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Abstract: The control flow of a program represents valuable and sensitive information; in embedded
systems, this information can take on even greater value as the resources, control flow, and execution
of the system have more constraints and functional implications than modern desktop environments.
Early works have demonstrated the possibility of recovering such control flow through power-
based side-channel attacks in tightly constrained environments; however, they relied on meaningful
differences in computational states or data dependency to distinguish between states in a state
machine. This work applies more advanced machine learning techniques to state machines which
perform identical operations in all branches of control flow. Complete control flow is recovered
with 99% accuracy even in situations where 97% of work is outside of the control flow structures.
This work demonstrates the efficacy of these approaches for recovering control flow information;
continues developing available knowledge about power-based attacks on program control flow;
and examines the applicability of multiple standard machine learning models to the problem of
classification over power-based side-channel information.

Keywords: side-channel attack; machine learning; power analysis; cybersecurity; control flow;
dynamic program analysis

1. Introduction

A finite-state machine (FSM) is a computation model commonly used within the
embedded system space; program control flow in embedded devices is often handled
by an FSM. Smaller state machines, those with fewer states and transitions, can exist in
limited purpose devices, such as vending machines, or more complex devices such as
telecommunications devices. Such devices are often the target of Side-Channel Analysis
(SCA), which aims to recover information from an embedded device. Power-based side-
channel data are most commonly measured directly from the device via an instrumented
VCC line. While this method requires direct access to the victim device, it is the most
common method for gathering data for SCA. Other common side-channels utilized in SCA
include system byproducts such as electromagnetic radiation, sound, and heat.

With a constant increase in consumer usage of Internet of Things (IoT) devices, low-
power embedded systems are constantly being put into operation. One popular example
of such a system making use of an FSM are smart locks. Often, these devices allow an
end-user to configure multiple access codes and enable logging when a code is used.
Access may be controlled remotely, allowing for on-the-fly adjustments to user access
permissions. With the growing popularity of smart locks and similar smart devices, if an
attacker were able to reverse-engineer the control flow inherent to the device, they may be
able to influence behavior within the FSM. One informational prerequisite to building out
such an attack would likely include identifying and characterizing the FSM responsible for
whether or not the lock is engaged. Further, being able to exfiltrate sensitive data, such as
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the secret key that determines the lock’s activation state, could allow an attacker to bypass
the smart lock, granting them unimpeded access to the end-user’s home.

This work extends the previous work of Carper et al. [1], which performed Differential
Power Analysis (DPA) on data collected through the use of the ChipWhisperer hardware
platform [2]. Specifically, the ChipWhisperer Nano was used to gather power-trace data.
An FSM that consisted of two states conducting identical operations, in conjunction with an
oracle-based input guiding program control flow, was utilized for data collection. The re-
sulting power-traces were used to train multiple machine learning classification algorithms.
These trained algorithms were then used to differentiate between state transitions occurring
during code execution on the microcontroller. Further, recovery was successful when
applied to 256 distinct classes of state transitions, resulting in the identification of the
underlying process control flow. This work deviates from the prior foundational work
by exploring additional machine learning backed solutions to the problem of control flow
recovery, as well as exploring homogeneous operations within an individual state’s com-
putations to experimentally determine what degree of divergence in state behavior is
necessary to ensure program control flow recovery.

Contributions of this work seek to answer three research questions. First, is different
behavior required in each state of an embedded state machine in order to completely
recover the transitions? Second, to what degree does the proportion of time spent in control
flow and in a particular state of the FSM impact the recoverability of the state transition
ordering? Finally, how effective are “off-the-shelf,” meaning algorithms with no manual
configuration, machine learning models when applied to the task of recovering control
flow information?

This work is organized as follows. Section 2 motivates the side-channel analysis space
and establishes relevant background information. Section 3 outlines the data collection and
classification process undertaken in this work. Section 4 outlines the classification accuracy
and Section 5 examines the application of results to the research questions. Section 6 con-
cludes this work with an acknowledgment of limitations binding this work and commentary
on future research directions required to better understand the control flow recovery space
using power-based side-channels.

2. Related Works

The history of power-based side-channel attacks has had a number of meaningful
advances coming in the last few decades. Despite the coming exploration into the efficacy
of such power-based attacks, recovery of higher-order, control-level information such as
the execution path through a state machine was under-explored until very recently. Thus,
this section presents a brief overview of relevant findings in power-based side-channels,
along with its applications and crossover with the field of Automated Machine Learning
(AutoML), and characterizes the relevant previous work to motivate the experiments
conducted herein. AutoML, the practice of automatically searching machine learning
pipelines for effective ML configurations, has begun to be applied to other side-channel
problems such as cryptographic key recovery with high success, motivating attempts to
apply AutoML findings to the problem of program control flow recovery.

2.1. SCA Backgrounds

Common side-channel attacks involve attacks on the power usage of a device. The
most common of these are simple power analysis (SPA) and differential power analysis
(DPA) [3]. These methods of side-channel analysis inspired research in device-level SCA;
they have even been referred to as the “bedrock” for SCA research [4]. The direct analysis
of power usage by gathering power traces allows for a user to be able to understand
the implementations of cryptographic operations of a device, and it can allow for the
extraction of a secret key. SPA and DPA are both considered passive attacks as they
entail only observing various properties of the device; however, active attacks are another
avenue explored in the literature. Fault injection attacks, a breadth of attacks which span
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voltage glitching to temperature extremes, are another frequently explored avenue for
SCA [5,6]. Other powerful techniques exist, such as combining different passive and
active attack strategies. For example, a novel analysis tool Differential Behavioral Analysis
(DBA) is a combination of a Safe Error Attack (SEA) and DPA [7]. DBA can be defended
against using traditional bit-masking strategies. This work makes use of passive attacks
exclusively, and specifically employs simple power analysis as a means to recover control
flow information.

One of the most common applications of side-channel attacks is in the subversion of
cryptographic systems. These attacks on crypto-schema employ both active and passive
attacks. The injection of faults has been shown to be able to effectively recover a secret
AES key, and the power observation making use of DPA similarly is able to recover a
secret AES key [8,9]. Many of the early works in SCA demonstrated various ways to
recover secret cryptographic information, either keys or text, to some degree; however,
with the advent of post-quantum cryptography, many of the crypto-systems currently
employed will become insecure and obsolete [10]. For more discussion of the topic, we
refer the curious reader to one of the surveys on the state-of-the-art in the field [11,12]. The
realm of side-channels is evolving in cooperation with these searches for quantum-resistant
algorithms, and early works have demonstrated strong recovery attacks for cryptographic
secrets in post-quantum, lattice-based cryptographic systems [13].

The rising prevalence of SCA in cryptographically sensitive applications and its impact
to the security of a device led to development of different countermeasures against SCA.
Borowczak and Vemuri developed a method to create side-channel resistant finite-state
machines (S*FSMs) [14]. This introduced an algorithm to transform FSMs to side-channel
resistant FSMs. The method of Random Process Interrupts (RPIs) allows for some of the
operations in cryptographic devices to be less vulnerable to timing attacks by implementing
strategic delays in execution [15]. In addition to the RPI method, two other popular
methods of implementing countermeasures against side-channel power include masking
and hiding [16]. Masking involves generating a random “mask” value that will attempt
to conceal any intermediate value during cryptographic operations. Masking removes
correlations between the gathered traces and the cryptographic secret information. Hiding
involves trying to make traces appear to be random. This randomness can appear by
adding noise to the power or implementing random delays or desynchronization. As
a result, the gathered traces are harder to extract secret information. Therefore, many
countermeasures against SCA have been devised, but DPA methods would still find
secure information even with countermeasures in place. In the same work that introduced
RPIs, the countermeasure is still shown to be vulnerable to DPA [15]. Thus, even with
countermeasures in place, improvements of applications of SCA can circumvent these
protections and secret information can still be extracted.

Instead of collecting and analyzing arbitrary power traces to determine the leakage
of information Test Vector Leakage Assessment (TVLA) can be used [17]. TVLA involves
using statistical tests to determine if there is significant evidence to determine if the device
had any leakage. Goodwill et al. utilized the Welch’s t-test to determine if there is a
significant difference between two groups. The hypothesis tested whether the gathered
traces are truly random or if there is leakage present within traces. While this methodology
can be beneficial and has been used recently to show side-channel vulnerabilities in some
of the NIST lightweight cryptography round 2 candidate s-boxes [18,19], TVLA can have
issues demonstrated by relatively high rates of false negatives or false positives, even when
using different tests such as the Pearson χ2 test [20].

Signal Processing also can be used for SCA both as an attack vector and for defensive
countermeasures, as mentioned by Le et al. [21]. In addition, Le et al. also demonstrates
how three different signal processing techniques could be applied to SCA, which would
allow for more ways to implement it. The work also defends using signal processing to
mitigate SCA. There is also a precedent for AutoML being utilized for signal processing;
an example uses the AutoML procedure of acquiring correct hyperparameters for deep
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learning to classify Electroencephalography (EEG) signals [22]. The work also claims that
EEG signal classification is complex enough that machine learning techniques such as deep
learning are “appropriate to find the best solutions”. The hyperparameter tuning and
deep learning from AutoML were stated to have less overfitting, and thus, yielded more
optimized models for classifying the EEG signals.

Time-series forecasting, although prominently implemented with traditional machine
learning methods, has significantly less implementation within AutoML toolchains, being
cited as “still in the development stage” [23]. It is demonstrated in their review article
that there are gaps in traditional time-series forecasting with machine learning in terms
of reapplying AutoML to time-series methods that used traditional machine learning [23].
The article showcases that there are research avenues, such as deep learning or neural
architecture search (NAS), to implement AutoML for time-series analysis.

AutoML has been implemented in analyzing time-series data, as experimented pre-
viously in comparison to rigorous, hand-crafted machine learning models [24]. In this
paper, its authors conclude that in short-term models for time-series predictions, AutoML
does not outperform traditional methods of using Machine Learning by manually tuning
hyperparameters and preprocessing data. However, suggestions for time-series analysis
with AutoML are: validation on the selection strategy with statistical significance tests;
adding permutation strategies; and considering the cost of using AutoML with the benefit
of its implementation. Additional implementation of AutoML utilize the process of NAS to
efficiently search for an effective neural network architecture for utilization on time-series
data [25]. It mentions that AutoML significantly improved the performance of searching
a data-augmented time-series neural network architecture. The significance of NAS’s
performance boost was such that it outperformed other “best” statistical models. In terms
of future possible improvements, the authors mention that further performance enhance-
ments on the data augmentation could come from using other deep learning models such
as GRU-AE and ConvLSTM.

One of the implementations of machine learning for side-channel analysis is named
Deep Learning-based Side-Channel Analysis (DL-SCA) [26]. DL-SCA is a new area of
research, which is signified by a large increase of papers on this topic. An advantage of
DL-SCA includes more powerful analysis by taking up to a factor of five times less data
to break through targets with countermeasures as compared to template attacks. DL-SCA
also requires little to no effort when it comes to preprocessing and preparing the attack
of the side-channel measurements. Related to this deep learning AutoML approach of
side-channel analysis is the Deep Learning Leakage Assessment (DL-LA), a method of
verifying that a trace has significant leakage information [27]. DL-LA implements AutoML
only for the analysis aspect of SCA. An open challenge to using DL-LA is that there are no
clear advantages to DL-LA for the significance of side-channel traces [26]. This challenge
demonstrates that if a significant advantage to leakage assessment is gained by utilizing
DL-LA, then the DL-SCA techniques can also be used with DL-LA.

The increase in popularity of SCA in security has led to developments in both attack
vectors and defensive countermeasures. Starting from DPA [3], to implementing AutoML
methods of deep learning with TVLA [27], the security aspect of SCA from a defensive
and offensive standpoint have increased in scope from simple power analysis to imple-
mentations of machine learning, demonstrating a considerable growth of the research area.
The idea of utilizing AutoML for DPA is a growing research area that has openings for
finding research in time-series data as well as with signal processing. AutoML techniques
are therefore well suited to further application in time-series related tasks for state of the
art DPA and SCA.

2.2. Foundational Experiments

This experiment is conceptualized as an extension to prior control flow recovery
experiments [1]. Power-based side-channel attacks were used to extract information by
using properties from a FSM. In this foundational work, the original experiment made use
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of a single classifier, the k-nearest neighbors (KNN) classifier with heterogeneous states
for the FSM. KNN was able to achieve 81% or higher accuracy of transition classification.
Accuracy would increase as the number of classes decreased. As a result, FSM components
that handle sensitive information could be vulnerable to power-based side-channel attacks,
even with only a single classifier being used to analyze the state machine.

The future work section in this foundational work [1] mentions how an avenue of
research could be with how modifying the input to the states could be explored. In
particular, the modifications to the states to also include homogeneous states as well as
implementing tests using more than a single classifier were used as motivation for the
extensions and further experimentation presented herein.

3. Methods

Analyzing the ability for program control flow to be recovered via power-based SCA
required the creation and capture of a dataset encompassing numerous execution paths
through a program while being able to associate the captured power traces with a training
label for later machine-learning backed analysis of transition order. We explore both aspects
of these experiments in two methodology sub-sections. The first details the adaptation
of data collection from prior works [1] for the purposes of this experiment. The second
details the training and evaluation of various machine learning models for the recovery of
control flow information from the gathered trace data. Additionally, in the absence of a
standard SCA benchmarking suite, and in the interests of reproducability, the entire code
base is made available through a public GitLab repository [28]. Code made available in
this manner is licensed under the GPLv3.

3.1. Data Generation

Data generation made use of the ChipWhisperer [2] family of devices. These are
purpose-built microcontrollers for SCA data collection which contain all of the processing
on-board for the collection of power traces. The ChipWhisperer Nano (CW Nano) is one
such device backed by an STM32F0 microcontroller.

Each instance of the CW Nano device was programmed with a minimal C program
which emulated a two-state state machine. See Figure 1 for a depiction of the FSM. The de-
vice was fed a transition sequence from a host device which communicated with the CW
Nano before and after experimentation to send the oracle transition sequence and retrieve
the power trace captured onboard the device during execution. The state machine transi-
tioned through eight states in accordance with each bit of the oracle: a bit of 0 at position i
of the oracle indicates that the i-th state was state 1 while a 1 indicates the state was state
2. Both states performed integer addition a specific number of times where this number
was determined during compilation and will be referred to as the value w for the firmware.
A firmware where w = 1 indicates that the firmware performed a single addition in each
state while a firmware with w = 16 indicates that the states of that firmware performed the
addition a total of 16 times.

S1 S2

1

0

0 1

Figure 1. A diagram of the state machine executed by the target board. Transitions represent the next
value in the oracle text. For instance, if the FSM was in state S1 and the next digit was a “1”, then the
state machine would transition to state S2 and execute the code associated with that state. If the FSM
was in state S1 and the next digit was a “0”, then the state would transition to state S1 and repeat the
previously executed code.

Each CW Nano was paired with a Lenovo ThinkCentre running Ubuntu LTS 22.10.
All collection used Python v3.10.6 and the ChipWhisperer library version 5.7.0 distributed
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by PyPi. The CW Nano device was programmed with firmware version 5.1.0. All version
numbers presented were the latest releases at the time of data collection. The code for
handling the state transitions is presented in Figure 2 and an example of the state code for
firmware (w = 2) is presented in Figure 3.

State Transition Code

for (uint8_t i = 0; i < 8; i++ ) {
uint8_t state = transitions & 0x1;
transitions >>= 1;
if (state == 0 ) {

worker(one_zero, zero_one, dest);
} else {

worker(one_zero, zero_one, dest);
}

}

Figure 2. The C code for turning an oracle byte previously received by the CWNano into a series of
state transitions on the device. The values one_zero, zero_one, and dest are discussed in Section 3.1.

State Code

void worker(int* x, int* y, int* total) {
*total = *x + *y;
*total = *x + *y;

}

Figure 3. The C code executed in the body of the state-machine. Figure 2 invokes this function with
specially crafted arguments as discussed in Section 3.1. The number of times *total = *x + *y; is
repeated is identified as w, so the code snippet above has a w value of 2.

The inputs to the worker function of each state were specially crafted to ensure an
equal hamming weight of all inputs to prevent the inference of the state transitions from the
contents of the state by the machine learning models later trained. For further discussion
of experiments which utilize differences in state behavior to enable related analysis, see [1].
The value of one_zero is 16 ones followed by 16 zeros, or 4,294,901,760 (base ten). The value
of zero_one was the opposite, 16 zeros followed by 16 ones, or 65,535 (base ten). Thus,
the total hamming weight of operands utilized across the body of the worker function is
constant between states.

All potential oracle values, representing all 256 potential permutations of state transi-
tions, were executed 100 times. Firmware was generated for all w ∈ 1, 2, 4, 8, 16, 32, 64, 128
and traces were captured across all oracles and 100 repeated executions and stored for
later analysis. Labeling incorporated both the number of operations executed within each
state of the firmware and the oracle used to generate the trace as well as the order in
the 100 samples to uniquely identify each trace. The resulting data was 5.8 GB for each
firmware, resulting in a total data set measuring approximately 40 GB in size.

3.2. Machine Learning Classification

For the task of recovering control flow information, we reduce the task to one of multi-
class classification; this makes it a suitable task for applied machine learning classifiers.
Each trace is labeled with the oracle byte used to dictate the state transitions, thus a
proper classification would represent a complete recovery of the state transitions executed
by the CW Nano device. As an example, consider a trace labeled with the oracle byte
of 110011002 = 20410. The power-trace presented to the ML model would either be
correctly classified as class 204, indicating a complete recovery of the control flow of
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the program, or be incorrectly classified into another class, representing an inability to
completely recovery the control flow of the application.

Classification was completed by a number of classifiers provided by the Scikit-learn [29]
(SKL) library (version 0.24.2 as packaged by conda forge). The selected classifiers had
minimal configuration beyond the defaults provided by SKL, so further hyperparameter
optimization may find ways to improve the models created by the process described herein.

Each training process was repeated across five folds of cross validation to address
concerns of over-fitting. Eighty percent of the available data was used for training the
classifier while another 20% was used for testing the complete classifier. Unless otherwise
specified, all results presented in the rest of this work refer to metrics obtained by evaluating
the testing dataset. The process was repeated in its entirety for each distinct firmware.

Data were taken directly from the dataset previously generated and split into cross-
validation folds using a stratified k-fold method provided by SKL. No preprocessing was
performed on the data. Four classifiers were then fit to the training data: a random forest
classifier, a decision tree classifier, a KNN classifier, and a logistic regression classifier.
The only configuration provided was to the logistic regression classifier; both a solver and
maximum number of iterations were provided since without them, the process of fitting
data caused convergence failure errors. Convergence failure errors emerged due to the
fact that the provided number of iterations was insufficient to converge to a reasonable
solution and the solver was needed to match the types of data generated by the CW Nano.
Execution of these classification tasks was aided through parallel computation by placing
the entire workflow for each distinct firmware on separate threads (i.e., w = 1 on one
thread, w = 2 on another, etc.).

4. Results

For each firmware, with the exception of firmware where a single execution is per-
formed (w = 1), classification accuracy values approaching 100% are observed for the
random forest classifiers. Accuracy values of 98%+ are seen for decision trees and logistic
regression. The KNN classifier is the outlier with an observed lower bound on accuracy
values that was slightly greater than 80%.

Firmware with only a single execution of the addition operation (w = 1) was the
exception to these metrics of accuracy. The resulting skew in overall performance is
illustrated in Figure 4 while the exact performance of all four classifiers on each of the folds
of testing is illustrated in Figure 5. The highest observed accuracy for this firmware (w = 1)
was associated with a single fold of validation and the KNN classifier; it was only able to
achieve a maximum accuracy of 3.26%. While this is nearly an order of magnitude more
accurate than randomly guessing the class, it is far from a desirable accuracy. Preprocessing,
ensemble classification, and hyperparameter optimization would be relevant approaches
to addressing this concern if the classification of this firmware were the primary goal;
however, as the goal is characterization of the bounds of potential classification, this is left
for future work. Therefore, we can conclude that when the amount of work performed in
each branch of control flow (i.e., when the amount of work performed by each state) is low,
“off-the-shelf” machine learning models will struggle to determine the underlying program
execution flow.

In stark contrast to the classification accuracy of traces obtained from this firmware
(w = 1), as the w value of the firmware increases, the performance capabilities of sim-
ple machine learning classifiers are well suited to the classification task set before them.
For firmware with w values of 2, 4, and 8, a random forest classifier was able to correctly
recover the program execution flow in all five folds of cross-validation with 100% accu-
racy. For algorithm specific and cross-fold specific performances on firmware with two
executions of addition operations (w = 2), see Figure 6. While all other classifiers achieved
high levels of accuracy on average (99%+) over the same firmware, only the random forest
classifier achieved this level of performance.
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Figure 4. A figure which demonstrates the variance, or lack of variance, exhibited by each classifica-
tion algorithm depending upon the number of operations performed by the firmware. The y-axis is
split to emphasize the difference between w = 1 and the other w ≥ 2.

Figure 5. A heatmap demonstrating the accuracy of the testing phase for firmware with a single
operation in each state (w = 1). Most notable is that, while results are better than random guessing,
classification accuracy of 2% is extremely different than the 98%+ accuracy achieved for all other
tested firmware.

Across all classifiers, a decrease in overall accuracy was observed moving from firmware
with 8 executions (w = 8) to firmware with 16 (w = 16). In the case of random forest classifiers,
this is a decrease from an average accuracy of 100% to 99.92%. Both the decision tree classifiers
and logistic regression had their accuracy decrease as the number of operations performed
by the firmware increased, but both remained over 98% classification accuracy on average.
The KNN classifier saw vastly diminishing performance in the move to firmware with more
operations, only achieving a maximum accuracy of 81.4% with an average accuracy of 80.8%.
Similar decreases in performance were observed when moving to the next level of firmware
(w = 32). A visual presentation of the average performance across these various firmware with
more than two operations is available in Figure 7.
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Figure 6. A heatmap demonstrating the accuracy of the testing phase for firmware with two op-
erations executed in each state (w = 2). This firmware exhibits a similar difference between each
classifier as seen in Figure 5 but shifted to the high end of classification accuracy. The random forest
classifier maxes out at 100% accuracy for this firmware.

Figure 7. A series of dot plots which illustrate the performance of various classifiers for firmware
with various amounts of computation. Accuracy for firmware of w = 1 is not included since it was
less than 3% for all four tested classifiers. See Figure 5 for specific performance on firmware with
w = 1 for each classification algorithm.

Further hyperparameter optimization might be effective in improving accuracy in
firmware where more operations are performed in each state of the state machine, and au-
tomated approaches to the machine learning for this task could find effective preprocessing
and postprocessing to improve the overall results. However, as a proof of concept and
demonstration that the work performed in each branch of the state machine is not required
to be different in order to recover the transitions, these results are highly significant.

5. Discussion

A number of conclusions can be drawn from the results achieved across these classifi-
cation problems. Beyond the minimal proof of concept that control flow can be significantly
recovered even when the work in different states of a limited purpose finite-state machine
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are identical, these findings suggest that obfuscation techniques may be necessary to ob-
scure the control flow of the program when said control flow conveys security-relevant
information. As an example, an attacker should not be able to purchase a smart lock,
determine the device’s control flow from the embedded finite-state machine, and then
gain the ability to access a home using the same smart lock model. Since the results
show that this information was exfiltrated from the underlying micro-controller, this is a
potential vulnerability that may require more sophisticated protections than traditional,
software-based ones.

One surprising result was the extremely low accuracy while applying machine learning
classifiers to the firmware which has only one operation (w = 1). It was hypothesized before
data analysis was completed that the average accuracy would decrease monotonically as
the number of operations increased. The intuition used to develop this hypothesis was that
as the proportional time spent in the control flow code sections increased, the more accurate
the transition recovery would be. This followed from the observation that, when more
relative time is spent in control flow, more of the data points captured within the power
trace would be directly related to the process of determining state machine transitions.
The subversion of this hypothesized outcome indicates that the number of operations has
much less influence in the classification of transitions than it was initially assumed. It is
clear that the amount of work performed in a state still has influence, as evidenced by the
variation in classification accuracy in correlation with the number of operations within
each state. However, this role may not be nearly as important as the actual work performed
and the state transitions executed by a low-powered device.

The first research question sought to identify whether different behavior is required in
each state of an embedded state machine in order to completely recover the transitions. This
question is answered firmly in the negative. While prior works made use of the different
behavior of a heterogeneous, two-state FSM to more easily perform the classification [1], this
difference is not required. This work clearly demonstrates that, while differences in state
behavior can allow for recoverable transition sequences, it is not strictly necessary since
high transition recovery accuracy was achieved with homogeneous state behavior. Even
when applying the same techniques and classifiers as were used in prior work, meaningful
levels of accuracy were achieved with said states.

This finding suggests that power-based side-channel attacks will be an applicable
tool to recover state transition information regardless of what kind of work is performed
by the states within an FSM. For devices with minimal numbers of states which do a
meaningful amount of work (i.e., they are not comparable to the w = 1 firmware tested in
these experiments), these results suggest it is possible to recover the transition order of the
underlying FSM. As of the time of writing, such behavior is also consistent with speculation
in current literature. Further work will be necessary to determine if these findings are
consistent when expanded to state machines with many states.

The second research question sought to address to what degree the proportion of time
spent in control flow and in a particular state of an FSM would impact the recoverability of
the state transition ordering. It was initially hypothesized that the ratio of time spent in the
state machine versus in the control flow would be the primary predictor of classification
accuracy. While this held true for firmware with more than one operation (w ≥ 2) from
2 to 128, the special case was the firmware with a single operation (w = 1). It can therefore
be concluded that there is a bounded range in which the control flow can be recovered
without more advanced means than are presented here. Further research will be necessary
to determine whether the lower bound is one which can be encountered in production
grade FSM. However, the lower bound of recoverability suggests that minimized states
may evade detection, recovery, and classification. This is demonstrated by the low accuracy
associated with classifying for firmware with a single operation.

The final research question examined how effective “off-the-shelf” machine learning
models are when applied to the task of recovering control flow information. “Off-the-
shelf” machine learning models, specifically more light-weight ones than the deep learning
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approaches common in power-based side-channel attacks, show much promise in their
ability to capture high-level control flow information. Even without hyperparameter
optimization, high levels of accuracy were achieved. With this optimization, it may be
possible to achieve similar accuracy on firmware with more operations. Situations in which
“off-the-shelf” solutions are not sufficient to achieve high classification accuracy must be
further explored to motivate the need for hyperparameter optimization.

The efficacy of random forest algorithms for classification tasks is well known. Yet even
with this reputation, these algorithms’ performance on the collected data is important as it
may suggest their applicability and strong performance on more complex state machines.
When paired with optimization algorithms such as Bayesian Optimization, their capabilities
may continue to be relevant, potentially minimizing the need for more computationally
challenging solutions which make use of deep learning such as DL-SCA.

6. Conclusions

In this work, the program control flow was able to be recovered using SPA. The classi-
fication models used were able to achieve a high level of accuracy, with the random forest
model reaching 100% accuracy for three of the values of w tested; the other models also
reached very high classification accuracy, with several averaging over 98% on firmware
operations with more than one execution (w ≥ 2). This level of performance was achieved
without hyperparameter optimization begin applied, an approach which could lead to
improvements in some situations.

Power-based side-channel analysis is a new potential tool for attackers looking to
recover control flow information from an embedded or otherwise low-powered system.
Due to the recent nature of the development of meaningful recovery attacks on program
control flow information, it remains to be seen to what degree existing counter-measures
will be applicable to the protection of this information. Contrary to the intuition of this
research team, short sections of code were able to evade detection with meaningful impacts
on the accuracy of recovery as exhibited by the results surrounding firmware with a single
execution of operations in this work.

Looking to the future, most current work in power-based control flow recovery has
been done with state machines which have only two states; however, in practice, nearly
all state machines have many more states. Future work should explore the potential
for the current two-state techniques to be extended to multiple homogeneous states as
well as multiple heterogeneous states and variations between the two. Furthermore,
the applicability of automated machine learning pipelines for the task of classifying state
transitions is another avenue for future exploration. While current “off-the-shelf” machine
learning classifiers are sufficient to classify the states under consideration, the ability of
these findings to be transferred to more complex state machines must be examined to
discern where their application breaks down and traditional AutoML pipelines must be
employed. Overall, with the ability for FSM transitions to be recovered clearly established
now, the task must turn to more firmly defining the capabilities and bounds on this avenue
of attack. Variable transition counts, wildly different state computations, more complex
state machines, and further perturbations on the environments data is collected within are
all promising future directions of research at this time. This work should seek to qualify
the limitations of SPA approaches for FSM transition recovery through power analysis.
Finally, historic mitigation techniques applied to combat side-channel attacks must be
re-evaluated to determine to what extent existing mitigations protect against this control
flow recovery attack.

One primary limitation is that the comparative time spent in each state, a by-product
of the number of operations in each state, is constant across a sample. While the question
of whether a simple machine learning model would be sufficient for recovering the control
flow of a program with identical work in each state has been answered in the affirmative in
this paper, future work should certainly address this limitation by determining if a consis-
tent time in each state is necessary for these results to be widely transferable. Perhaps more
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specialized machine learning may be able to improve the classification, but in comparison
to the other models created throughout this process, it is clear that the data captured itself
is the limitation directly responsible for reducing general classifier accuracy.

Additionally, while attempting to make use of “off-the-shelf” machine learning models
was a key research question, it does assume that the benefits of deep learning approaches,
or other AutoML approaches such as NAS, are not of enough importance to justify the com-
putational trade-offs. The strong performance of the algorithms examined in this work may
justify this restriction in this specific scenario, but further examination of their limitations
will be necessary to determine if more modern, advanced, or complex machine learning
pipelines allow for more meaningful state transition recovery in more complex applications.
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