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Abstract: Anonymization techniques are widely used to make personal data broadly available for
analytics/data-mining purposes while preserving the privacy of the personal information enclosed in
it. In the past decades, a substantial number of anonymization techniques were developed based on
the famous four privacy models such as k-anonymity, `-diversity, t-closeness, and differential privacy.
In recent years, there has been an increasing focus on developing attribute-centric anonymization
methods, i.e., methods that exploit the properties of the underlying data to be anonymized to improve
privacy, utility, and/or computing overheads. In addition, synthetic data are also widely used to
preserve privacy (privacy-enhancing technologies), as well as to meet the growing demand for data.
To the best of the authors’ knowledge, none of the previous studies have covered the distinctive
features of attribute-centric anonymization methods and synthetic data based developments. To
cover this research gap, this paper summarizes the recent state-of-the-art (SOTA) attribute-centric
anonymization methods and synthetic data based developments, along with the experimental details.
We report various innovative privacy-enhancing technologies that are used to protect the privacy of
personal data enclosed in various forms. We discuss the challenges and the way forward in this line of
work to effectively preserve both utility and privacy. This is the first work that systematically covers
the recent development in attribute-centric and synthetic-data-based privacy-preserving methods
and provides a broader overview of the recent developments in the privacy domain.

Keywords: anonymization; personal data; k-anonymity; `-diversity; t-closeness; differential privacy;
synthetic data; privacy enhancing technologies; privacy; attribute-centric anonymization; utility

1. Introduction

Recently, personal data have become an economically desirable resource, and they offer
valuable knowledge that can influence science and advance societies. Personal data can be
used to improve real-world data-driven services such as improved and low-cost healthcare,
better recommendations by utilizing heterogeneous data, and increase the precision of
navigation information. However, personal data often encompass sensitive information
and require privacy preservation in processing and dissemination [1]. According to a
survey [2], user privacy can be compromised by using different attributes present in the
data even if some unique information is removed from the data. The survey findings are
summarized in Figure 1, where three combinations of attributes have a distinct impact on
users’ re-identification in a dataset.

Figure 1. Impact of the user attributes’ items on the users’ identification in a dataset.
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As shown in Figure 1, a substantial number of users can be identified from the datasets,
and many sophisticated techniques are required to address the privacy issues. There
are three re-identification scenarios in Figure 1. In the first scenario, the much higher
re-identification is due to the zip code, which precisely locates many individuals. In
the second and third cases, the re-identification is lower due to the generalization of
residence. These results highlight the need for effective privacy preservation in data
analysis. The privacy preservation of data while offering higher knowledge is a global
problem, and many techniques were developed to address this trade-off [3]. There are three
important challenges while handling personal data encompassing basic as well as sensitive
information about individuals.

• Resolution of privacy versus utility trade-off: How to safeguard user privacy while
still allowing data miners/analysts to maximally extract the enclosed knowledge from
the personal data.

• Preventing the misuse of personal data: How to enable fair and impartial decision mak-
ing concerning real-world entities, and restricting target profiling (or discrimination
about a minor community).

• Enhancing the quality of personal data for the well-being of societies: How to improve
the quality of the data when they are either small or of low quality to enable better
data mining and decision making.

It is important to note that all of the above-cited challenges are closely related to each
other. For example, if the trade-off between privacy and utility is effectively resolved, the
misuse of personal data can be restrained, and the personal data can be used as intended.
Privacy disclosures occur when either inappropriate anonymization models are used in
anonymization or the underlying dataset to be anonymized is of poor quality. A dataset is
considered poor quality from the utilization perspective when the intended knowledge
cannot be extracted from it with minimal effort. For example, medical data can be regarded
as poor quality when a medical student interested in exploring the disease connection
with various demographics cannot find relevant information from the data. Similarly, if
the data do not encompass diverse and complete information, they are also referred to
as poor quality. The quality of the data from within the utilization perspective varies
from application to application and case to case. In contrast, a dataset that is complete,
diverse, and representative of the problem under investigation is considered to be of rich
quality. Therefore, the misuse of personal data can be prevented by applying careful
anonymization and curating more data to improve the bad parts of the data (e.g., the data
concerning minor population groups where the risk of discrimination is high). However,
the optimization of the privacy–utility trade-off, the prevention of the misuse of data, and
the improvement in data quality are very challenging to achieve simultaneously. Most
of the existing methods often pay attention to one metric and compromise the others. It
is vital to achieve all three objectives simultaneously by paying careful attention to data
properties, data pre-processing, and anonymization.

To address the challenges of the privacy versus utility trade-off, a variety of anonymiza-
tion methods were developed. The majority of the developed methods are derived from
the four methods, such as k-anonymity [4], `-diversity [5], t-closeness [6], and differential
privacy [7]. Apart from these mainstream solutions, many enhancements of these methods
were proposed to optimize the privacy and utility in personal data handling [8–10]. To
prevent the misuse of personal data, techniques such as synthetic data, legal measures,
consents, encryption, and other privacy-enhancing technologies, etc., are used [11–13].
Recently, some work has begun on data quality enhancement to improve decision-making
and to solve industrial problems [14,15]. The data-tailored practices are vital to improving
the quality of people’s lives with improved decision-making. Unfortunately, there is a
serious lack of data-centric methods in the privacy domain, and only a few methods have
considered the properties of data during their anonymization. In addition, none of the
previous studies have highlighted the need for data- or attribute-centric methods in the
privacy domain. The major contributions of this paper are summarized below.
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• We discuss the major research tracks in the information privacy domain with a specific
emphasis on attribute-centric anonymization methods that were recently developed
to address the privacy versus utility trade-off.

• We discuss synthetic data generation methods and the role of synthetic data as a
privacy-enhancing technology, as well as a data quality enhancement technology.

• We highlight the various privacy-enhancing technologies that are widely used to
preserve the privacy of the personal data enclosed in heterogeneous formats.

• We suggest promising research tracks for future work that require the immediate
attention of the privacy community amid the rapid rise in digitization.

• To the best of the authors’ knowledge, this is the first work that discusses two feature-
oriented privacy-enhancing technologies (i.e., attribute-centric and synthetic data)
from a much broader perspective. We hope to provide a solid foundation for future
research by making a timely contribution to this line of work.

There exist plenty of metrics for comparing synthetic data generation quality from
multiple perspectives. Emam [16] suggested seven different ways to gauge the quality of
synthetic data in real-world cases. Mostly, the distribution and structural similarities are
analyzed to check the closeness between the synthetic and real data. In some cases, the
utility of the synthetic data is evaluated with respect to the target application (e.g., health
care) for which the data are being curated [17]. A comprehensive list of metrics that can
be used to evaluate the quality of synthetic data can be learned from Alvaro et al. [18]. In
some cases, the evaluation of synthetic data is performed from the perspectives of both
privacy and utility [19]. In most of the existing papers, the comparison regarding the
quality of the synthetic data is made with real data or the previous algorithms that were
proposed for similar tasks (e.g., synthetic data generation). Similarly, the requirements for
the attribute-centric methods are to exploit any useful knowledge that can either lessen the
computing complexity of privacy models or assist in effectively resolving the trade-offs
between privacy and utility. Only a limited number of papers have been proposed in this
line of work that exploit valuable knowledge about real data to improve privacy/utility
results [20,21]. In [20], the authors considered the preferences of users along with their data
at anonymization time to improve data quality in data publishing scenarios. In [21], the
authors devised a method to rank the attribute first, and then, KNN clustering was applied
to enable the anonymity of the datasets lacking diversity. The proposed method reduces the
overgeneralization issues, thereby achieving privacy protection for all attributes. The major
requirement for the attribute-centric methods is any piece of knowledge regarding real
data composition or attributes’ values that can ease the anonymity process. The empirical
and formal comparison can be made to contrast these requirements and accomplishments
towards these requirements in personal data handling scenarios [22,23]. The use cases
discussed in these studies are privacy protection when a database encompasses more than
one SA and permutation of the dataset for fulfilling k-anonymity criteria, respectively.
Feature-based comparisons between traditional and attribute-centric methods can also be
performed to highlight the novel aspects of the attribute-centric methods.

There exists a plethora of survey articles on privacy-preserving data mining (PPDM)
for a variety of applications such as cloud computing, location-based services, e-health,
recommender systems, transport data, and internet of things [24–28]. In PPDM, privacy is
ensured by applying the anonymization method while minimally changing the semantics
of the data [25]. The objective of PPDM is to maximize utility with considerable privacy
guarantees. In PPDM, the data are not released publicly in some cases, and instead,
queries are executed in a privacy-preserved way. On the other hand, PPDP explores ways
to publish anonymized data either in full or partial form so that they can be used by
relevant information consumers [29]. This work presents the latest developments in the
PPDP area and has two main differences from the existing surveys. First, we identify
and discuss the data generation methods along with the privacy guarantees (e.g., GAN
and DP are simultaneously used or GAN is used first to curate the data, which are later
anonymized via DP or general anonymity solutions) to compensate for the deficiency in
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the data. The privacy-preserved synthetic data can also be used to train AI models while
providing privacy guarantees against some threats such as membership inference attacks.
Second, we describe the attribute-centric methods that extract some knowledge from the
data composition to ease the anonymization process. To the best of our knowledge, both
of these methods have not been thoroughly covered in the previous surveys. To cover
this research gap, our survey can provide a solid foundation for future studies in these
lines of work (e.g., synthetic-data-based privacy-preserving methods and attribute-centric
anonymization methods). Finally, we provide sufficient experimental details of the previous
studies concerning these two types of methods, which can help researchers quickly grasp
the research status and further advance the status of these developments.

The rest of this paper is structured as follows. Section 2 discusses the process of
privacy-preserving data publishing (PPDP) and outlines eleven major research tracks of
PPDP. Section 3 presents in-depth details of the state-of-the-art (SOTA) attribute-centric
anonymization methods that were recently proposed to strike the balance between privacy
and utility. Section 4 discusses the recent SOTA synthetic-data-based methods that were re-
cently proposed to fulfill privacy and data needs. Section 5 analyzes the privacy-enhancing
technologies that were developed to enhance the protection against present-day privacy
threats. Section 6 uncovers the future research and development directions to foster further
developments in the information privacy domain. We conclude this paper in Section 7.

2. Privacy Preserving Data Publishing and Major Research Tracks
2.1. Privacy Preserving Data Publishing

In this section, we explain the privacy-preserving data publishing (PPDP) process
and outline its major steps. Furthermore, we also discuss the major research tracks of
the PPDP. A conceptual overview of PPDP to foster the secondary use of personal data is
demonstrated in Figure 2.

Figure 2. Schematic of privacy-preserving data publishing (PPDP) for the secondary use of data.

The whole PPDP process encompasses five key steps. In the first step, the data
are collected from the relevant people. The collected data can be of any type such as
demographics, information about monthly earnings, disease contracted, etc. In the second
step, the data are stored, and pre-processed (the pre-processing includes data cleaning and
quality enhancement (removing redundant records, removing outliers, handling missing
values, and giving simplified structure to the data)) in the data owners’ environments.
The data owners can be hospitals, banks, insurance companies, social network service
providers, etc. Later, the data are anonymized with the help of generalization hierarchies
or the noise addition of DP. In the fourth step, the data are outsourced to data analysts
or miners to extract the enclosed knowledge. The data are published either directly by
the data owners or with the help of third parties. In the fifth step, the published data are
analyzed by analysts or data miners with the help of advanced data mining or machine
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learning tools. In the last step, the knowledge gained from the published data is used to
improve real-world services such as healthcare, smart cities, recommendation systems,
navigation services, and other data-driven services [30,31]. Data sharing has become a
routine matter amid the rapid rise in digital developments. In addition, data sharing is
imperative to improve the quality of data-driven applications/services in the modern era.

Although a substantial number of studies were proposed to address privacy issues in
PPDP, there are still two major trade-offs that are hard to achieve. We present both trade-offs
in Figure 3. In the first trade-off, the semantics of the original data need to be preserved [32].
In contrast, for the second trade-off, it is desirable to prevent minor values from dilution
during the anonymization [33]. Despite many developments, both these trade-offs are
quite challenging to achieve in the PPDP scenarios. The effective resolution of the privacy–
utility trade-off is hard to achieve owing to strict privacy parameters to be applied during
anonymization, poor quality of the underlying data, strict privacy/utility guarantees, and
lack of evaluation metrics. In some cases, the selection of the optimal level/ε to perform
data generalization/transformation leads to the solution of one metric, i.e., either utility
or privacy [34]. Similarly, the privacy–equity trade-off cannot be achieved owing to the
poor quality (e.g., data imbalance) of the original data. For example, if there are fewer
representations of some minor groups in the real data, the anonymization method further
reduces the representation, leading to fewer benefits for some minority groups. Most
anonymization methods do not improve data quality before anonymization, and therefore,
it is very hard to achieve the trade-off between privacy and equity. In the modern era, it
was suggested to improve data quality to lower the data-driven threats [14]. In conclusion,
there are many obvious reasons (e.g., poor data quality, inappropriate anonymization,
data owner requirement, privacy and utility objectives, data publishing goals, wrong data
collection processes, and malicious entities present in the PPDP process) that make these
trade-offs hard to achieve. All three trade-offs interact with each other because the data
portion, which contains more information for analytics/mining, may require better privacy
preservation. However, the data owners can make choices regarding these trade-offs to
be resolved depending upon the goals of data outsourcing. It is worth noting that the
quantification of these trade-offs depends on evaluation metrics, and therefore, the selection
of optimal metrics is desirable to quantify them accurately in various applications.

Figure 3. Overview of two major trade-offs in the privacy preservation domain.

2.2. Privacy Models

Next, we define four well-known and state-of-the-art privacy models used for privacy-
preserving data publishing.
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Definition 1 (k-anonymity). In this model, T (relational data) is divided into small, non-overlapping
classes of size k where all users’ QIDs in a class are the same. For example, if k = 2, there must be
at least two users in a class. The probability of re-identifying someone from the anonymized data via
the k-anonymity model is 1/k.

Definition 2 (`-diversity). This model solely focuses on the SA values present in T, `-diversity
specifically ensures that each class has ` distinct SA values. When ` = 2, every class must
encompass at least two different SA values. The probability of re-identifying someone’s SA from the
data via the `-diversity model is 1/`.

Definition 3 (t-closeness). Similar to `-diversity, t-closeness also focuses on SA values present in
T. A T is t-close only when the distribution of SAs in each class and all of T is ≤ t, where t is a
threshold. In simple terms, SA values are fairly allocated to each class under the influence of t. T is
said to be t-close if every class is t-close.

Definition 4 (Differential privacy). DP anonymizes data by adding noise and using randomiza-
tion operations. DP and its enhancements are called semantic methods. In DP, F (a randomized
function) guarantees ε-DP if ∀ raw datasets, T1 and T2, differ by at most one record, and ∀
G ⊆ Range(F ),

Pr[F (T1) ∈ G] ≤ exp(ε)× Pr[F (T2) ∈ G] (1)

DP can be satisfied via exponential and Laplace mechanisms considering the nature of
the data. Although t-closeness is an enhancement of k-anonymity and `-diversity models,
imbalanced distributions of SA can severely affect the performance of the t-closeness model.
Furthermore, the utility loss from the t-closeness model is significantly higher compared to
the first two models (e.g., k-anonymity and `-diversity). In all three models, generalization
or suppression is mostly used to anonymize the data [35]. For example, if age = 55, it will
likely be generalized in one of two ways: ≥50 or 50–60. Generalization is performed with
the help of pre-built generalization taxonomies for each QID. Suppression is a special case
of generalization that fully hides values of attributes with an asterisk (*). DP has become a
state-of-the-art model for privacy preservation in dynamic and static scenarios. Although
DP provides much higher privacy guarantees, the utility of the resulting data is lower in
most cases.

2.3. Major Research Tracks in Privacy Preserving Data Publishing

A variety of techniques were developed to safeguard user privacy in personal data
handling. To this end, famous solutions are encryption, masking, watermarking, secret
sharing, secure multiparty computation, anonymization, and secure enclaves [36,37]. De-
spite other solutions, anonymization is one of the most widely used tools for preserving
the privacy of user data owing to the least computing complexity, the ease in employment,
and the conceptual simplicity. Anonymization technology has significantly advanced from
multiple perspectives, and many independent tracks exist thus far. Figure 4 systematically
presents the advancements in the privacy domain. The anonymization concept started with
the syntactic privacy methods and advanced to many other latest methods, as shown in
Figure 4. For example, the syntactic methods yielded poor utility and were improved by the
clustering-based methods. The DP-based methods have shown remarkable achievements in
static and dynamic scenarios. For example, DP-based methods were implemented widely
in different domains such as federated learning, IoT, industrial IoT, and cloud computing
environments for privacy preservation. Many AI-based methods were also used to improve
many critical parts of the traditional anonymity methods and to improve the privacy and
utility results [38]. Some methods were developed to counter a specific privacy threat or
to preserve privacy in a specific data style (i.e., table, graph, matrix, text, trace, etc.). In
some cases, more than one method was jointly used to protect the privacy of user data.
To the best of our knowledge, detailed tracks and famous methods under each track, in
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particular, attribute-centric anonymization and synthetic-data-based methods, have not
been discussed in previous studies.

Figure 4. Schematic of famous and SOTA privacy tracks and methods developed from 2002∼2023.

Figure 5 demonstrates the data sources used in this study. We extracted the relevant
information from popular sources with the help of relevant search strings.

The distinctive features of the attribute-centric methods are to extract valuable knowl-
edge to the extent possible about the underlying data and to reduce anonymity operations.
In contrast, the unique features of synthetic-data-based methods are to mimic the prop-
erties of real data as much as possible and curate close copies of real data. Both these
methods are developed to meet the growing demands of both privacy and utility in the
big-data- and AI-driven era. The attribute-centric methods have a close relationship with
the three famous syntactic methods (e.g., k-anonymity, `-diversity, and t-closeness). In
contrast, synthetic-data-based developments have a strong connection with differential
privacy-based methods.
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Figure 5. Overview of the data collection process used in this study.

2.4. Attribute-Centric and Synthetic-Data-Based Privacy-Preserving Methods

In recent years, there has been an increasing focus on developing attribute-centric
and synthetic-data-based privacy-preserving solutions. In the former category, the char-
acteristics of the underlying data are exploited to strike the balance between privacy and
utility [39]. In the latter category, virtual samples are generated to augment the data quality
without compromising privacy [40]. In this paper, our main focus is on attribute-centric
and synthetic-data-based privacy-preserving solutions that remained unexplored in the
previous research. Figure 6 demonstrates the conceptual overview of both these methods.
Referring to Figure 6a, the tabular data on the right side are real data, and the left side
shows the anonymized data. In these data, the last column is a sensitive attribute (SA), and
the first three columns are quasi-identifiers (QIDs).

Referring to Figure 6a, the detailed information concerning the composition of the
data is exploited to ease the anonymity process. For example, by classifying data and
exploiting the co-relations between attributes, privacy and utility can be effectively pre-
served [41]. By exploiting information concerning data, computing power can also be
saved, and only the relevant parts can be anonymized [42]. Referring to Figure 6a, the
conditional generative adversarial (CTGAN) model is employed to create synthetic data
by mimicking the properties of real data. In the CTGAN model, the important component
is the conditional vector that guarantees the data generation of the best quality. Recently,
many variants of GAN models were developed to curate data of diverse modalities (e.g.,
time series, images, tabular data, graphs, etc.) for different use cases [43–45]. Both these
methods are very recent and significantly contribute to data outsourcing while preserv-
ing data privacy. In recent years, many privacy-preserving methods were developed to
securely publish personal data. Hongbin et al. [46] proposed a multidimensional data
aggregation and privacy-preserving scheme based on the federated learning concept. The
proposed scheme can be used in industrial IoT domains to restrict privacy breaches. Paul
et al. [47] discussed the security and privacy concerns in the healthcare sector due to the
rapid rise in digital technologies. Muneeswari et al. [48] developed a privacy-preserving
framework for self-diagnosis based on IoT devices. The proposed framework utilizes
patient records and performs analysis without losing guarantees of privacy. Xie et al. [49]
proposed a blockchain-based framework for privacy preservation in IoT scenarios. Liu
et al. [50] proposed a novel method by amalgamating machine learning techniques and
conditional probability distributions to effectively resolve the privacy–utility trade-off.
The proposed method can be used to preserve privacy in single as well as multiple SA
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scenarios. Hewage et al. [51] discussed the PPDSM and PPDM methods used for privacy
protection. The authors analyzed the strengths and weaknesses of the existing methods and
stressed the need for more methods in the PPDSM domain in the future. Terziyan et al. [52]
proposed a method for privacy preservation in the image data. The authors used privacy
protection methods with (convolutional, variational) autoencoders to preserve the privacy
of the image data. Qin et al. [53] developed a scheme to trace virus-infected people without
exposing their privacy. The authors proposed a new IoT data management architecture and
applied various perturbation techniques to effectively preserve privacy and availability in
the cloud environments. Kumuthini et al. [54] proposed two methods (i.e., archive and data
commons) for genomics data sharing. The authors highlighted the challenges involved
in data sharing and discussed privacy and security concerns. Yang et al. [55] proposed a
method for privacy preservation in query execution. The proposed method protects the
exposure of personal information in query-based systems and answers queries without
breaching the confidentiality of the underlying data. Table 1 presents the summary and
comparisons of the above-cited SOTA approaches from a broader perspective.

Figure 6. Conceptual overview of attribute-centric and synthetic-data-based privacy methods.
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Table 1. Summary and comparisons of most recent and SOTA privacy-preserving methods.

Proposed Approach Challenge (s) Benefits Contribution (s) Reference

FL-based micro
aggregation Privacy–utility trade-off Privacy in IIoT domains Strong defense against

recent privacy threats Hongbin et al. [46]

Anonymization based
techniques

Security and privacy
challenges

Strong privacy of health
data

Uncover privacy and
security needs Paul et al. [47]

Similarity-based
analysis

Privacy in medical
diagnosis

Strong privacy in cloud
setting

A low-cost
privacy-preserving

framework
Muneeswari et al. [48]

Blockchain-based
system

Privacy protection of
real data Privacy of sensors data A robust defense

mechanism Xie et al. [49]

ML + CPD method Privacy–utility trade-off Application in SSA and
MSA scenarios

A hybrid method for
PPDP Liu et al. [50]

PPDSM and PPDM
methods Privacy in data mining Protection of

confidential data
Analysis of various

methods Hewage et al. [51]

CV autoencoders Identity protection in
image data Privacy of image data Low cost perturbation

methods Terziyan et al. [52]

Blockchain-based
system

Privacy of
virus-infected users

Virus control and
mitigation

Effective approach for
privacy protection Qin et al. [53]

Archive and data
commons

Disclosure of sensitive
data

Privacy of genomics
data

Proposed ways to
address privacy issues Kumuthini et al. [54]

PPQE method Privacy of confidential
data Responsible use of data Reliable perturbation

methods Yang et al. [55]

DPView system High-dimensional data
handling Better utility of SD Data curation with

privacy Lin et al. [56]

DP model Missing values
handling

Informative analysis of
COVID-19 data Curating better data Sei et al. [57]

Abbreviations: ML = machine learning, CPD = conditional probability distribution, SSA = single SA,
MSA = multiple SA, CV = convolutional and variational, PPQE = privacy-preserving query execution, IIoT = in-
dustrial IoT, DP = differential privacy.

3. Discussion on Attribute-Centric Privacy-Preserving Methods

Recently, many attribute-centric privacy methods were developed to secure personal
data from adversaries while sustaining higher utility in anonymized data. These methods
exploit characteristics of the underlying data to be anonymized and perform the required
operation to accomplish the conflicting goals. In some cases, attribute-centric privacy
methods were used to restrict changes in the anonymization process [58,59]. In some
cases, these methods were used to clean the data from the perspective of outliers, missing
values, and/or redundant records to increase data utility [60]. Table 2 presents the technical
details and comparisons of recently developed attribute-centric privacy methods. Each
method listed in Table 2 has used a different mechanism to perform anonymization of
the real data. The commonly used mechanisms in these studies are micro-aggregation,
clustering, differential privacy, feature-aware anonymization, fuzzy c-means clustering,
diverse grouping, chaos and perturbations, similarity-aware clustering, and generation of
fair equivalence classes.
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Table 2. Summary and comparisons of the most recent attribute-centric privacy methods.

Techniques Used Objective (s) Application Area Study Type Data Type Reference

Fixed intervals + IDs
generation

Privacy–utility
trade-off Healthcare Technical Real Majeed et al. [61]

Fixed intervals+
Improved `-diversity

Privacy–utility
trade-off Healthcare Technical Real Onesimu et al. [62]

Hybrid schemes Privacy–utility
enhancement Medical data Technical Real Hui et al. [63]

Uncertainty +
deviation

Privacy–utility
enhancement General scenarios Technical Real Khan et al. [64]

DP + tree model Data utility and
patient’s privacy Medical data Technical Real Zhang et al. [65]

Three syntactic
models

Privacy–utility
enhancement General scenarios Technical Real Sadhya et al. [66]

Feature selection +
anonymization

Data utility
enhancement General scenarios Technical Real Srijayanthi et al. [67]

Mondrian approach Data utility
enhancement General scenarios Technical Real Canbay et al. [68]

Analytical approach Privacy–utility
enhancement Smart health data Technical Real Arca et al. [69]

k-CMVM and
Constrained-CMVM Utility enhancement General scenarios Technical Real Zouinina et al. [70]

Micro-aggregation
approach

Privacy
enhancement dynamic data release Technical Real Yan et al. [71]

Util-MA approach Reduction in Iloss Machine learning
applications Technical Real and synthetic Lee et al. [72]

Grid clustering + DP Query accuracy Location data
sharing Technical Real and synthetic Yan et al. [73]

AFBSO + WOA Privacy and utility
enhancement Healthcare data Technical Synthetic Thanga et al. [74]

GM-FBO algorithm Preserving privacy
of SHD Cloud computing Technical Real Anand et al. [75]

CGBFO-GC
algorithm

Multi-privacy
objectives Cloud computing Technical Real Anand et al. [76]

OAN model Compute cost
reduction General scenarios Theoretical Synthetic Canbay et al. [77]

Clustering method Privacy and utility
enhancement IoT environments Technical Real Onesimu et al. [78]

Fuzzy clustering Privacy and utility
enhancement Industrial IoT Technical Real Xie et al. [79]

IDEA method Effectively
preserving utility. General scenarios Technical Real Yang et al. [80]

(a, k)-anonymous Better privacy and
data quality IoT-based healthcare Technical Real Li et al. [81]

BL approach Data Security Medical healthcare Technical Real Altameem et al. [82]

Clustering approach Data Security and
utility General scenarios Technical Real Nayahi et al. [83]

DHkmeans-`-
diversity

SA privacy
protection Big data era Technical Real Ashkouti et al. [84]

δ-value approach Data mining Information retrieval Technical Real Solanki et al. [85]

CAP approach PPDP and PPDM
Knowledge

discovery and
mining

Technical Real Eyupoglu et al. [86]

Abbreviations: ILoss = information loss, AFBSO = adaptive fractional brain storm optimization, WOA = whale
optimization algorithm, GM-FBO=Gaussian mutation-based firebug optimization, SHD = sensitive healthcare
data, CGBFO-GC = Chaotic chemotaxis and Gaussian mutation-based bacterial foraging optimization with a
genetic crossover operation, IDEA=Incomplete Data strEam Anonymization, BL = backpropagation learning,
SA = sensitive attributes, CAP=chaos and perturbation, PPDM = privacy-preserving data mining.
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4. Discussion on Synthetic Data-Based Privacy Methods

Recently, synthetic data have been widely used to preserve the privacy of users while
fulfilling the data analytics needs [87,88]. In recent years, a large amount of data has
been needed to train AI models for enhancing accuracy, particularly in the healthcare
domain [89]. To this end, synthetic data can be employed to increase the number of samples
in training data. Synthetic data have become a SOTA technology with a wide range of
practical applications in diverse sectors. Figure 7 presents the practical uses of synthetic
data in the modern era. From Figure 7, it can be seen that synthetic data are widely used
as a replacement for real data in diverse sectors. The application of synthetic data in the
healthcare sector is also steadily increasing with time [90]. Figueira et al. [18] recently
presented a comprehensive survey on different tools that can be used to generate synthetic
data (in a tabular form), particularly generative adversarial network (GAN) architectures.
Gonzales et al. [91] recently discussed the innovative uses of synthetic data in healthcare.
Based on these major developments, it is fair to say that synthetic data are one of the leading
technologies of the future. This paper focuses on privacy preservation, and therefore, we
demonstrate synthetic-data-based privacy methods. This topic has attracted the researchers’
attention in recent years, and many notable developments have been made [92].

Figure 7. Practical uses of synthetic data in the modern era (e.g., the year 2023 and beyond).

Table 3 presents the comparison of SOTA synthetic-data-based privacy methods.
Specifically, we compare each method on five grounds (i.e., techniques used in the study,
objective accomplished with the study, type of the study (technical or theoretical), and
data type used in each study). Furthermore, we considered the most recent studies to
provide a fresh analysis of the published literature. The analysis presented in Table 3 can
pave the way to understanding the latest developments in synthetic-data-based privacy
methods. Each method listed in Table 2 has used a different mechanism to generate
synthetic data of good quality to either preserve the privacy of personal data or to fulfill
data requirements/needs. The commonly used mechanisms in these studies are differential
privacy, probabilistic modeling, variational autoencoders, generative adversarial networks,
neural networks, generative models, pipelines including differential privacy, clustering
methods, and transformer models. In conclusion, most of these methods have used basic
generative adversarial networks (GANs) and their enhancement to generate data of diverse
types. In these methods, privacy is achieved using two ways: (i) including DP or any other
privacy models with the generative models, and (ii) generating synthetic data and applying
anonymization to guarantee privacy. The synthetic-data-based methods are widely used to
accomplish five key requirements in the modern era: (i) privacy preservation of personal
data, (ii) testing of software/products, (iii) data governance, (iv) data sharing at a scale,
and (v) training machine learning classifiers [93].
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Table 3. Summary and comparisons of the most recent synthetic data-based privacy methods.

Techniques Used Objective (s) Application Area Study Type Data Type Reference

DP+ MERF approach
produce tabular and

image data with
privacy guarantees

General scenarios Technical Real Harder et al. [94]

DP-HFlow method Privacy protection in
data sharing General Scenarios Technical Real Lee et al. [95]

Probabilistic
modeling

Anonymized
synthetic data

sharing
Open science Technical Real and synthetic Jälkö et al. [96]

HealthGAN model Better data analysis Education and
research Technical Synthetic Yale et al. [97]

GAN+ XAI High quality SD
generation Health data Technical Real Lenatti et al. [98]

HealthGAN model Capturing trends
from TSD Medical domain Technical Real and synthetic Bhanot et al. [99]

VGAE model Yield artificial
trajectories with PPP Electronic health Technical Synthetic Nikolentzos et al. [100]

VITALISE model Compliance-based
data use

Health and
well-being domain Technical Real Hernandez

et al. [101]

GAN model Reduce risk of SA
disclosure Fitness related Technical Real Kuo et al. [102]

SDG framework Privacy preservation
and CP Medical domain Technical Real Rodriguez et al. [103]

dsSynthetic package Data harmonization General scenarios Technical Real Banerjee et al. [104]

STSG approach Privacy guarantees
in TSD General scenarios Theoretical Real Larrea et al. [105]

pGAN model Privacy guarantees
in EHR Medical domain Technical Real Venugopal et al. [106]

VAE model Fixation of bias and
privacy Medical domain Technical Real and synthetic Yoshikawa et al. [107]

Neural-Prophet
model

Maintaining validity
of MD Medical systems Technical Real Hyun et al. [108]

Transformer models
Accurate clinical
predictions with

privacy guarantees
healthcare Technical Real Zhang et al. [109]

HealthGAN model Privacy, utility, and
resemblance Healthcare domain Technical Real Yale et al. [110]

GANs models Data augmentation General scenarios Technical Real Narteni et al. [111]

GAN model Control on various
privacy risks Big data apps Theoretical Real Raveendran et al. [112]

MC-GEN model Privacy guarantees
in classification tasks ML applications Technical Real Li et al. [113]

PPEA model Better utility of data Distributed
environments Technical Real Shahani et al. [114]

DP+ GAN Higher privacy
guarantees Industrial IoT Technical Real Hindistan et al. [115]

(ε, δ) -ULDP Strong privacy
protection General scenarios Technical Real, synthetic Zhang et al. [116]

Fed Select Framework Strong privacy
guarantees in FL IoMT settings Technical Real Nair et al. [117]

LGAN + DP Privacy-utility
trade-off ML applications Technical Real Zhang et al. [118]

HT-Fed-GAN model Privacy–utility
trade-off

machine learning
tasks Technical Real Duan et al. [119]

Abbreviations: SD = synthetic data, TSD = time series data, VGAE = variational graph autoencoder, PPP = patient
privacy preservation, pGAN = privacy-preserving generative adversarial network, EHR = electronic health
records, VAE = variational Autoencoder, PPEA = privacy-preserving endpoint aggregation, FL = federated
learning, ML = machine learning.
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Recently, synthetic data (SD) have become an indispensable component for AI appli-
cations, and therefore, many generative models were recently developed to compensate
for the deficiency in good data [120,121]. The SD generated with the generative models
has lots of applications in diverse fields such as medical image analysis, fault diagnosis,
language models, image recognition, and medical diagnosis, to name a few. Further-
more, some companies are sharing SD rather than real data to overcome privacy concerns.
Figure 8 presents SD-based developments along with the experimental details. We classify
the SD generation process into four key steps, as marked in by the color yellow. As shown
in Figure 8, the real data are mostly limited to the data owners’ environments, and therefore,
generative models of a suitable type can be moved closed to that data to produce synthetic
data. The structure of each generative model is different, and therefore, a suitable model
is chosen based on the data type. For instance, to generate tabular data, Table-GAN can
be used. In contrast, DCGAN is suitable for generating synthetic images. Similarly, for
the time-series data, a different GAN model can be used. After training GAN models by
connecting with real data, the SD can be obtained in diverse formats depending upon the
application. Later, the SD can be used for different purposes, as shown in Figure 8(4). In
recent years, SD has been widely used for data augmentation purposes while building clas-
sifiers. With the advent of the DC-AI concept, SD has become an enabling technology for
AI applications. In the coming years, SD will be used as an integral component for medical
applications, where access to real data is often prohibited owing to privacy concerns.

Figure 8. Overview of synthetic-data-based developments along with experimental details. In step 1,
relevant data sources are identified and properties of real data are analyzed. In step 2, the appropriate
GAN model is chosen and brought close to real data. In step 3, synthetic data is curated in the
relevant modality. In step 4, the synthetic data is utilized either to train ML models or to share it for
data mining.
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5. Famous Privacy Enhancing Technologies That Are Widely Used for
Privacy Preservation

Apart from SD and attribute-centric anonymization, there exist many privacy-enhancing
technologies (PETs) that are used to secure personal data enclosed in diverse formats.
Figure 9 presents notable PETs that are being used by data owners to secure personal data.

Figure 9. Overview of famous PETs used to secure personal data (e.g., privacy preservation).

Referring to Figure 9, encryption is widely used in dynamic environments (e.g., cloud
computing) to prevent personal data from disclosure [122]. Recently, encryption techniques
were amalgamated with AI techniques to preserve the privacy of personal data [123]. DP
is widely used to preserve the privacy of data while permitting the analytics of data. It
has become one of the famous PETs of modern times and is widely used in federated
learning environments to preserve the privacy of data/parameters [124,125]. When privacy
requirements are very high, only some statistics in the form of histograms are shared
with the data analysts [126,127]. Federated learning is one of the modern PETs that does
not aggregate personal data in central environments but allows AI model training. FL
has become a SOTA solution for privacy preservation when data is located in various
places [128,129]. Blockchain is another famous PET that can protect the privacy of the
data as well as of participants. Blockchain is widely used to share data with multiple
parties while preventing privacy breaches [130,131]. Few short learning is a famous PET
for training large AI models with limited data, leading to privacy preservation in AI
applications [132,133]. Trusted environment and secure enclaves are hardware-based
approaches to guarantee the privacy of user data [134–136]. These approaches are becoming
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famous PETs due to the rapid rise in AI-based applications. Pseudonymization is a widely
used technique for privacy preservation in cloud-based environments such as smart home
environments, smart grids, and medical domains [137,138]. Finally, masking techniques
are widely used to hide identity or sensitive information in a variety of data formats (e.g.,
images, videos, etc.) [139,140]. All of these technologies play a vital role in preserving
individual privacy in static or dynamic environments. In some cases, hybrid PET is used to
provide stronger privacy guarantees than individual techniques [141]. Recently, many PETs
were also developed to provide privacy guarantees in epidemic handling systems that are
being developed to fight the ongoing pandemic [142–145]. Apart from these developments,
more secure PETs are required to provide privacy guarantees in personal data handling.

6. Promising Future Research and Development Directions

In this section, we present promising research and development directions for future
work. Figure 10 presents the list of promising directions that require more work from the
research and development point of view. For example, there is a serious lack of methods
that can be applied to poor-quality data. In some cases, the data sensed from some devices
such as sensors may contain errors, and therefore, applying anonymity to them directly may
lead to the wrong data mining results. To this end, some new methods were developed to
add noise to true values only, leading to lowering errors in histogram generation, as well as
generic data mining results [146]. Some works have also explored the impact of data quality
on privacy in real-time applications and crowdsensing scenarios [147]. Recently, some
data-centric developments have been made to augment the performance of AI applications
involving fewer data [148]. Hence, it is vital to adopt data-centric practices in the privacy
domain to develop more secure methods (data quality-aware anonymization) in the future
era. In the coming years, AI models will be applied to every sector, and therefore, it is
imperative to devise secure methods for privacy preservation in AI systems [149]. To
this end, amalgamating anonymization methods with AI systems is an attractive area of
research for the near future. Privacy and utility optimization is a long-standing problem
in the privacy domain [150]. Hence, it is vital to devise methods that can provide strict
privacy guarantees without compromising usefulness in data-sharing scenarios.

Figure 10. Promising direction for research or development in future endeavors.
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Based on our recent work [151], we found that AI models can improve some critical
parts of the conventional anonymization methods. Therefore, it is vital to amalgamate the
AI methods with the traditional anonymization methods to secure personal data effectively.
In the coming years, hybrid anonymization methods may be needed to preserve the privacy
of data enclosed in multiple formats. In the past, most anonymization methods anonymized
data without improving their structure (e.g., without balancing the distributions), leading to
poor data quality and poor privacy guarantees. In the future, it is vital to improve/augment
data before its anonymization, particularly when the quality of the data is poor [152]. Data
augmentation-based anonymization methods can improve the quality of the data, leading to
better data mining and analytical results. In most anonymization methods, the computing
complexity rises with either the horizontal or vertical expansion of data, and therefore, it
is extremely important to reduce computing overheads when the underlying data to be
anonymized are large [153,154]. In future endeavors, devising low-cost methods (e.g., least
computing and space complexity) for diverse data styles (e.g., graphs, images, text, etc.)
is a vibrant area of research. Finally, there is a lack of metrics that can correctly capture
the level of privacy and utility [155]. Hence, it is imperative to devise formally verified
evaluation metrics in future endeavors. Finally, there is an increasing focus on developing
clustering-based anonymization to improve the shortcomings of traditional anonymization
methods [41,156]. However, there are various critical problems with these methods such as
poor convergence, a substantial number of iterations, and higher computing overheads.
Hence, improving the technical status, applicability, and convergence criteria is a vibrant
area of research for the future. Figure 11 provides a detailed overview of the current
challenges in the privacy domain and new research topics about preserving the privacy of
personnel data. Due to the rapid rise in personal data, privacy issues are becoming more
evident [157,158]. Therefore, robust, efficient, and low-cost anonymization methods are
necessary to preserve privacy in futuristic applications. The analysis discussed in Figure 11
provides a clear overview of the future research trajectories in preserving the privacy of
personal data.

Figure 11. Detailed overview of the current challenges in the privacy domain and new research topics
about preserving the privacy of personnel data.

It is worth noting that most of the existing privacy preservation methods have focused
on preserving three key properties (e.g., identity information, sensitive information, and
membership information) in personal data handling. However, in some cases, an individual
can have multiple types of sensitive information in their data, and therefore, there is a
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need for privacy preservation methods that can provide privacy protection for multiple
types of sensitive information. In addition, due to the extensive use of digital technologies,
the privacy of different sensitive readings (i.e., blood pressure, heart rate) also requires
protection from prying eyes [159,160]. Hence, it is vital to devise more secure methods that
can preserve the properties of the personal data encompassed in different formats, as well
as stemming from diverse domains.

7. Conclusions and Future Work

This paper presented a painstaking analysis of the latest and state-of-the-art (SOTA)
developments in the information privacy domain. Specifically, we identified and described
multiple research tracks for the information privacy domain with a special focus on SOTA
attribute-centric anonymization methods that were recently developed to balance privacy
and utility. Later, we described SOTA synthetic data generation methods that were rig-
orously used to meet the privacy and data analytics demands in the modern era. To the
best of our knowledge, both these categories (i.e., attribute-centric anonymization methods
and synthetic data generation methods) of privacy-enhancing technologies have not been
thoroughly covered in the current literature. Furthermore, we demonstrate famous privacy
solutions other than these two methods that are widely used to secure personal data encom-
passed in multiple formats. The promising avenues for future research were also discussed
to foster further developments/research in the privacy preservation area. The contents
enclosed in this paper can pave the way for future development in the privacy domain.
Finally, this work aligns with the recent trends toward responsible data science (e.g., fair,
transparent, and privacy-preserved use of personal data) and can open up avenues for
future research and development. This paper encloses much-needed knowledge concern-
ing information privacy and can provide a strong base for future work in the information
privacy domain. In the future, we intend to cover generative methods for other data styles
(e.g., images, text, audio, etc.) and data augmentation strategies (e.g., random, selective,
sampling, etc.) used in improving the quality of the bad data. Finally, we aim to pinpoint
existing developments concerning privacy-preserving synthetic data generation using
differential privacy-based techniques.
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