.K.; Govil, M.C.; Pilli, E.S. An effective NIDS framework based on a comprehensive survey of feature optimization
and classification techniques. Neural Comput. Appl. 2023, 35, 4993–5013. [CrossRef]

43. Shi, L.; Li, X.; Gao, Z.; Duan, P.; Liu, N.; Chen, H. Worm computing: A blockchain-based resource sharing and cybersecurity
framework. J. Netw. Comput. Appl. 2021, 185, 103081. [CrossRef]

44. Achar, S.J.; Baishya, C.; Kaabar, M.K. Dynamics of the worm transmission in wireless sensor network in the framework of
fractional derivatives. Math. Methods Appl. Sci. 2022, 45, 4278–4294. [CrossRef]

45. Sánchez-Patiño, N.; Gallegos-Garcia, G.; Rivero-Angeles, M.E. Teletraffic Analysis of DoS and Malware Cyber Attacks on P2P
Networks under Exponential Assumptions. Appl. Sci. 2023, 13, 4625. [CrossRef]

http://dx.doi.org/10.1016/j.dcan.2017.07.004
http://dx.doi.org/10.1016/j.engappai.2006.09.005
http://dx.doi.org/10.1016/j.eswa.2016.09.041
http://dx.doi.org/10.1080/0952813X.2019.1647558
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1007/s00521-014-1701-2
http://dx.doi.org/10.1007/s00521-013-1516-6
http://dx.doi.org/10.1109/ACCESS.2019.2909406
http://dx.doi.org/10.1007/s41109-019-0194-4
http://dx.doi.org/10.1109/TC.2017.2699190
http://dx.doi.org/10.1109/MSECP.2003.1219056
https://www.wireshark.org
http://dx.doi.org/10.1109/65.844500
http://dx.doi.org/10.1038/nature09008
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
http://dx.doi.org/10.1007/s00521-021-06093-5
http://dx.doi.org/10.1016/j.jnca.2021.103081
http://dx.doi.org/10.1002/mma.8039
http://dx.doi.org/10.3390/app13074625

J. Cybersecur. Priv. 2024, 4 263

46. Li, Z.; Rios, A.L.G.; Trajković, L. Detecting internet worms, ransomware, and blackouts using recurrent neural networks. In
Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14
October 2020; pp. 2165–2172.

47. Revathi, S.; Malathi, A. A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion
detection. Int. J. Eng. Res. Technol. (IJERT) 2013, 2, 1848–1853.

48. Szymaniak, M.; Presotto, D.; Pierre, G.; van Steen, M. Practical large-scale latency estimation. Comput. Networks 2008, 52, 1343–1364.
[CrossRef]

49. Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling;
John Wiley & Sons: Hoboken, NJ, USA, 1990.

50. Duato, J.; Yalamanchili, S.; Ni, L. Interconnection Networks: An Engineering Approach; Morgan Kaufmann Pub. Inc.: Albuquerque,
NM, USA, 2002.

51. Duato, J.; Robles, A.; Silla, F.; Beivide, R. A comparison of router architectures for virtual cut-through and wormhole switching in
a NOW environment. J. Parallel Distrib. Comput. 2001, 61, 224–253. [CrossRef]

52. Falcon, A.; Faraboschi, P.; Ortega, D. An adaptive synchronization technique for parallel simulation of networked clusters. In
Proceedings of the ISPASS 2008-IEEE International Symposium on Performance Analysis of Systems and software, Austin, TX,
USA, 20–22 April 2008; pp. 22–31.

53. Lahti, C.B.; Peterson, R. Sarbanes-Oxley Compliance Using COBIT and Open Source Tools; Syngress: Amsterdam, The Netherlands, 2005.
54. Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Müller, K.R. A unifying

review of deep and shallow anomaly detection. Proc. IEEE 2021, 109, 756–795. [CrossRef]
55. Simard, R.; L’Ecuyer, P. Computing the two-sided Kolmogorov-Smirnov distribution. J. Stat. Softw. 2011, 39, 1–18. [CrossRef]
56. Yang, X.; Lin, J.; Yu, W.; Moulema, P.M.; Fu, X.; Zhao, W. A novel en-route filtering scheme against false data injection attacks in

cyber-physical networked systems. IEEE Trans. Comput. 2013, 64, 4–18. [CrossRef]
57. Tang, Q.; Zheng, C.; Lu, Q.; Yang, W.; Yuan, Q.; Chen, X. Taking over malicious connection in half way by migrating protocol

state to a user-level TCP stack. In Proceedings of the 2017 8th International Conference on Information and Communication
Systems (ICICS), Irbid, Jordan, 4–6 April 2017; pp. 228–233.

58. Kim, H.; Kim, J.H.; Kang, I.; Bahk, S. Preventing session table explosion in packet inspection computers. IEEE Trans. Comput.
2005, 54, 238–240.

59. Paxson, V.; Allman, M.; Chu, J.; Sargent, M. Computing TCP’s Retransmission Timer; Technical Report, RFc 2988; 2000. Available
online: https://www.rfc-editor.org/rfc/rfc6298 (accessed on 18 March 2023).

60. Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013;
Volume 12.

61. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canda, 8–10 July 2009;
pp. 1–6.

62. Meijer, L. On DOTS: Entity Component System—Unity Software. 2019. Available online: https://blogs.unity3d.com/2019/03/08
/on-dots-entity-component-system (accessed on 18 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.comnet.2007.11.022
http://dx.doi.org/10.1006/jpdc.2000.1679
http://dx.doi.org/10.1109/JPROC.2021.3052449
http://dx.doi.org/10.18637/jss.v039.i11
http://dx.doi.org/10.1109/TC.2013.177
https://www.rfc-editor.org/rfc/rfc6298
https://blogs.unity3d.com/2019/03/08/on-dots-entity-component-system
https://blogs.unity3d.com/2019/03/08/on-dots-entity-component-system

	Introduction
	Related Work
	Background
	Reliable Network Reconstruction
	Connectivity
	Threat Description
	Worms
	TCP-SYN Flood Attack

	Methodology and Implementation
	Automated Service Discovery
	Malicious Hosts
	Attack Dataset
	Network Model
	Physical Delays (f(P))
	Contention Delays ((D))

	Intrusion Detection
	Failure Rate (FR)
	Established Connections (ECs)
	Malicious Connection Defense
	Visual Display

	Results and Performance Evaluation
	Prototype
	Conclusions
	References

