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Abstract: Message Queue Telemetry Transport (MQTT) is a common communication protocol used in
the Internet of Things (IoT). MQTT is a simple, lightweight messaging protocol used to establish com-
munication between multiple devices relying on the publish–subscribe model. However, the protocol
does not provide authentication, and most proposals to incorporate it lose their lightweight feature
and do not consider the future risk of quantum attacks. IoT devices are generally resource-constrained,
and postquantum cryptography is often more computationally resource-intensive compared to cur-
rent cryptographic standards, adding to the complexity of the transition. In this paper, we use the
postquantum digital signature scheme CRYSTALS-Dilithium to provide authentication for MQTT and
determine what the CPU, memory and disk usage are when doing so. We further investigate another
possibility to provide authentication when using MQTT, namely a key encapsulation mechanism
(KEM) trick proposed in 2020 for transport level security (TLS). Such a trick is claimed to save up
to 90% in CPU cycles. We use the postquantum KEM scheme CRYSTALS-KYBER and compare the
resulting CPU, memory and disk usages with traditional authentication. We found that the use of
KEM for authentication resulted in a speed increase of 25 ms, a saving of 71%. There were some extra
costs for memory but this is minimal enough to be acceptable for most IoT devices.

Keywords: Message Queue Telemetry Transport (MQTT); postquantum authentication; Internet of
Things (IoT)

1. Introduction

The Internet currently uses different systems to provide secure communication. The
transport layer security (TLS) and IP security (IPsec) protocols, along with the public key
infrastructure (PKI) framework, are all commonly used communication procedures with
security on the Internet. TLS is designed to block attempts to tamper with messages or
listen in on what is being communicated [1]. IPsec is used in virtual private networks
(VPNs) to authenticate and encrypt messages between two devices [2]. PKI ensures that
public keys for devices are available and authenticated by using X.509 digital certificates
with digital signatures [3]. Authentication is important, as online communication requires
assurance that the communication is occurring between the expected parties and that the
exchanged data are not being altered. Standards that can address this issue are the digital
signature algorithm (DSA) based on the RSA (Rivest–Shamir–Adleman) cryptosystem
or elliptic curves for authentication [4], and the advanced encryption standard (AES) for
confidentiality [5].

Quantum computers are a new type of computer that uses qubits rather than bits.
This means that the computer is no longer using just 0 or 1, but a superposition of both.
Therefore, there are now infinite possible values for each qubit, as it can be any value from
0–1, inclusive. There are quantum algorithms that can be used by quantum computers
to break our current security standards. The two main algorithms of note are Shor’s al-
gorithm [6], a quantum algorithm that can be used to find the prime factors of a value;
and Grover’s algorithm [7], a quantum algorithm that speeds up the search algorithm
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from O(N) to O(
√
(N)). According to Shor’s algorithm, RSA and elliptic curve cryp-

tography (ECC) will be broken [6], and with Grover’s algorithm, AES will need double
the key size [8], as we will not be able to rely on current standards for secure Internet
communication once quantum computers are available [9]. This makes it necessary for new
Internet communication standards to be created to ensure secure communication into the
future. Classic computers (computers that rely on classical computing mechanisms for their
operation) need new cryptosystems to be considered for Internet communication standards
that remain secure against future attacks from quantum computers. These cryptosystems
are called postquantum cryptosystems.

Physical quantum computers are yet to be commercially available. However, Mi-
crosoft has already created a cloud platform that provides quantum tools (https://medium.
com/swlh/quantum-computing-is-now-publicly-available-df1abbc38578 (accessed on
7 February 2023)), Google has a 54-qubit machine called Weber (https://quantumai.
google/hardware/datasheet/weber.pdf (accessed on 7 February 2023)) and IBM has
a 127-qubit quantum computer called Eagle (https://immutabledistribution.com/this-
insane-quantum-computer-is-ibms-last-chance/ (accessed on 7 February 2023)). Currently
available quantum computers are unable to break current cryptosystems. However, quan-
tum computers have been progressing greatly, and it is projected that they will become
available in 20–30 years [10]. It is also expected that the number of organizations working
in the area of quantum computing will nearly double in the coming years (https://www.
techrepublic.com/article/6-experts-share-quantum-computing-predictions-for-2021/ (ac-
cessed on 7 February 2023)). It has been found that using an algorithm that simulates a
quantum algorithm on a classic computer is up to 10 million times slower than when the
algorithm is run on a quantum computer [11]. Exact differences in computing power are
yet to be known, but it is expected that quantum computers will change computing as we
know it at present.

The Internet of Things (IoT) is an incredibly versatile term and has many possible
applications, including industrial and domestic implementations, security, logistics and
transport. It is expected that the uses for IoT will increase, as will the number of connected
IoT devices [12]. This makes it imperative that these new cryptographic standards be
considered specifically for IoT devices. Due to the prevalence that IoT devices have, and are
projected to continue having, it is imperative that there be security options when quantum
computers become available [13]. It is especially crucial to be considering postquantum
security options for IoT devices, because one of the major concerns for users of these devices
is the possibility of security issues [12].

Message Queue Telemetry Transport (MQTT) (https://docs.oasis-open.org/mqtt/
mqtt/v5.0/mqtt-v5.0.html (accessed on 26 January 2023)) is a lightweight application layer
protocol commonly used for IoT communication. MQTT has no in-built security features,
and usually runs over the TCP transport layer protocol. It is designed to be efficient and
reliable, even if the network is unreliable. It is also easily scalable, so can be used for
many connected devices (https://mqtt.org (accessed on 26 January 2023)). MQTT can
be configured to run over the secure TLS protocol [1] to make the MQTT communication
secure. However, this comes with the overheads associated with TLS, losing many of the
advantages that MQTT has as a lightweight protocol.

1.1. MQTT

MQTT is a common communication protocol used in IoT. It is a simple, lightweight
messaging protocol used to establish communication between multiple devices relying on
the publish-subscribe model. The MQTT protocol is based on two types of parties: clients
and brokers (sometimes referred to as servers). For our experiments, the IoT devices are
clients and the gateway is the broker. All clients connect only to the broker. When first
connecting, the client and broker perform a handshake, thus establishing their connection.
Following this, there are two main types of messages exchanged: subscribe and publish.
Clients can subscribe to certain topics (e.g., temperature or humidity), and the broker will store
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a list of which clients subscribe to which topics. Clients can then send publish messages for
a certain topic (e.g., temperature) and the broker will sort and forward the message to all
clients subscribed to that topic. All clients can publish and subscribe to messages, although
IoT devices often do not subscribe to many, if any, topics.

An example MQTT interaction can be seen in Figure 1. There, we have a system that
has a gateway as a broker, and a temperature sensor and a mobile device as clients. The
temperature sensor does not subscribe to any topics, and only publishes messages in the
topic temperature. Therefore, there is a one-way connection from the temperature sensor
to the gateway. The mobile device then receives updates about the temperature as it has
subscribed to the temperature topic.

Figure 1. An example MQTT network.

MQTT uses TLS to provide authentication, so the handshake process is the same as
the one used for TLS (https://www.ietf.org/rfc/rfc5246.txt (accessed on 1 February 2023)).
This adds more overhead and reduces the lightweight advantage of MQTT.

1.2. Public-Key Cryptography

Public-key encryption and digital signatures are widely used, especially to provide
assurance on the Internet [14]. Public-key cryptography can be used to provide confiden-
tiality, integrity, authentication and nonrepudiation for individuals and organizations. PKI
uses public-key cryptosystems to provide the basis of security for email, communication
and transactions on the Internet [15].

1.2.1. Key Encapsulation Mechanisms

Public-key encryption requires the device to have two different keys: one public key to
encrypt and one private (or secret) key to decrypt. These keys are used to facilitate secure
communication between the devices by deciding on a shared symmetric key using a key
agreement protocol. Postquantum key agreement works slightly differently, through a key
encapsulation mechanism (KEM). With KEM, a key is generated and then encapsulated
(similar to encryption) with the other devices’s public key. The encapsulated key is then
sent to the other party, which decapsulates the key (similar to decryption) [16]. This results
in a shared secret key between the two devices.

1.2.2. Digital Signatures

A digital signature is used to verify the sender’s identity and to check the integrity
of a received message [17]. Digital signatures require three actions to be carried out: to

https://www.ietf.org/rfc/rfc5246.txt
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generate a key for signing, to sign a message using a secret key and to verify if a received
signature is valid using a public key [18,19].

1.3. NIST Postquantum Standardization

The National Institute of Standards and Technology (NIST) ispart of the U.S. De-
partment of Commerce. NIST is responsible for providing standards and support for
technological advancements in the United States. Due to the international nature of
technology, NIST standards are used around the world. In 2016, NIST began a com-
petition for new, quantum-resistant (postquantum) cryptographic standards to be pro-
posed (https://csrc.nist.gov/projects/post-quantum-cryptography (accessed on 7 Febru-
ary 2023)). The areas identified as needing new standards are encryption, key establish-
ment, and digital signatures, as these are the areas that will no longer be secure in their
current form with the use of quantum computers (https://www.nist.gov/news-events/
news/2016/12/nist-asks-public-help-future-proof-electronic-information (accessed on
7 February 2023)).

Table 1 shows the five security levels that NIST has used as benchmarks for the pro-
posed postquantum cryptographic schemes (https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization/Evaluation-Criteria/Security-
(Evaluation-Criteria) (accessed on 7 February 23)). Our implementations consider security
levels 2, 3 and 5, corresponding to being as difficult to break as a collision search on a
256-bit hash function, a key search on a block cipher with a 192-bit key and a key search on
a block cipher with a 256-bit key, respectively.

Table 1. NIST postquantum security levels.

Security
Level Classic Equivalent

1 AES-128 (as difficult to break as a key search on a block cipher with a 128-bit key)
2 SHA256 (as difficult to break as a collision search on a 256-bit hash function)
3 AES-192 (as difficult to break as a key search on a block cipher with a 192-bit key)
4 SHA384 (as difficult to break as a collision search on a 384-bit hash function)
5 AES256 (as difficult to break as a key search on a block cipher with a 256-bit key)

NIST Lightweight Protocol Standardization

In February 2023, NIST announced their selected suite of lightweight cryptography
algorithms to be used for IoT devices. The selected suite is called ASCON [20]. This
competition was first proposed in 2019, and of the 57 candidates, only one was selected
for standardization. One of the variants in the ASCON suite may have some level of
protection against quantum attacks. However, this was not one of the aspects NIST took
into account in the selection of this cryptographic suite [21]. The main focus was to find an
algorithm that would work for most resource-constrained devices, as the implementation
is very compact.

2. Problem Statement

MQTT is a popular communication protocol for use by IoT devices, and is very useful
in this context. However, MQTT was originally designed with no security, and the current
options for security will add to the required communication costs in a way that may not be
practical for resource-constrained devices. This is likely to only be exacerbated by the use
of postquantum algorithms, as they can often require more processing power. While there
have been prior works that explore postquantum cryptographic algorithms in the context
of MQTT, these works have been relatively limited. Additionally, the work that has been
conducted on postquantum MQTT has often not taken authentication into account. This
highlights three major issues. The first is that MQTT does not itself provide authenticated
communication. This means that it is necessary to use an additional function to authenticate
the communication channel. The second is that the use of an additional mechanism for
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authentication adds to the computation costs, which for constrained IoT devices can result
in significant delays. Finally, it is necessary to find an option for authentication that has
feasible computation expectations for IoT devices and also does not result in an increased
number of round trips needed to establish the authenticated connection. Throughout our
paper, we will address these issues by looking at providing authentication, the related costs
and a possible way to reduce these costs through the use of a KEM.

2.1. Idea

Current methods to provide authentication in other protocols, such as TLS
(https://www.ietf.org/rfc/rfc5246.txt (accessed on 26 January 2023)), use digital signatures,
and therefore, this would be a logical way to provide authentication in the MQTT protocol.

Digital signatures are especially important for IoT networks to verify that all devices
are legitimate users and to prevent the access of intruders to the network, as well as to
prevent them from making undetected changes to communications between IoT devices
that are part of this network. Since IoT devices are focused on information exchange, it
is important to not only provide proper security for the communication in the form of
encryption, but also to prevent illegitimate users from gaining access to the communication
channels through the use of authentication that is performed using digital signatures [22].

NIST is currently in the process of defining a set of standard postquantum public key
cryptographic algorithms (https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization (accessed on 26 January 2023)), including
postquantum digital signature algorithms. Therefore, following a similar handshake
process to TLS, postquantum digital signatures could be used to provide authentication
in MQTT.

However, as described in [23], we can expect significant overheads in terms of band-
width, computational time and storage requirements with digital signatures. In [23], it is
proposed that some efficiency gains can be made by authenticating using KEMs instead
of signatures. KEMs are generally used to provide confidentiality through asymmetric
encryption. This means that a public encryption key is available, which anyone can use to
encrypt. However, only the owner of the public key has access to the private decryption key
to read the encrypted message. The proposal is for TLS postquantum authentication, and
promises less than 10% of the computational time for KEM-based authentication compared
to a digital signature scheme.

2.2. Digital Signatures Used for Authentication

The traditional MQTT interaction over a public MQTT channel, with authentication
provided by digital signatures, can be seen in Figure 2. The client sends a ClientHello
message to the broker with a random nonce, rc, for freshness. The broker responds with a
BrokerHello message containing another random nonce, rb, and then sends its public key
signed by an authority, cert[pks], verifying that the public key does indeed belong to the
expected party. After receiving the signed public key, the client verifies the signature and
then encapsulates a premaster secret, pms, using the public key. This encapsulation, cts, is
then sent to the broker.

When the broker receives cts, it decapsulates cts with its secret key, sks. Both parties
use the premaster secret, pms, to generate further keys that can later be used for symmetric
encryption to provide confidentiality. Both parties then verify that the other party has
indeed received all the messages that were sent to it, and that they have generated the
same keys by sending hash message authentication codes (HMACs) back and forth in the
ClientFinished and BrokerFinished messages. These messages allow both parties to
check that the other has been able to calculate the same hash, based on the contents of all
previous messages and the final generated key. This completes the authentication of the
broker, meaning the clients can be sure that they are interacting with the intended broker.
The client will then send the packets required to complete the MQTT handshake, and the
protocol will continue as normal.

https://www.ietf.org/rfc/rfc5246.txt
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
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Figure 2. TLS handshake for MQTT authenticated using digital signatures.

2.3. KEM Used for Authentication

Our proposal for using KEM for authentication in MQTT is based on the proposed
change to TLS found in [23]. KEM was proposed as an option to provide faster authentica-
tion than with postquantum digital signatures. The authors claim that there is a reduction
of 90% in CPU cycles when KEMs are used.

The interaction for the handshake when authentication is provided by a KEM rather
than a digital signature is slightly different and is outlined in Figure 3. This interaction is
over a public MQTT channel. The client first generates an ephemeral secret and public key
pair ske, pke. The client then sends a ClientHello message with a random nonce, rc, and
their public key. The broker then encapsulates an ephemeral shared secret, sse, using the
public key and sends it to the client along with a random nonce, rb, and their own public
key, pks. The broker’s public key is signed by an authority to verify that it does indeed
belong to the intended broker (this signature cannot be avoided). The client verifies the
signature and encapsulates a static shared secret, sss, with the broker’s public key, and
sends this to the broker.

The broker decapsulates the shared secret using their secret key, sks, and then both the
client and broker generate several keys based on the shared secret. They then exchange
HMACs of the previously exchanged messages and the final key to ensure that both parties
have received the same messages and have calculated the same keys. At this point, the
client has authenticated the broker and the client can be sure they are connecting to the
broker they intend to. The rest of the MQTT protocol can continue as normal.

2.4. Security Analysis

As secure MQTT runs over TLS 1.3, the security analysis carried out in [23] remains
relevant to our proposal of KEM-authenticated MQTT. In their paper, they outline the
main security goal they focus on to be that the keys used at every stage of the KEMTLS
(KEM-authenticated TLS) protocol to be indistinguishable from a random key. This should
be the case even if the adversary has extra information, such as that it can view and control



J. Cybersecur. Priv. 2023, 3 422

all communication or know the long-term keys of devices not currently involved in the
interaction. They also show that forward secrecy is maintained. The protocol uses a mix
of implicit and explicit authentication before finishing the final stage with full explicit
authentication. The amount of forward secrecy therefore differs depending on the stage
of the user. For instance, the first two stages only have level 1 weak forward secrecy;
this means that even if the long-term key is known, the secret key cannot be obtained.
However, these keys have not been authenticated, and will not be until the full handshake
is completed.

Figure 3. TLS handshake for MQTT authenticated using KEMs.

2.5. Contributions

This paper outlines how existing postquantum cryptography fits within the existing
communication protocol, MQTT, to integrate authentication.

• We discuss the use of MQTT for IoT and provide background on its use.
• We discuss postquantum cryptosystems and test MQTT with the postquantum KEM and

digital signature algorithms CRYSTALS-Kyber and CRYSTALS-Dilithium, respectively.
• We discuss the opportunity to use KEMs for authentication rather than digital signatures.
• We create a skeleton implementation of MQTT authenticated with the KEM CRYSTALS-

Kyber to act as a proof of concept for the feasibility of the use of a KEM for authentica-
tion in MQTT.

• We implement a comparison of unauthenticated MQTT, MQTT authenticated with digital
signatures (CRYSTALS-Dilithium) and authenticated with KEM (CRYSTALS-Kyber).

• We then compare and discuss our results in the context of the use of postquantum
authentication in MQTT for IoT devices in the future.

3. Results
3.1. Results for Digital Signature Authentication

Results for digital signature authentication are all averages of the 60 repetitions carried
out in the experiment.
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3.1.1. CPU Usage

CPU usage is given as a percentage of the overall CPU available. In Figure 4, it can be
seen that apart from the broker at dilithium3, the CPU usage either remained stable (for the
subscriber with dilithium2, dilithium3 and dilithium5) or decreased (for all other instances)
as the available memory decreased. However, the change in CPU usage was only ever at
most a 0.1% difference.

Figure 4. Percentage CPU usage When running MQTT.

It can also be seen that the CPU usage is consistently greater for the broker. The CPU
usage for the publisher and subscriber is similar, but with the publisher’s usage being
slightly more than the subscriber’s in many cases.

3.1.2. Memory Usage

Memory usage, as displayed in Figure 5, is seen to have a dramatic increase for the
broker when running all three levels of the digital signature when there is only 1 GB of
memory and 1 CPU core available. There is a jump from approximately 2 MB to about 7 MB,
12 MB and 10 MB for dilithium2, dilithium3 and dilithium5, respectively. The difference for
other devices and security levels is much more subtle. Not considering the aforementioned
circumstances, there was no increase in memory for the subscriber with dilithium2, but the
Publisher used 1.84 MB for dilithium2 with the restricted test. The increase was between
0.46 MB and 0.48 MB for dilithium3. For dilithium5, there was an increase of 0.12 MB for
the subscriber but a decrease in memory usage by 0.01 MB for the publisher.

Memory usage increases slightly as the security level increases when there is 8 GB of
memory available. The overall change from dilithium2 to dilithium5 is less than 0.23 MB
for all three devices in the interaction. The greatest difference is seen for the publisher, with
0.23 MB (0.4 MB from dilithium2 to dilithium3 and 0.19 MB from dilithium3 to dilithium5);
then the subscriber, with 0.1 MB (0.4 MB from dilithium2 to dilithium3 and 0.06 MB from
dilithium3 to dilithium5); and the least difference is seen for the Broker, with 0.08 MB
(0.3 MB from dilithium2 to dilithium3 and 0.05 MB from dilithium3 to dilithium5).
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Figure 5. Memory usage when running MQTT

The memory usage sometimes increases with the security level when there is 1 GB
of memory available. However, there were a few times when it decreased. For instance,
the memory usage decreased for the publisher as the security level increased (3.23 MB for
dilithium2, 2.3 MB for dilithium3 and 2.02 for dilithium5).

3.1.3. Disk Usage

Nothing is read from the disk when the available memory is 8 GB for any of the
security levels of CRYSTALS-Dilithium. However, when there is 1 GB of available memory,
the MQTT network begins to read from the disk, as seen in Figure 6. It can also be seen that
the broker requires a lot more disk usage than the subscriber and publisher. The subscriber
also seems to require more disk usage than the publisher.

Figure 6. Disk usage when running MQTT on device with 1 GB of memory.

The amount read increases as the security level increases for all devices except the
Publisher, where a slight decrease of 144 KB is seen. For dilithium2, only the broker and
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subscriber read from the disk, with 5.9 MB and 1.5 MB read, respectively. For dilithium3,
the broker reads 12.4 MB from the disk, while the subscriber and Publisher read 655 KB
and 451 KB, respectively. The broker, subscriber and publisher read 13.2 MB, 750 KB and
307 KB from the disk, respectively, for dilithium5.

The amount written to the disk was consistent according to the security level. For
dilithium2 and dilithium3, the broker, subscriber and publisher wrote 57.3 KB, 45.1 KB and
45.1 KB to the disk, respectively. For dilithium5, the broker, subscriber and publisher wrote
65.5 KB, 53.2 KB and 53.2 KB to the disk, respectively. There was no change seen at all with
the reduction of available memory to 1 GB.

3.1.4. Time Taken

The time taken that is recorded is the addition of the user and sys times. This gives
the CPU time taken to send a publish message to the broker. As can be seen in Figure 7
it took longer to send a message as the security level increased. It also took longer to
send a publish message when there was only 1 GB of available memory rather than 8 GB
of memory.

Figure 7. Time taken to send an MQTT publish message.

3.1.5. Network Communication

The amount of data sent over the network was not seen to change as the amount of
available memory was reduced. Network output was consistently more for the broker at all
security levels and with reduced memory, whereas network input was greater than output
for the subscriber and publisher. It could also be seen that network input was relatively
similar for all device types, from around 20 to 35 KB.

3.2. Results for KEM Authentication

Experiments were carried out 100 times, and the results seen below are the average values.

3.2.1. Storage Used

The size of public and secret keys that must be stored on the client were considered
in order to give a general indication of the necessary storage. The storage on the broker
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side was not deemed significant. The broker will usually be a machine that is relatively
powerful and has ample storage for a few kilobytes of public and secret keys. The signature-
based scheme was determined to require 11 KB of memory compared to 17 KB for the
KEM-based scheme.

3.2.2. Bandwidth Used

To measure the memory bandwidth required by the signature-based and KEM-based
MQTT protocols, the number and size of packets sent back and forth were monitored by
writing the name and size of each packet sent and received on the client to a log file. The
number of packets is the key factor when comparing bandwidth required by protocols,
as more packets means more overhead at each lower layer in the network architecture.
However, one protocol may have an advantage if the size of its packets is smaller. As is
evident in Figures 2 and 3, both signature-based and KEM-based MQTT protocols send
the same number of packets. Since both protocols have a similar number of packets, this
means they will require similar amounts of bandwidth. Therefore, any advantage seen will
be due to the packet size.

As shown in Figure 8, the KEM-based MQTT protocol has the largest total number
of bytes to send at 13,524 B, compared to 7,732 B in the signature-based MQTT protocol.
This is due to the shared secret sse being sent both ways in the handshake of the KEM-
based protocol.

Figure 8. Total bytes sent during connection for KEM-based and signature-based protocols.

The KEM-based protocol also has the largest individual packet to send, at 3619 B for the
BrokerHello message, compared to 2883 B for the BrokerHello message in the signature-
based protocol. Given that the number of packets sent is equal, the bandwidth advantage
of the signature-based version is minimal, with only a difference of approximately 1.5 KB.

3.2.3. Time Taken

To measure connection speed, the time elapsed for complete authentication was
recorded for 100 handshakes in each protocol. The Python time library was used to write
the difference between the clock time immediately before initiating the handshake and
immediately after it was successfully completed. Results can be seen in Figure 9.
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Figure 9. Average authentication time in KEM-based and signature-based protocols.

On average, the unauthenticated handshake took 0.4 ms, the signature-based authen-
ticated handshake took 35 ms, and the KEM-based authenticated handshake took 10 ms.
The KEM-based protocol was 71% faster than the signature-based protocol, but was still
22 times slower than the original MQTT protocol (i.e., without authentication).

4. Materials and Methods

Two sets of experiments were run: first, testing the use of digital signatures to au-
thenticate MQTT, then testing the use of KEM to authenticate MQTT. The CRYSTALS
library of postquantum cryptographic functions was chosen to be used for our experiments
as CRYSTALS-Kyber is the only KEM selected to be standardized so far by NIST, and
CRYSTALS-Dilithium has been found to be more efficient to run for all steps of the digital
signature than the alternatives FALCON and SPHINCS+.

Our experiments are intended to give usage information about a generic MQTT interaction.

4.1. Implementation of MQTT Authenticated with Digital Signatures

Experiments were run on Docker (https://www.docker.com/ (accessed on 2 February
2023)), a container management software. Results were gathered using Docker’s Research
Usage extension (https://www.docker.com/blog/how-to-monitor-container-memory-
and-cpu-usage-in-docker-desktop/ (accessed on 2 February 2023)). The Docker environ-
ment has 4 CPU Cores and 8 GB of memory allocated for its use. Docker was run on an
Apple Computer with a 2.9 GHz Quad-Core Intel Core i7 with 16 GB RAM.

The interaction setup on Docker closely matches what is seen in Figure 1, with the
difference that TLS is used to secure the MQTT connection; this is currently the only
option for secure MQTT. There is a broker (matching the gateway), a publisher (matching
the temperature sensor) and a subscriber (matching the mobile device). The network is
set up and the publisher publishes 60 updates to the broker. The broker then forwards
on these updates to the subscriber. The CPU, memory and disk usages, time taken and
data sent over the network are monitored. This network was set up three times with the
CRYSTALS-Dilithium digital signature scheme at security levels 2, 3 and 5 (referred to
as dilithium2, dilithium3 and dilithium5, respectively, for brevity). This experiment was

https://www.docker.com/
https://www.docker.com/blog/how-to-monitor-container-memory-and-cpu-usage-in-docker-desktop/
https://www.docker.com/blog/how-to-monitor-container-memory-and-cpu-usage-in-docker-desktop/
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repeated with limited Docker resources (memory limited to 1 GB, 1 CPU core, and swap
memory limited to 512 MB) to view what effect the constraint would have on the function
of the MQTT network.

The Docker image used for the experiments can be found at the demos fork of open-
quantum-safe (https://github.com/anhu/oqs-demos/tree/wolfmqtt_compat/mosquitto
(accessed on 2 February 2023)) where it builds Mosquitto (https://mosquitto.org/ (accessed
on 2 February 2023)), an open source MQTT broker. Docker was chosen because our
focus is on the postquantum scheme and its incorporation in MQTT, rather than on the
considerations required when there are issues with the network connection.

We decided to use CRYSTALS-Dilithium as the digital signature algorithm of choice
because NIST has concluded that CRYSTALS-Dilithium is well suited for most applica-
tions [24]. Additionally, Falcon, another to-be-standardized postquantum digital signature
algorithm, uses floating point arithmetic, which is undesirable for IoT devices due to the
greater computational costs required. Indeed, floating point arithmetic on more constrained
devices is implemented in software, resulting in significantly slower calculations. There is
also potential for side-channel attacks on Falcon as a result [25].

4.2. Implementation of MQTT Authenticated with KEM

We created skeleton implementations of MQTT with signature-based and KEM-based
authentication using Python. Python implementations of postquantum algorithms were
imported from the pqcrypto library (https://pypi.org/project/pqcrypto/ (accessed on
2 February 2023)). The skeleton implementations include separate packages for both the
client and the broker. The client can act as both a publisher and subscriber. Only the part of
the MQTT protocol required to demonstrate the postquantum authentication process was
implemented, namely the handshake process. The implemented parts of the MQTT protocol
were programmed exactly as per the documentation of MQTT, except the additional options,
such as higher quality of service. The choice to use a minimal implementation of MQTT was
made to focus on the objective of determining the impact of implementing postquantum
authentication in MQTT. We used Kyber-512 (security level 1) and dilithium2 (security
level 2) for our experiments. We used two virtual machines for the client and broker.
These machines both had 1 GB of RAM and 8 GB of storage. The code used can be found
in this GitHub repository (https://github.com/raven-townsend-nz/quantum-safe-mqtt
(accessed on 9 May 2023)). As this implementation is similar to a proof of concept and
not a full implementation, security considerations such as side-channel attacks, which are
implementation specific, have not been considered.

5. Discussion

Some slight increases in CPU usage could be seen as available memory decreases
when using digital signatures for authentication. However, the increases were too slight
and inconsistent to result in any noticeable impact in CPU usage. The CPU usage for the
broker was consistently greater than that for the publisher and subscriber. However, the
broker can usually be expected to be the less constrained device (i.e., a gateway) compared
to the publisher and subscriber.

There was an increase in memory usage for the broker when running dilithium3 and
dilithium5 when there was only 1 GB of available memory. This might be linked to the
need to read from the disk, something that did not occur when there were 8 GB of available
memory. There was also a large amount of disk usage seen for the Broker when only 1 GB
of memory was available.

The value written to the disk is likely consistent, as the size of the generated keys and
certificates would be practically the same for all instances of a given security level. There
was no change with the reduced available memory, which is as expected, since the size of
the keys and certificates should be consistent.

https://github.com/anhu/oqs-demos/tree/wolfmqtt_compat/mosquitto
https://mosquitto.org/
https://pypi.org/project/pqcrypto/
https://github.com/raven-townsend-nz/quantum-safe-mqtt
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Network output was more for the broker, which is likely because the broker is the
gateway and responsible for communicating with both the subscriber and publisher, whilst
the subscriber and publisher only communicate with the broker.

The time increase observed when the available memory is reduced is in the order of
microseconds. This may be cause for concern when considering the use of authentication in
MQTT for devices that are even more constrained, with memory in the order of megabytes
or even kilobytes, as the increase in time could grow further.

Signature-based authentication in MQTT has a slight advantage in terms of storage,
according to the metric we have considered, compared to KEM-based authentication.
However, cases where a device can handle 11 KB but not 17 KB are unlikely, so this
advantage is minimal.

Signature-based authentication in MQTT has a slight advantage in terms of bandwidth
compared to KEM-based authentication. However, the bandwidth results are both in the
same order of magnitude for both protocols, and it is therefore unlikely that there will be a
case where the signature-based version is acceptable but the KEM-based one is not.

The KEM-based MQTT version has a significant advantage in connection speed. It
was, on average, 25 ms faster than the signature-based version, which is a difference of 71%.
In [23], a 90% reduction in CPU cycles was seen, which aligns with our results. A full 90%
reduction was not expected, as the connection time we measured included the overhead of
packet transmission, as well as the actual CPU processing time. This speed increase using
KEM would allow subscribers and publishers to connect to and authenticate the broker
relatively quickly compared to a traditional signature-based authentication approach.

Overall, KEM-based authentication has slight disadvantages in terms of bandwidth.
However, it has a significant advantage in terms of connection speed. This suggests that in
an IoT context, the KEM-based version may be the most suitable, particularly as one of the
key focuses of MQTT is to be a fast communication protocol in IoT.

The extra costs of memory bandwidth and connection speed from adding authentica-
tion are low enough to be acceptable in most situations, particularly as CPUs become more
powerful and efficient in IoT. However, there may be cases where these additional resources
are not acceptable, especially when the IoT devices are quite resource-constrained.

6. Related Work

There have been several proposals for adding security to the MQTT scheme. It was
suggested in [26] that implementing MQTT over TLS may be practical in most cases, as the
increased capacity of IoT devices will make the additional overhead no longer a concern.
In [27,28], secure versions of the MQTT protocol were designed using attribute-based
encryption (ABE) [29]. In [27], the authors particularly focused on efficiency, meaning the
computational power required for their proposal was less than in [28]. In [30], security
architectures and procedures were proposed to provide authentication, integrity and
confidentiality for MQTT-SN, a version of MQTT designed to run over the User Datagram
Protocol (UDP). Similarly, in [31], the authors tried to address the issue of increased
bandwidth by proposing to secure MQTT-SN over UDP rather than standard MQTT over
TCP. UDP has smaller packet headers than TCP, so implementing security over MQTT-SN
results in smaller packet sizes than implementing security on MQTT. However, in both
papers, the issue of postquantum attacks was not addressed, as the authors suggested
classical cryptography algorithms such as elliptic durve Diffie–Hellman [32], DTLS or
LBlock, a lightweight block cipher [33]. In both papers, the authors concluded that the
proposed architectures could provide these security outcomes with reasonable sacrifices
to performance.

Postquantum capability has been added to wolfMQTT, a product of wolfSSL. wolfSSL
is an open-source secure sockets layer (SSL) option that is lightweight and popular for use by
IoT devices (https://www.wolfssl.com/about/ (accessed on 2 February 2023)). wolfMQTT
now provides support for CRYSTALS-Kyber and Falcon at security level 1 (https://www.
wolfssl.com/wolfmqtt-post-quantum-kyber-falcon/ (accessed on 2 February 2023)).

https://www.wolfssl.com/about/
https://www.wolfssl.com/wolfmqtt-post-quantum-kyber-falcon/
https://www.wolfssl.com/wolfmqtt-post-quantum-kyber-falcon/
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In [34], postquantum MQTT is implemented in an IoT environment and compared with
classic algorithms. It is unclear at which security level the authors used these algorithms
in, but they found that many postquantum cryptographic algorithms had a manageable
increase in latency and overhead. In [35], an IoT network is implemented with MQTT, but
only KEMs are tested, so this work does not include authentication. The authors found that
postquantum cryptosystems performed similarly to their elliptic curve counterparts.

All the solutions described above provide security through tested methods, meaning
that they do not have any known vulnerabilities. However, they have two key problems.
Firstly, they increase the computational power and bandwidth required by IoT devices to
run the secured protocol. Secondly, MQTT with classic cryptosystems will not be secure
against quantum computer attacks once quantum computers become widely available.
Also, the work that has been carried out for postquantum MQTT has been limited and has
not necessarily taken into account authentication.

Other Postquantum Testing

Work has been more generally conducted on different lattice-based problems. In [36],
they find that the ring-learning with errors (R-LWE) problem is the most practical and
efficient. They then go on to propose R-BinLWE, where a binary distribution is used. They
propose a novel multiplication technique that reduces area usage by 57.8% and power
usage by 48.42% on the device. In [37] they implement a R-LWE encryption scheme on the
ARM Cortex-M4F with high speed and low memory usage. They achieved this through
having fast discrete Gaussian sampling and efficient polynomial multiplication. They found
their implementation to be faster than ECC-based encryption schemes by one order of
magnitude at minimum and about seven times faster than other R-LWE implementations.
In [38], they propose an efficient R-LWE implementation on the ARM NEON and MSP430
architecture. They optimize the NTT-based polynomial multiplication and achieve an
implementation that was faster than all other R-LWE implementations at the time. They
also compared their implementation with classic cryptography schemes (RSA and ECC)
and found that their optimization was also faster than these cryptoschemes. In [39] they
propose an optimized implementation of Kyber and Dilithium for the Cortex-M4. The
optimizations in the arithmetic resulted in increases of around 5% for Dilithium and just
over 15% for Kyber.

One main area of concern for security when implementing cryptographic protocols is
ensuring the security is not compromised by side channel attacks. This is where information
such as duration, power or faults that occur can be used to undermine the security provided
by the protocol. It is important to make sure that implementations are taking this vulnera-
bility into account. In [40] they propose an optimized implementation of the supersingular
isogeny key encapsulation mechanism (SIKE) for an ARM Cortex-M4. They measured the
energy consumption, and also found whilst benchmarking their implementation that it
was around 20% faster than previous implementations. It was found for the Cortex-M4
implementation of SIKE based on the reference implementation that a full recovery of
keys was possible with a side-channel attack [41]. This brings to the fore the importance
of implementation-specific security testing. In [42], they propose an architecture for fault
detection that will provide protection against fault analysis vulnerabilities among R-LWE
lattice-based key generation and encryption. This implementation was benchmarked on a
field-programmable gate array (FPGA) and provided a high level of error coverage with a
relatively low overhead.

In [43], they discuss the use of Curve448 to provide hybrid postquantum security. This
means that the algorithm can provide both classical and postquantum cryptography. This
provides a greater level of assurance, as it provides protection against quantum attacks,
but if vulnerabilities are found in the postquantum protocol—which, given the recency
of most postquantum protocols, is a notable concern for many—the classic cryptographic
scheme is also there. They propose the first implementation of Curve448 on a 32-bit ARM
Cortex-M4. They provide assurance against a timing attack with their regular and constant
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implementation. In [44], they outline a design for Curve448 and Ed448 on Cortex-M4.
These are curves that are expected to be able to provide post-quantum security. This design
of the underlying operations has resulted in a significantly faster implementation for the
key exchange and digital signature for Curve448 and Ed448, respectively.

In [45], they outline a new approach to implement a cryptographic accelerator on a
FPGA for an Ed25519-based digital signature scheme. This is a hybrid digital signature
scheme, and through its optimization, it resulted in an improved efficiency of around 84%.

A particular type of side-channel attack that is often a consideration for the IoT context
is fault attacks. This is where errors occur during the running of the algorithm, causing
vulnerabilities. In [46], they assess error resiliency and test on many platforms. In [47], they
propose a scheme on an FPGA that provides high error coverage.

Another area for vulnerability is when the tools for side-channel attacks are used in
conjunction. For instance, differential power analysis and differential fault analysis can be
used together, and this results in the countermeasures in place not being effective. Some
work has been conducted on this, such as in [48], where they suggest that an evolutionary
cipher would remain secure against this type of attack.

These papers highlight the importance of optimizing implementations for a given
platform. They also often do not consider the medium of communication, e.g., MQTT, and
the effect this will have on the efficiency of the implementation. They also bring to the
fore the importance of ensuring the implementations are assessed according to the security
they provide against all types of attacks, including side-channel attacks, which can often be
overlooked. This will need to be considered when further work is conducted to create a
proper implementation of the KEM-authenticated MQTT protocol.

7. Conclusions and Future Work

In this paper, we have outlined the importance of using authentication with MQTT for
IoT devices, especially in a postquantum world.

We have seen, throughout our work, that adding postquantum signature-based au-
thentication to MQTT is likely to have acceptable overhead in the order of kilobytes, except
memory usage in cases where the device is constrained. Postquantum KEM-based au-
thentication for MQTT similarly has acceptable overhead, with the advantage of a much
faster connection speed, making it particularly useful in contexts where swift and secure
communication is essential.

Next steps would be to implement a full version of the KEM-based authentication in
MQTT with one of the existing MQTT brokers, e.g., Mosquitto or wolfMQTT. The protocol
could then be run on IoT devices to determine the overhead of authentication in practice.
This could be carried out with the KEM algorithm CRYSTALS-Kyber and compared with
postquantum digital signature algorithms such as CRYSTALS-Dilithium and Falcon. It
is important that this implementation be assessed as to the security it provides against
side-channel attacks such as timing, fault and power attacks.

Based on our findings, we believe that postquantum authentication is an important
part of MQTT in IoT. We also believe that KEMs are a valuable alternative to digital
signatures to provide authentication, because they can provide a more efficient interaction
between clients and brokers.
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Abbreviations
The following abbreviations are used in this manuscript:
ABE Attribute-Based Encryption
AES Advanced Encryption Standard
ARM Advanced RISC Machines
CPU Central Processing Unit
CRYSTALS Cryptographic Suite for Algebraic Lattices
DSA Digital Signature Algorithm
DTLS Datagram Transport Layer Security
ECC Elliptic Curve Cryptogrophy
FPGA Field-Programmable Gate Array
HMAC Hash Message Authenticated Code
IoT Internet of Things
IPSec Internet Protocol Security
KEM Key Encapsulation Mechanism
KEMTLS Key Encapsulation Mechanism authenticated Transport Layer Security.
MQTT Message Queue Telemetry Transport
MQTT-SN Message Queue Telemetry Transport for Sensor Networks
NIST National Institute of Standards and Technology
PKI Public Key Infrastructure
R-LWE Ring-Learning With Errors
RSA Rivest–Shamir–Adleman
SHA Secure Hash Algorithm
SIKE Supersingular Isogeny Key Encapsulation mechanism
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
VPN Virtual Private Network
Notation Used in Figures
MQTT Handshake with Digital Signature
cts Encapsulated Premaster Secret
pks Public Key for Client
pms Premaster Secret
rb Random Nonce Sent by Broker
rc Random Nonce Sent by Client
sks Secret Key
MQTT Handshake with KEM
cts Encapsulated Premaster Secret
pke Ephemeral Public Key
rb Random Nonce Sent by Broker
rc Random Nonce Sent by Client
ske Ephemeral Secret Key
sks Secret Key
sse Ephemeral Shared Secret
sss Static Shared Secret
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