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Abstract: To address the lack of datasets for agetech, this paper presents an approach for generating
synthetic datasets that include traces of benign and attack datasets for agetech. The generated datasets
could be used to develop and evaluate intrusion detection systems for smart homes for seniors aging
in place. After reviewing several resources, it was established that there are no agetech attack data
for sensor readings. Therefore, in this research, several methods for generating attack data were
explored using attack data patterns from an existing IoT dataset called TON_IoT weather data. The
TON_IoT dataset could be used in different scenarios, but in this study, the focus is to apply it to
agetech. The attack patterns were replicated in a normal agetech dataset from a temperature sensor
collected from the Information Security and Object Technology (ISOT) research lab. The generated
data are different from normal data, as abnormal segments are shown that could be considered as
attacks. The generated agetech attack datasets were also trained using machine learning models, and,
based on different metrics, achieved good classification performance in predicting whether a sample
is benign or malicious.

Keywords: agetech; IoT; attack data; aging in place; synthetic data; machine learning; deep learning;
smart sensors; intrusion detection datasets

1. Introduction

According to the World Health Organization (WHO), by 2050, the elderly population
above 60 years is expected to double [1]. It is projected that, as years go by, the number of
elderly people relative to the rest of the population will continually increase. This means
that there will be more people who require elderly care. For such population, agetech,
which encourages seniors to age in their homes with the support of smart devices, is a great
option instead of going to care facilities that are expensive and disconnect the elderly from
their family and community.

The use of agetech comes with some challenges with regard to security and privacy
of sensor data for the aged; hence, it is crucial to develop schemes to safeguard their
data [2], such as intrusion detection systems (IDS). Smart device datasets can help bring
out interesting behavioral patterns about the user, for instance, by building a profile of the
user’s daily activities from the records collected [3,4]. In the area of agetech, data are very
scarce and particularly attack data for sensor readings are lacking [5].

In order to build an IDS using machine learning, there is a need for large volumes of
data of both normal events and attack incidents [6]. As suggested by Pham et al, when
such data are lacking, an alternative is to generate synthetic attack data [7]. In this regard,
we have developed a new approach for generating synthetic attack data for agetech. The
contribution of this study is to provide methods and frameworks for reference in generating
agetech synthetic sensor records attack data, which can be used in reinforcing security and
privacy in agetech. Our approach involved exploring the changes in IoT device records
when there are cyber attacks. We performed an in-depth data analysis to understand the
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changes in data patterns when these attacks occur. For illustration, we focused our study on
the temperature data in the TON_IoT weather dataset. We were able to generate synthetic
attack data that replicate the attack patterns from this general IoT dataset and there is some
great level of trust that the generated attack records reflect real attacks. The remaining
sections are structured as follows. Section 2 discusses related work. Section 3 presents
a threat model for agetech devices and discusses why the TON_IoT dataset is ideal for
replicating attack data for agetech that can be used to automatically detect attacks. Section 4
presents the datasets involved in our study. Section 5 presents the proposed data generation
methods and their validation by training and testing the different machine learning models
using corresponding datasets. Section 6 presents the concluding remarks.

2. Related Work

Pham et al. [7] presented some methods to help generate sufficient data for training
machine learning models for intrusion detection. They generated artificial attack data using
machine learning methods and assessed the quality of the data using different techniques.
They showed that synthetic data can help improve the performance of machine-learning-
based IDS when used in combination with real-world data. They used two methods in
attack data generation. The first method assumes that only benign data are available with
no attack instances, where the features follow a normal distribution and a feature value out
of the range (µ − 3δ, µ + 3δ) is considered abnormal. A data sample is altered by changing
the feature values to values that are out of the normal mean (µ) and standard deviation
(δ) range [7]. The algorithm calculates the mean and standard deviation of each feature
value in the benign dataset. Then, it generates a number of samples by randomly selecting
a sample from the benign data, copying it, and altering the values of its features so that
the generated sample is different enough from the benign data. This method can be used
in attack data generation; however, since the attack values are generated based on mean
and variance, attacks can easily be detected by a machine learning model. It is important to
consider more sophisticated attacks that manipulate data in a non-easily detectable manner
so that the trained IDS is powerful enough.

In the second method, the authors generated more attack data using a dataset contain-
ing a small number of intrusive samples. This method involves generating new synthetic
samples by copying and slightly modifying a randomly selected sample from the previ-
ously collected attack dataset. The assumption behind this method is that future attack
instances are often similar to past attack instances, even if they are not identical. The
algorithm randomly selects a feature and a sample from the previously collected attack
dataset, and then calculates the highest frequency of values for the selected feature (Vmax)
and the frequency of the value of the selected feature in the selected sample (V). The
algorithm generates (Vmax − V) new synthetic samples by copying the selected sample
and altering the value of the selected feature within a small range to ensure that the new
sample is similar to the previous ones in the attack dataset. They observed that generating
synthetic attack data using the proposed method helped improve the classification accuracy
of machine learning models [7].

Belenko et al. [8] focused on developing a secure inter-car network called VANET
(vehicular ad hoc network), which allows for wireless connection between vehicles and
infrastructure and between vehicles themselves. This network aims to ensure convenience
and safety when using the road. Its security had to be reinforced to avoid any malfunctions
or infiltration into the system. The study suggests that, in order to build a highly effective
intrusion detection system (IDS) for VANET, the IDS has to be trained using a sufficient
number of samples of security threats which VANET has not yet produced. They therefore
used a network simulator called NS-3 to investigate different attacks directed at VANET.
This simulation is able to generate synthetic datasets consisting of cyber attack samples
that can be used to train a machine-learning-based VANET IDS. This dataset can also be
used to study the behavior and patterns of a vehicle targeted by an attacker by analyzing
the traffic and network hosts [8].
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Sourav et al. [9] presented a method for generating attack data that simulates stealthy
sensor attacks in industrial control systems (ICS). The study assumes that an attacker has
infiltrated the ICS and has taken control of a subset of sensors, and that the attacker is able
to impersonate the compromised sensors without being detected. In this method, “micro-
distortions” are injected into original sensor readings, thus sending out fake readings. The
distortion is kept within a small size of about 0.5% of the possible value range which are
subtracted or added to the actual reading without affecting the normal functioning of the
sensor. The major consideration is that the micro-distortions are often much lower than the
actual sensors readings, so the approach involved a simple algorithm that leveraged the
observation that sensor readings in ICS often change gradually over time [9].

3. Threat Model

In this section, we develop a threat model for IoT devices used for aging in place.
Threat modeling involves identifying security vulnerabilities and investigating potential
cybersecurity attacks. With threat modeling, potential security risks can be identified and
addressed before they are exploited by hackers, thus protecting the assets and ensuring
the safety and continuity of device operation. STRIDE is a threat modeling framework
that was developed by Microsoft. STRIDE stands for Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service and Elevation of privileges [10]. The different
security attacks can fall into these six categories. There are different types of attacks that
can be used to exploit IoT devices for aging in place, so we focus on some of the common
ones [5].

The intention is to protect the hardware and software of agetech, as well as to protect
the data which consist of login credentials, medical data, personal identifiable data, private
data, financial data, daily habits, and location. The potential threats that could compromise
the security of agetech include external threats like routine hacking by remote actors,
viruses, and malware infections through vectors such as phishing or visiting dangerous or
compromised sites. There are also internal threats such as user errors or lack of knowledge
or unscrupulous care givers taking advantage of the elderly.

In Table 1, we explain vulnerabilities in the IoT device systems that can be exploited
by those threats. These refer to weaknesses in hardware or software, poorly configured
systems, or gaps in security policies and procedures. We explain how the devices can be
exploited as well as the impact of each identified threat. We also provide ways to mitigate
the risks associated with each threat that involve technical controls like the use of firewalls
and encryption, administrative controls, and education of users to, for example, use strong
passwords and avoid clicking on links they are not sure of.

The attacks in Table 1 are what agetech devices are likely to face if they have the
different vulnerabilities, and these are some of the attacks that were also executed in
the general purpose IoT attack data (TON_IoT dataset), which implies that the TON_IoT
dataset is relevant in being used to replicate attacks for an agetech dataset and can be used
to determine attack patterns. The attacks in the TON_IoT dataset include ransomware
attack, man-in-the-middle (MITM) attack, cross-site scripting (XSS) attack, password attack,
and distributed denial of service (DDoS) attack. There are different mitigation techniques
and there is also the need for automatic strategies to identify vulnerabilities and attacks
before they are exploited. Machine learning comes in handy in detecting attacks. Therefore,
in Section 5.2, we employ machine learning methods to determine whether sensor records
are benign or malicious.
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Table 1. Threat model for agetech devices.

Vulnerability Possible Attack Exploit Impact Mitigation

Weaknesses in services
and protocols running
on IoT device, faulty
secure sockets layer
(SSL) configuration

Man-in-the-middle
(MITM)

attack/Eavesdropping
attack

Hacker intercepts and
sends data or modifies
previously sent data

Incorrect sensor
records, disrupt normal
function, spy or cause

harm to the user

Strong encryption of
communication

Default or easy
passwords

Password attack (Brute
force attack)

Attackers can guess
passwords and gain

access to device

Modify the device to
whatever they want or

destroy it

Use strong passwords
especially passphrases

Insecure default
settings and update

mechanisms [11]
Firmware attack

Hacker cracks
encryption keys or
passwords used to

secure firmware,
Corrupt updates to
compromise device

Loss of data, Device
control, Malware

installation, Physical
damage of device,

Attacker can maintain
access to device for

long because they are
difficult to detect,

Connected devices
turned into bots [12]

Monitor the network
for any suspicious
activity, use strong

passwords and keep
firmware up to date

Insufficient sanitization
of data input in the

web interface

Cross-site scripting
(XSS) attack

Executing of a
malicious script
through the web

browser of the user

Attacker can hijack the
user’s session and
cause distributed
denial of service

(DDoS) [13]

Data validation of all
input

Hidden sensors
encapsulated in smart

devices that do not
need access permission

unlike cameras,
microphones and

Global Positioning
System (GPS), and

these allow for covert
surveillance of the
person using the

device [14]

Keystroke inference

Determine keyboard
and touchscreen inputs
based on accelerometer

data, gyroscope data,
micro-motions and

ambient-light sensors

Compromise entire
technological

ecosystem of the user
when sensitive

information like
location, activities or
passwords are leaked

through
embedded sensors

Classify disregarded
types of sensor data

like data about motion
and light as sensitive

by default so that it can
be properly protected

Logic blocks
weaknesses that can be
tampered with, secure

boot and flash
encryption that can be

bypassed

Fault injection attack

Introduces glitches like
electromagnetic
injection, clock

glitching and voltage
glitching into the
device hardware,
causing abnormal

behavior of the
software [15]

Can disrupt the
functioning of the
system, negatively

affect device drivers,
change the behavior of

application software
and access

control software

Make use of software
vulnerability detection

tools and employ
multi-layer protection

Unsecured query entry
field

Structured Query
Language (SQL)

injection

Attacker inputs an SQL
query that consists of a

valid request and
malicious request that
are also executed [13]

Can lead to privilege
escalations and access
to what they are not

authorized to

Input validation and
sanitization of code

Misconfigured IoT
devices

Denial of Service (DoS)
and Distributed

Denial-of-Service
(DDoS)

Use of a botnet to send
many requests that

overwhelms the device
such that it can’t

perform its
normal functions

The device jams and
becomes unusable or

gets damaged

Have systems in place
for automatic detection

and filtering of
malicious activity
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Table 1. Cont.

Vulnerability Possible Attack Exploit Impact Mitigation

Poorly designed or
older software without
proper validation of the

size or format of the
input it receives

Buffer overflow attack

Attacker sends an
amount of data that is

larger than the
temporary data storage
area causing the excess
data to overwrite other

parts of the
program’s memory

Attacker can execute
malicious code or take
control of the system

Ensure there is proper
input validation

Device lacks capability
to check and verify

what is being executed,
device not secured with

efficient security
protocols

Ransomware attack

Malware can be stored
in for example the

wallpapers of a
thermostat and once

the user clicks on it, the
attacker gains control

of the system and tricks
customer to send them
money or gift card [16]

Attacker can control
the operation of the

device. Also they could
gain access to other IoT

devices connected to
the same network

Avoid clicking on
suspicious links,

always update device
firmware, restrict

permissions on IoT
device, employ

multi-layer protection

4. Datasets and Data Analysis
4.1. Agetech Attack Data

After an intensive search for agetech attack data, we concluded that there are no attack
datasets for sensor readings from smart devices for aging in place. The attributes of agetech
attack data needed are as follows:

• Data from smart device used for aging in place (AIP).
• Data for sensor recordings not network traffic.
• Anomaly sensor recordings data caused by security attacks and not severe health

conditions or faulty devices.

One approach to address the lack of such data is generating synthetic agetech attack
samples. First, we studied the attack patterns in a general purpose IoT attack dataset that is
not specifically for agetech, called TON_IoT data, to understand what generally happens
to sensor readings when various attacks were launched. Then, using benign agetech data
collected in our lab, we leveraged the acquired attack knowledge to generate agetech data
using our proposed methods.

4.2. TON_IoT Data
4.2.1. Dataset Overview

The TON_IoT dataset consists of data collected from Internet of Things (IoT) and
Industrial Internet of Things (IIoT) sensors, network traffic and Transport Layer Security
(TLS) data, and operating systems datasets for Ubuntu 14 and Windows 7 and 10 [17].
Different attack vectors were executed against the IoT gateways, web applications, and
computer systems in the network. The attacks included ransomware attack, man-in-the-
middle (MITM) attack, cross-site scripting (XSS) attack, password attack, and distributed
denial of service (DDoS) attack. Using parallel processing, benign and attack data samples
were collected from the IoT telemetry services, host audit traces and network traffic.

We used the TON_IoT dataset to explore the changes in IoT device records when there
are cyber attacks by conducting in-depth data analysis to understand the changes in data
patterns. For illustration, we focused specifically on the temperature readings under the
TON_IoT weather data subset as explained in the following section.

4.2.2. TON_IoT Weather Data—Temperature

In checking the various TON_IoT data subsets, the attacks happened around 25 April
2019 and 29 April 2019. Therefore, we had to investigate further and see what was different
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on those specific days compared to other days like 2 April 2019 and 4 April 2019, which
mostly have normal activities. Figure 1 helps with such understanding by showing the data
labels across the different days. The separation between the benign and attack readings is
an indication that an anomaly could be dependent on what the value is at the specific time
that is different from what normally happens at that specific time. The anomalies are not
dependent on whether the values are abnormally large or small but are rather dependent
on the pattern of the values at the specific time. Most of the attacks happened when the
temperature was about 25–30 with pressure 20 and above, and with humidity in the range
of 60–90.

Figure 1. Labels of temperature records across different days.

Figure 2 shows a scatter plot of temperature within a 10 min range on a day where
mostly attacks happened. Figure 3 shows the weather temperature data distribution for
10 min on a day where there were no attacks. These two figures illustrate with clarity the
variation in data patterns when an attack happens versus benign samples.

Figure 2. Benign temperature records on 2 April 2019 for a time period of 10 min.

Figure 3. Attack temperature records on 25 April 2019 for a time period of 10 min.

In Figures 4 and 5, line plots are used to further highlight the difference between
benign sensor readings and sensor readings under attack.



J. Cybersecur. Priv. 2023, 3 750

Figure 4. Line plot of benign temperature records on 2 April 2019 over a period of 10 min.

Figure 5. Line plot of attack temperature records on 25 April 2019 over a period of 10 min.

From Figures 4 and 5, it can be observed that there is a difference in the sequence of
data when there is an attack, for instance, the reading moves from 46.49 to 46.99, then to
40.41 and back to 46.70. There is some sort of duplicate and then a drastic drop. In contrast,
normal readings vary from 48.48 to 42.32, then to 35.51 and back to 48.98. They decrease
gradually and then increase. There is also an obvious difference in the data progression over
time for humidity on a normal occurrence versus an attack, as illustrated in Figures 6 and 7,
respectively.

Figure 6. Benign humidity records on 2 April 2019 over a time range of 10 min.

Figure 7. Attack humidity records on 25 April 2019 over a time range of 10 min.
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4.3. Normal Agetech Data from ISOT Lab

A temperature sensor that can be used to monitor the temperature in an elderly
person’s home as they age in place was set up in the Information Security and Object
Technology (ISOT) research lab. This was used to collect normal temperature sensor
readings, and in this work, this data are referred to as agetech normal data Figure 8 shows
a scatter plot of the agetech normal temperature data on different days.

Figure 8. Agetech normal data from ISOT lab—temperature over different days.

Having observed the data trends and patterns in the TON_IoT weather data tem-
perature feature, the focus was to replicate these patterns on this agetech normal data to
generate agetech attack data. This was performed using different methods outlined in the
next section.

5. Proposed Data Generation Methods

In this section, we present four different methods to generate synthetic attack data for
agetech and discuss the obtained results.

5.1. Proposed Methods
5.1.1. Method 1: Changing the Pattern of Every Three Elements

In the TON_IoT data, there is a difference in the sequence of data for legitimate and
attack scenarios. For instance, in legitimate scenarios, the temperature changes from 48.48
to 42.32, then to 35.51 and back to 48.98; it decreases gradually and then increases. When
there is an attack, for example, the temperature changes from 46.4920 to 46.9990, then to
40.4164 and back to 46.70. There is some sort of duplicate and then a drastic drop.

Checking more attack examples shows that there is a similar pattern for every three
elements on the list. For example, in some cases, the temperature changes from 46.7055 to
46.6044, and then to 40.3269, or from 47.1682 to 46.7616, and then to 40.4317. In another
case, the temperature goes from 46.7256 to 46.4768, and then to 40.8577. From the above
consideration, it can be noted that, for the TON_IoT data, there is a pattern in the values,
where, for every three elements, the first two elements are almost the same with a slight
difference of about −0.1 to 0.5, then the third value goes up from the second element by
about 6.1771. This data pattern for an attack scenario was replicated in the agetech data to
generate attack data.

Figure 9 shows the normal agetech data over a time period of 1 h. One hour was
considered for better visibility when plotting and the scatter plot records only consist of
blue color because they are all normal readings. Figure 10 shows the attack data generated
by changing the pattern of every three elements as explained. The scatter plot consist of
red color referring to the attack records and blue color referring to normal readings. As per
the scatter plot, it can be observed that this generated attack data have a different pattern
from the benign data.
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Figure 9. Agetech normal data—temperature over 1 h.

Figure 10. Agetech variation attack data—temperature over 1 h generated by changing the pattern of
every 3 elements.

5.1.2. Method 2: Using the Difference Borrowed from TON_IoT Data

A total of 350 samples on a day with benign records and 350 records on a day when
attacks happen within the same time range were selected from the TON_IoT data, and the
difference between the temperature of a day with normal readings and a day with attack
readings was computed. This difference was applied to 350 samples of agetech data to
create attack data of a similar pattern. In summary, this is explained as follows:

1. From TON_IoT data: normal data − attack data = di f f erence
2. On agetech data: normal data − di f f erence = attack data

Figure 11 shows a sample of 350 records from normal agetech data. Figure 12 shows
the attack data generated by applying the difference borrowed from TON_IoT data. It can
be observed that there is a clear difference in the data pattern of the generated attack data.

Figure 11. Agetech data—350 records of normal temperature.
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Figure 12. Agetech diff-attack data—350 records of generated attack temperature.

5.1.3. Method 3: Using Probability Distribution

The TON_IoT temperature data were evaluated to determine a probability distribution
that has the highest goodness of fit on normal and attack data based on chi square value.

Figure 13 depicts the TON_IoT temperature normal data probability distribution. The
beta distribution had the lowest chi square value and, hence, the best goodness of fit.

Figure 13. TON_IoT benign temperature data fitted on different probability distributions.

Figure 14 shows the TON_IoT temperature attack data probability distribution. The
beta distribution had the lowest chi square value and, hence, the best goodness of fit.

Figure 15 shows the probability distribution for the agetech temperature normal data.
The weibull_max distribution had the lowest chi square value and, hence, the best goodness
of fit.

It was observed that the probability distribution with the highest goodness of fit for
TON_IoT normal temperature data was different for the agetech normal temperature data,
and therefore it is difficult to replicate the data pattern based on probability distribution,
especially when the datasets have different distributions. Moreover, the probability dis-
tribution does not carry information about time, which is an important factor for these
datasets, especially in simulating attack patterns. Therefore, another consideration was
to look into using time series generative adversarial networks (TimeGAN), which are
generative adversarial networks (GAN) that consider the timestamp information [18,19].
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Figure 14. TON_IoT attack temperature data fitted on different probability distributions.

Figure 15. Agetech benign temperature data fitted on different probability distributions.

5.1.4. Method 4: Using the Probabilistic AutoRegressive (PAR) Model

There are different TimeGAN models. In this study, the PAR model was implemented.
PAR is used to learn multivariate time series data and generate time series data that have the
same properties and format as the learned ones [20]. It takes a long time to train the model
and generate data; therefore, a subset of the agetech temperature data consisting of the first
10,000 records was used to train the model and generate as a result 10,000 synthetic records.
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Figure 16 shows a scatter plot of 10,000 records from normal agetech data. Figure 17
shows the attack data generated by applying the PAR model to generate synthetic records
that appear different from normal agetech data.

Figure 16. Agetech normal data—first 10,000 records.

Figure 17. Agetech synthetic records generated by PAR—10,000 records.

5.2. Data Validation

The data obtained using Method 1 and Method 2 were further analyzed. Each dataset
consists of 2500 samples with approximately 14% of the dataset being attack records. The
data were split into training and test datasets in a stratified manner, then used to train and
test different machine learning models. The machine learning models implemented include
Random Forest, K-Nearest Neighbor (KNN), eXtreme Gradient Boosting (XGBoost), Light
Gradient Boosting Machine (LightGBM), and Categorical Boosting (CatBoost) classifiers.
We explored many machine learning methods but these are the ones that achieved the
best performance. The models were evaluated by computing two performance metrics,
namely, accuracy and F-beta score. Accuracy is a commonly used metric for classification
problems, but considering that the datasets are imbalanced, F-beta score is a better measure
of performance and also it particularly penalizes more a misclassification error where
an attack record is marked to be benign, minimizing false negatives. Table 2 shows the
performance metrics for the dataset obtained using Method 1.

Table 2. Agetech_temp_elements_var_attack dataset (Method 1) metrics.

Model Accuracy F-Beta Score

Random Forest 0.9860 0.7593

KNN 0.9820 0.9402

XGBoost 0.9340 0.7593

LightGBM 0.9840 0.8824

CatBoost 0.9520 0.8286
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From Table 2, it can be observed that all models have a high accuracy score, which
means there were few misclassified records. K-Nearest Neighbor has the highest F-beta
score and is thus a better classifier for benign and malicious temperature sensor records for
this dataset compared to the other models. Table 3 shows the performance metrics for the
dataset generated using Method 2.

Table 3. Agetech_temp_diff_attack dataset (Method 2) metrics.

Model Accuracy F-Beta Score

Random Forest 0.9860 0.9357

KNN 0.9760 0.8754

XGBoost 0.9860 0.9357

LightGBM 0.9940 0.9738

CatBoost 0.9940 0.9855

From Table 3, it can be noted that, for this dataset, the CatBoost classifier achieved the
highest F-beta score. It has an F-beta score of 0.9855, which indicates that it was able to
classify most of the records properly. Moreover, all the accuracy scores are high, indicating
that there are a few misclassification errors but the models performed well.

5.3. Discussion

Four methods were explored to generate synthetic agetech attack data. Methods 1, 2,
and 4 all provide attack data that, from the scatter plot and their trends, are evidently dif-
ferent from normal data. The generated attack data are actually abnormalities or anomalies
that could be either due to actual attacks or caused by faulty devices. This is a well-known
issue in security anomaly detection. However, because particularly methods 1 and 2 repli-
cate the attack patterns from a general IoT dataset, there is a greater level of trust that the
generated attack records reflect a real attack.

6. Conclusions

Ensuring robust security and privacy in agetech is crucial because of the projected
increase of elderly people and use of smart devices as years go by. Agetech attack data can
be very resourceful in learning cyber breaches and building systems for defense and the
mitigation of negative impacts. Given the scarcity of such data, we have presented different
methods for generating agetech synthetic attack data. This work was able to replicate
temperature sensor attack data patterns from the TON_IoT data into agetech benign data.
The generated agetech attack datasets were trained using machine learning models, which
achieved good classification performance in predicting whether a sample is benign or
malicious. Particularly the KNN model and CatBoost model achieved the best classification
performance for the first and second synthetic attack datasets, respectively. An area of
future research is to come up with more methods to generate and validate synthetic attack
data because, from our search, there are limited studies that explore this area.
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