
Citation: Wang, F.; Tang, Y.; Fang, H.

Mitigating IoT Privacy-Revealing

Features by Time Series Data

Transformation. J. Cybersecur. Priv.

2023, 3, 209–226. https://doi.org/

10.3390/jcp3020012

Academic Editor: Georgios

Kambourakis

Received: 29 March 2023

Revised: 2 May 2023

Accepted: 12 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity 
and Privacy

Article

Mitigating IoT Privacy-Revealing Features by Time Series
Data Transformation
Feng Wang 1,* , Yongning Tang 2 and Hongbing Fang 1

1 School of Engineering, Liberty University, Lynchburg, VA 24515, USA
2 School of Information Technology, Illinois State University, Normal, IL 61761, USA; ytang@ilstu.edu
* Correspondence: fwang@liberty.edu

Abstract: As the Internet of Things (IoT) continues to expand, billions of IoT devices are now
connected to the internet, producing vast quantities of data. Collecting and sharing this data has
become crucial to improving IoT technologies and developing new applications. However, the
publication of privacy-preserving IoT traffic data is exceedingly challenging due to the various
privacy concerns surrounding users, IoT networks, and devices. In this paper, we propose a data
transformation method aimed at safeguarding the privacy of IoT devices by transforming time
series datasets. Based on our measurements, we have found that the transformed datasets retain
the intrinsic value of the original IoT data and maintains data utility. This approach will enable
non-expert data owners to better understand and evaluate the potential device-level privacy risks
associated with their IoT data while simultaneously offering a reliable solution to mitigate their
concerns about privacy violations.
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1. Introduction

Collecting and sharing raw Internet of Things (IoT) packet-level network traffic data
are expected to play a crucial role in improving existing IoT technologies, developing
new applications, monitoring performance, and protecting privacy and security [1–6].
However, publishing such data is highly non-trivial since it may expose private and
sensitive information not only about users but also about the IoT networks and devices
from which it was generated.

Numerous studies have indicated that the patterns of packet-level network traffic
data in the Internet of Things (IoT) differ significantly from those in traditional Internet
traffic [7–9]. For instance, Figure 1 displays raw IoT packet-level data (including packet
size and inter-arrival times (IAT)) captured from four surveillance cameras in the UNSW
dataset [10]. These figures visually demonstrate that each IoT device displays its own
unique and periodic traffic patterns.

Many methods have been proposed to identify and protect privacy-revealing features,
which are specific characteristics or attributes of data that can be exploited to identify
or infer sensitive information about an individual or a system. These features can range
from identifiable personal information (IPI), such as names, addresses, or social security
numbers, to subtler information, such as location data or browsing history. For instance,
clustering packet traces from smart home IoT devices or using packet-size and IAT from
wearable devices can help identify specific user activity [8,11].

However, most existing solutions focus on user-centric privacy-revealing features,
such as those proposed in [12–18]. While these solutions prioritize user privacy, device-level
privacy leakage in published IoT data can cause severe damage [19]. Traffic patterns in IoT
packet-level data can reveal privacy information, allowing linkage attacks to IoT devices.
For example, an attacker could exploit traffic rates to identify medical sensors attached to a
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patient [19], if unique traffic patterns in raw IoT data are not obfuscated. This can lead to
privacy attacks by adversaries, even if the published datasets are anonymized.

(a)

(b)

Figure 1. Unique and periodic packet size and IAT features of four surveillance cameras. (a) Packet
size feature along with packet index; (b) IAT feature along with packet index.

This paper addresses the threat of an IoT membership inference attack (MIA), where
an attacker uses a released IoT dataset to determine whether it was generated by a spe-
cific IoT device. This can lead to further security attacks by the attacker. Our goal is to
protect the privacy of IoT devices in raw IoT packet datasets by preventing inference of
device types, while preserving the original data’s inherent value. Current anonymization
techniques [12–18] for IoT traffic packet traces focus mainly on protecting user privacy,
with little emphasis on device-level sensitive information.

This paper proposes a novel approach to protect device-level privacy in raw IoT
packet data sharing. Our approach preserves device-level information while obfuscating
sensitive patterns in the dataset, allowing data owners to mitigate the risk of privacy
breaches in a cost-effective way. We use an efficient traffic reconstruction method to
transform sensitive information while retaining useful data. Our results demonstrate that
the proposed transformation method effectively obfuscates privacy-revealing patterns
without compromising the value of the data. Machine learning models trained on the
transformed datasets achieve similar accuracy to those trained on the original data, making
the transformed datasets useful for data analytics tasks.

The main contributions of our study are as follows:

• We propose a novel method to protect device-level privacy in IoT data sharing by
transforming time series datasets, preventing inference of IoT device types.

• We design an efficient traffic reconstruction method that preserves the value of the
original data while protecting sensitive information. We evaluate the data utility of the
transformed dataset using Euclidean distance and replicating studies, showing that
our method effectively obfuscates privacy-revealing traffic patterns without sacrificing
data utility.

The rest of the paper is organized as follows. Related works are discussed in Section 2.
Section 3 introduces IoT device Membership Inference Attack (MIA). In Section 4, we
elaborate the proposed transformation method. The data utility of transformed data is
evaluated in Section 5. The paper is concluded in Section 6.
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2. Related Works

Four main strategies have been proposed to reshape IoT traffic for privacy preservation:
modification, replacement, perturbation, and synthesis.

The first strategy involves modifying the time stamps and feature values based on the
time resolution and granularity of the feature values [20,21], but it can be costly.

In the replacement method, a field is mapped to a new value of the same type [16].
Truncation involves overwriting a field with fixed values [20], while generalization replaces
specific data with a more general one through binning [22]. Finally, precision degradation
removes the least significant information of a data field [21].

Obfuscating IoT time series data poses a significant challenge due to their unique
characteristics. Traditional data obfuscation methods are often ineffective and inefficient
for time series datasets. For example, the perturbation method [23,24] is commonly used
to mask sensitive data by randomly adding crafted noises. However, controlling the
perturbation level to preserve privacy without sacrificing the original data’s value is a
challenging task. To illustrate this challenge, we conducted an experiment where we added
a significant amount of Laplace noise to two security camera datasets. The Laplace noise

function is defined as f (x, µ, λ) = 1
λ e−(

|x−µ|
λ ). We used different values of the parameter

λ to control the amount of generated noise. Figure 2 shows that when the parameter
λ changes from 6 to 46, the repetitive and consistent pattern of the Dropcam dataset is
completely distorted, resulting in a degraded dataset utility. However, with the same
amount of injected noise, the repetitive pattern of the Samsung SmartCam dataset is still
recognizable. In general, achieving a balance between privacy level and model compatibility
with perturbation methods is not satisfactory, as we will demonstrate in our experiments.

Figure 2. Packet size sequences from Dropcam and Samsung SmartCam are perturbed by adding
varying amounts of Laplace noise.

Synthetic data [25–29] are another commonly used method to protect privacy. Re-
cent synthetic methods focus on using Adversarial Network (GAN) models to construct
synthetic IoT time series data [25,30–32]. Despite efforts to synthesize data, there is still a
risk that the traffic patterns of the original data may be preserved, which could result in
the disclosure of sensitive information from IoT devices. Generating time series datasets
that preserve temporal dynamics using GAN is more difficult than generating tabular
data. Concealing traffic patterns in IoT time series traffic data remains an unexplored
research problem. These challenges have inspired us to develop a more effective approach
to obfuscate device information in raw IoT packet data.

3. IoT Device Membership Inference Attack

In an IoT MIA, adversaries can identify IoT devices solely based on their traffic patterns
disclosed from the released raw IoT packet data, without relying on device identifications
such as IP or MAC addresses. Additionally, adversaries can leverage their own devices or
use devices specified in the Manufacturer Usage Description (MUD) [10,33,34] to derive
traffic patterns and associate them with specific IoT device types. Inferring information
about IoT devices should not be confused with membership inferring attacks in machine
learning [35], which determine if a record is in the model’s training dataset.
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We present two privacy attack scenarios resulting from the leakage of traffic patterns.
In the first MIA scenario, an attacker seeks to determine if a Dropcam surveillance camera
is present in a published dataset. A vulnerability in the Dropcam allows unauthorized
users to halt its recording [36]. If an attacker can identify unique traffic patterns associated
with home security cameras, the attacker can search for such a pattern in the published
raw IoT packet data and launch a security attack if the targeted IoT device is successfully
identified. Suppose the attacker uses a dataset collected on 6 October 2016, as the learning
dataset. The attacker selects two snippets from the dataset and visualizes a sequence of
packet size data, as shown in Figure 3a. By comparing the traffic patterns (two snippets
in Figure 3b) from the published dataset (collected on 17 October 2018), the attacker can
determine if a Dropcam is present in the dataset.

(a)

(b)

Figure 3. The visualization depicts a sequence of packet size data generated by a Dropcam in 2016
and 2018. The highlighted area shows the data points that were selected from datasets. (a) Packet
size snippets from a learning dataset; (b) packet size snippets from a published dataset.

In the second MIA scenario, adversaries can identify if a Message Queuing Telemetry
Transport (MQTT) broker is used in a published IoT dataset. A MQTT is an efficient pub-
lish/subscribe messaging transport protocol commonly used in IoT applications. A MQTT
broker receives published IoT data, filters them by topics, and distributing them to corre-
sponding subscribers. If adversaries can identify that a MQTT broker is used in a published
dataset, they can launch a MQTT brute force attack [6].

4. Methodology

Data transformation aims to conceal the types of IoT devices by converting actual IoT
time series data into a new dataset. This makes it impossible for an adversary to differentiate
between the genuine device types. For example, as shown in Figure 4, the packet size
feature of a Samsung SmartCam can be transformed into a new dataset with a similar
feature of the Insteon camera. This makes it difficult for an attacker to identify whether a
Samsung SmartCam is present in the published dataset.
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4.1. Overview

To avoid confusion, we use the term “target dataset” to refer to the time series data
that contains the desired feature. The packet-level pattern associated with this feature
is referred to as the “target feature pattern” or simply the “target pattern”. In Figure 4,
the Insteon dataset is the target dataset, while its packet size feature is the target feature.

Figure 4. The transformed Samsung SmartCam dataset with a similar feature of the Insteon camera.
(Top) the packet size feature of the original Samsung SmartCam data. (Bottom) the target feature
pattern of Insteon camera data (target data). The middle figure shows the transformed data.

The architecture of our proposed data transformation method is shown in Figure 5. It
consists of two primary components: transformers and a utility assessment. The transform-
ers convert the input time series data into new data that contain either a desired feature
pattern or a learned feature pattern. A data transformer selects a group of transformed can-
didates based on the similarity between the original and target data features. The purpose
of the utility assessment is to maximize the selected feature similarity between the original
and target datasets.

Figure 5. Architecture of data transformation. An original time series is the input of a set of
transformers, and outputs are a set of transformed data candidates. A final transformed dataset is
determined by the utility assessment unit.

To be more precise, the data transformation process involves two distinct phases.
In Phase I, a group of transformers converts the input time series data into new datasets.
Once Phase I is complete, a set of transformed candidates is generated, and Phase II begins.
In Phase II, the transformed time series data are evaluated according to utility metrics,
and the resulting similarity assessment is used to adjust the parameters used in training
the transformers in Phase I.

4.2. LSTM-Based Transformer

The transformer is a powerful model that is capable of learning repeated patterns
over a sequence of inputs. In particular, it is based on the Long Short-Term Memory
(LSTM) model, which is a type of recurrent neural network (RNN) that can learn long-term
dependencies in sequential data [37,38]. A LSTM network is composed of several key
elements, including input gates, output gates, and forget gates, which allow it to selectively
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remember or forget information over time. Additionally, LSTMs use a memory cell to store
and retrieve information, which helps to overcome the vanishing gradient problem that is
often encountered in traditional RNNs.

LSTM-based transformers are capable of transforming various time series data, includ-
ing high-frequency repeated patterns and high-amplitude pulses. A set of LSTM models
is trained using target datasets to learn target feature patterns. Since no labeled data are
required to train the models, this method is unsupervised.

To facilitate readers’ understanding of our proposed method, we present a summary
of the symbols employed throughout the paper in Table 1. Formally, we consider a multi-
variate time series X = xt

T
t=1 with xt ∈ Rm being an m-dimensional observation (number

of features). T represents the total number of observations, and t is the index of the mea-
surements in time. Given a source time series data Xs, a transformer transforms Xs to X∗t
with a similar feature by learning a predictive function φ(), i.e., X∗t = φ(Xs).

Table 1. Table of symbols.

Symbol Description

X A multivariate time series

xi,t The i-th feature value of time series X at time t

T The total number of observations in time series X

t The index of the measurement in time

Xs Source time series data

X∗t The transformed time series data with a similar feature to Xs

φ() The predictive function used to transform Xs to X∗t
xi,t0 :T The conditional distribution of a time series X from time t0 to T for the i-th feature

xi,1:t0−1 The past time series data for the i-th feature up to time t0 − 1

t0 The time point from which we assume xi, t to be unknown at prediction time

Specifically, each feature value of the time series X is denoted by xi,t, i ∈ 1, . . . , m.
The transformer’s goal is to model the conditional distribution of a given time series
[xi,t0 , xi,t0+1, . . . , xi,T ], denoted as xi,t0 :T . Given its past [xi,1, xi,t0−2, . . . , xi,t0−1], denoted as
xi,1:t0−1, the transformer represents the conditional distribution as: P(xi,t0 :T |xi,1:t0−1). Here,
t0 denotes the time point from which we assume xi,t to be unknown at the prediction time.

When training transformers, we select multiple training instances by using sliding
windows with different starting points t0. Thus, the past xi,1:t0−1 and the prediction xi,t0 :T
are with respect to the starting point of each training sample. The conditioning range size
t0 is a tunable parameter, while the prediction length T determines the number of predicted
data points. In this paper, we consider the situation where T = 1, or one prediction data
point, to limit the number of predictions for each step and decrease the processing time.

4.3. Time Series Decomposition

To effectively process complex IoT traffic patterns, such as bursty traffic, we divide
IoT traffic into two categories: active and inactive. Inactive traffic occurs when an IoT
device is either in a sleep state, during which the device is not transmitting any data, or in
a keep-alive state, where the device is transmitting routine periodic updates. Active traffic
occurs when a non-periodic update event triggers the device, causing it to enter a bursty
state where a larger amount of data is exchanged between the device and a server.

The traffic patterns of active and inactive traffic are distinct, with keep-alive traffic
having a regular time pattern and small packets of constant size, while bursty traffic
generates longer data bursts. In this paper, an IoT time series is decomposed into active and
inactive datasets along with a timestamp. Time series data during active time period are
defined as active data, while data during the inactive time period are called inactive data.
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With the partition of active and inactive components, we introduce two LSTM-
based transformers, denoted as φa() and φin(). The original time series is decomposed
as Xt = Xa + Xin, where Xa and Xin are the active and inactive datasets, respectively.
The original time series is transformed into X∗, where X∗ = φa(Xa, θa) + φin(Xin, θb).
The parameters θa and θb are used to train the active and inactive transformers, respectively.
The conditioning range size t0, the number of LSTM elements, and the batch size are the
tunable parameters. The proposed heuristic method for the automatic decomposition of
time series data into active and inactive datasets will be presented later.

4.4. Heuristic Method for Decomposition

We propose a heuristic approach for automatically partitioning time series data into
active and inactive datasets. Our algorithm identifies the optimal partition of the original
time series into two segments with distinct patterns. Specifically, we employ a heuristic
search method to identify a threshold that minimizes the feature similarity between the
active and inactive segments of a given time series. The active segment Q and inactive
segment C are compared using the Euclidean distance metric:

pd(Q, C) =
1

1 +
√

∑m
i=1(qi − ci)2

,

where, m is the length of the segments and qi and ci represent the i-th elements of Q and C,
respectively. The similarity metric returns values between 0 and 1, where 0 indicates no
similarity and 1 indicates maximum similarity.

Here is an example to illustrate the proposed approach. Suppose we have a time
series dataset that contains information about the movement captured by a motion sensor
placed in a building over the course of a week. We aim to partition the dataset into two
segments: an “active” segment that contains motion sensor readings during periods of
detected motion, and an “inactive” segment that contains motion sensor readings during
periods of low or no activity.

To accomplish this, we use the proposed heuristic method to identify a threshold that
separates the two segments. We calculate the feature similarity between the two resulting
segments using the Euclidean distance metric. The closer the distance between the two
segments, the less distinct their patterns are.

After several iterations, the algorithm identifies a threshold that yields two segments
with significantly different patterns. The resulting “active” segment contains motion sensor
readings when people are moving about the building, while the “inactive” segment contains
motion sensor readings when the building is mostly unoccupied. The similarity metric
is used to confirm that the two segments have distinct patterns, with a high dissimilarity
score indicating a clear separation between the two segments.

4.5. Utility Assessment

The main challenge in data transformation is to strike a balance between preserving
device privacy and maintaining the necessary utility of the original data. In this paper, we
propose two methods to evaluate the utility of the transformed dataset.

The first method is based on replicating studies [39]. We perform anomaly detection
on both the original and transformed data and draw conclusions. If the same conclusions
are drawn from both datasets, then the transformed data are considered to have high utility.

The second utility assessment method is to evaluate the feature similarity between
the transformed dataset and the original dataset. This similarity result is used to adjust
the parameters of the LSTM transformers, such as the conditioning range size, number of
LSTM elements, and batch size. The transformed dataset should have reduced but still
have some feature patterns of the original dataset. By being similar to another device,
the transformed dataset can confuse the adversary in determining its type.
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The utility assessment unit determines which candidate maintains sufficient utility
among a set of transformed candidates. If none of the candidates satisfy the requirement,
the transformers need to be reconfigured or retrained to generate new transformed candidates.

After generating the transformed data, we perform post-processing by scaling the
data to the range of the target dataset. The goal is to increase the semantic integrity of
the transformed data to prevent adversaries from determining that the data are fabricated.
For example, some transformed packet sizes may not exist in the target data. We use a fea-
ture mapping to learn the semantics from the target data, and process the transformed data.

Once the selected features of the original dataset are transformed, the transformed
features and other unselected features will be saved in a cvs file. A low-level Python tool
can generate pcap files from the cvs file.

4.6. Benchmark Datasets

In order to transform IoT raw data traces, our research requires benchmark datasets
that meet two specific requirements. Firstly, the datasets must contain various types of
IoT devices, which allows us to determine the traffic pattern of each individual device.
Secondly, the datasets must provide raw traffic in pcap files, enabling our method to process
raw packet traces into time series packet streams. Therefore, benchmark datasets that are
flow based, such as the CIDDS datasets [40], are unsuitable for our purposes.

Our datasets are sourced from UNSW [10], and are the result of trace data that were
captured over several years from a test-bed consisting of 28 distinct IoT devices. This
data include two separate datasets, namely, BoT-IoT and UNSW-NB15. To train our LSTM
models and assess the classification accuracy based on both the original and transformed
data, we utilized the UNSW-NB15 dataset, which was captured over a six-month period.
Additionally, we employed the BoT-IoT dataset to evaluate whether our transformed data
still retained the critical features of IoT attacks, as outlined in our paper.

The UNSW-NB15 dataset comprises 100 GB of raw traffic in pcap files, with a total
record count of two million. Conversely, the BoT-IoT pcap files are 69.3 GB and contain
over 72,000,000 records. This dataset encompasses nine distinct types of IoT attacks,
including Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode,
and Worms. In this study, we did not differentiate between each attack when evaluating
data utility after transformation. Instead, we trained a binary classifier to detect these
attacks, treating them as anomalies in our analysis.

5. Results

We have successfully developed a functional prototype of our proposed data transfor-
mation system, which utilizes LSTM-based transformers to transform time series datasets
into new ones with selected features that closely resemble the target features. In order to
evaluate the utility of the transformed datasets, we have employed two methods: feature
similarity based on Euclidean distance, and replication of IoT classification and anomaly
detection. Our measurements demonstrate that the proposed method is able to transform
time series data while preserving the intrinsic values carried by the original data, including
anomalies. Overall, our prototype provides strong evidence that our proposed method is
effective and has the potential to be applied in real-world IoT scenarios.

5.1. Visualizing Transformed Data

Figure 5 illustrates the process we used to train transformers using UNSW datasets [10].
For each original dataset, we trained a set of transformers using different target datasets.
Specifically, we trained four transformers using packet size and IAT features of four target
cameras: Dropcam camera, Samsung SmartCam, TP-Link camera, and Insteon camera. We
partitioned each target feature into an active and inactive set using fixed thresholds for the
packet size. For example, we employ the decomposition method proposed in Section 4.4 to
partition the Dropcam and Insteon datasets into active and inactive segments. The optimal
thresholds for Dropcam and Insteon datasets are determined to be 216 and 120, respectively.
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We then trained an active and an inactive transformer to learn the active and inactive parts
of the selected target feature. Each transformer used an LSTM-based model with 50 units
in the LSTM layer, one unit in the dense layer, and a batch size of 70. We developed the
LSTM model using Python 3.7 based on TensorFlow and Keras. Finally, the trained target
transformers transformed the active and inactive parts of the original data into new datasets
with similar target features.

We generated new datasets for Dropcam by transforming its packet size and IAT
features using the trained target transformers. The transformed features are presented in
Figure 6 and Figure 7, respectively. These figures show the transformed Dropcam datasets
that have similar packet size and IAT features to three other target cameras: Samsung
SmartCam, TP-Link camera, and Insteon camera. From Figure 7, it is evident that the
transformed features closely resemble the features of the target devices. We computed the
Euclidean distance between the target feature and the transformed feature and found that
the minimum distance was with the SmartCam camera. Therefore, we can transform the
Dropcam dataset to a new dataset having features similar to the Samsung SmartCam.

Figure 6. A sequence of transformed packet size of Dropcam with a similar feature of Samsung
SmartCam, TP-Link, and Insteon cameras.

To showcase the effectiveness of transformers, we further demonstrate their ability to
transform multiple original datasets using the same transformer. Specifically, we employed
an Insteon camera’s transformer to transform the packet size feature of Amazon Echo,
LiFX smart bulb, and Belkin motion sensor datasets. The transformer used an LSTM-
based model with 50 units in the LSTM layer, one unit in the dense layer, and a batch
size of 70. The transformed packet size data are shown in Figure 8. The figure illustrates
that the new datasets retain the target active and inactive patterns, making it difficult
to identify the original features based on the transformed features. This result indicates
that the transformer effectively captures and preserves the underlying patterns of the
original datasets.
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Figure 7. A sequence of transformed IAT of Dropcam with a similar feature of Samsung SmartCam,
TP-Link and Insteon cameras.

5.2. Similarity Measurement

We begin by measuring the similarity between the transformed or perturbed data and
the original data using a metric called similarity between the original data and transformed
data (SOT). This similarity is computed by finding the minimum Euclidean distance
between the two datasets. To evaluate the similarity, we select 100 time series points
from both the original and transformed datasets using a sliding window and calculate the
Euclidean distance between them. However, it is important to note that a transformed or
perturbed feature with a minimum distance of zero can potentially leak the real feature.
In Figure 9a, we present the SOT values of the perturbed method with two perturbation
parameters and the transformation method. The figure shows that the perturbed time
series data are still similar to the original data, while our transformation method produces
a transformed feature that is different from the original feature. Later, we will evaluate
whether the transformed data still retain the utility of the original data.

To evaluate the quality of the transformations, we also measure the similarity between
the transformed data and the target data, which we refer to as similarity between the
transformed data and the target data (STT). Similar to the SOT, we measure the STT using
the Euclidean distance.

To select the best transformation candidates, we use both SOT and STT metrics.
In Figure 9b, we plot (x, y) pairs where x represents the STT of the transformed data and
y represents the SOT. To choose the best transformation candidate, we look for the point
closest to the identity line, which indicates that the transformed data are similar to both
the target data and the original data. By selecting candidates close to the identity line, we
ensure that the transformed data retain their original utility while also closely resembling
the target data.
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(a)

(b)

(c)

Figure 8. A sequence of packet size of three IoT transformed datasets with a similar packet size
feature of Insteon camera. (a) Amazon Echo; (b) LiFX Smart Bulb; (c) Belkin wemo motion.

(a) (b)

Figure 9. SOT and STT of packet size features of 7 IoT devices using a perturbation method and the
proposed transformation method. (a) SOT; (b) SOT and STT of 7 IoT devices, each represented by a
different shape.
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We evaluate the utility of our approach by training a machine learning model to
classify the transformed and perturbed data (λ = 46) and the original data. We combine
the transformed/perturbed data with the original data and randomly split the dataset into
70% training data and 30% evaluation data. We train an XGBoost model on the training
data and evaluate it on the evaluation data. The results are shown in Figure 10. The model
is unable to distinguish between the perturbed data and the original data, indicating
that the perturbed data are still similar to the original data. However, the model can
accurately distinguish between the transformed data and the original data, indicating that
our transformation approach effectively alters the data while preserving their utility.

(a)

(b)

Figure 10. Confusion matrix of classification results of the original, perturbed and transformed data,
with dark purple representing correctly classified instances and light blue representing incorrectly
classified instances. (a) The original and perturbed data; (b) The original and transformed data.

Here, we want to clarify that it is challenging for an attacker to accurately identify
sensitive IoT devices using transformed datasets. Even if we obfuscate the traffic features
of a device, such as changing the Dropcam data to Insteon data, an attacker may still be
able to classify the sensitive devices from the rest of the devices using the transformed
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data, for example, as shown in Figure 10. However, the attacker cannot identify the device
because the transformed data do not resemble the original data, but instead have a higher
likelihood of resembling the target data. Thus, the transformed data do not contain any
privacy-revealing features.

5.3. Utility Measurement

To assess the utility of the transformed data, we conducted IoT classification and
anomaly detection on both the original and transformed datasets. Firstly, we evaluated
the IoT classification results by classifying seven IoT devices using both the original and
transformed data. We trained a model using the original data as the baseline measurement
and achieved a classification accuracy that was not 100% due to the use of a single feature.
However, we found that the perturbation method had a negative effect on the classification
accuracy, especially when using a large λ value, as shown in Figure 11b,c. In contrast,
the transformation method had a minimal impact on accuracy, as seen in Figure 11d,
where we were able to achieve almost the same classification results using the transformed
data. Following this, we visualized the transformed anomaly and presented the anomaly
detection results.

(a) (b)

(c) (d)

Figure 11. Confusion matrix of classification results of seven IoT devices based on packet size feature,
with dark purple representing correctly classified instances and light blue representing incorrectly
classified instances. (a) Original data; (b) Perturbed data (λ = 6); (c) Perturbed data (λ = 46);
(d) Transformed data.

As shown in Figure 12, the anomalies in the Samsung SmartCam original dataset are
transformed into the new data, which are still noticeable. Two malicious attacks in UNSW
data impact a Belkin switch and a motion sensor, as shown in Figure 13. After transforming
the real data, we find the new data preserve the anomalies occurring in the original time
series data. We use the transformed data, which contain anomalies, and the original data
to train a new model to detect the anomaly records. It is important to note that we did
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not differentiate each attack. A binary classifier is trained to detect normal or attack traffic.
We compare the accuracy of anomaly detection based on perturbed and transformed data.
In Figure 14a, a base-line anomaly detection result shows that using the packet size feature
cannot detect all anomalies. The model trained by the perturbed data cannot detect most
of the anomalies. On the contrary, the model trained by the transformed data has a little
higher accuracy than using the original data.

To summarize, the transformation method does not impact data utility. The proposed
transformation method not only transforms traffic patterns, but also keeps feature char-
acteristics of the original data. As a result, the transformed data are deemed to have high
utility. The synthetic data can still be used to understand data characteristics and main
variables needed for data mining.

Figure 12. Reconstructed anomalies of transformed Samsung SmartCam data with an Insteon-like
packet size feature. The anomalies are highlighted.

(a)

(b)

Figure 13. Reconstructed anomalies of Belkin data with an Insteon-like packet size feature.
The anomalies are highlighted. (a) Belkin Switch; (b) Belkin wemo motion.
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(a)

(b)

(c)

Figure 14. Confusion matrix of anomaly detection using perturbed and transformed data, with dark
purple representing correctly detection instances and light blue representing incorrectly detection
instances. (a) Raw data; (b) Perturbed data; (c) Transformed data.

6. Conclusions and Future Work

The findings of this study highlight the potential risks that IoT device membership
inference attacks (MIA) pose to the privacy of IoT devices. While there has been some
research on protecting privacy in IoT systems, there is still a lack of focus on protecting
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device-level privacy-revealing features. As a result, this work proposes a novel method to
safeguard the privacy of IoT devices by preventing adversaries from inferring their types.

One of the main challenges in developing a privacy protection method for IoT devices
is to find a balance between preserving the inherent value of the original IoT data while
restricting what the attacker can learn. This work has addressed this challenging problem
by proposing a time series data transformation method that effectively reshapes IoT packet
data while preserving the important features and ensuring that the transformed dataset
still contains useful information.

The proposed time series data transformation method appears to be a cost-effective and
efficient solution to mitigate device-level vulnerability. The results of the study demonstrate
that the transformed dataset retains the intrinsic value of the original IoT data while
preserving data utility. This means that the transformed dataset can still be used for various
applications, such as anomaly detection, without revealing sensitive information about the
device type.

Overall, the proposed solution is an important step towards safeguarding the privacy
of IoT devices from membership inference attacks. Further research can be conducted to
evaluate the effectiveness of the proposed method in different IoT environments and to
optimize the method for larger-scale IoT systems. We plan to incorporate the TON_IoT
datasets [41] as part of our evaluation of the data utility resulting from our transformation
method. These datasets are obtained from UNSW and comprise both Industry 4.0/Internet
of Things (IoT), and Industrial IoT (IIoT) datasets, providing us with an opportunity to
further assess the effectiveness of our transformation method.

While the proposed data transformation method appears to be effective in mitigating
device-level vulnerability in IoT systems, there is still a need to explore other transformation
methods. One of the limitations of the LSTM-based transformer used in this study is that it
operates as a blackbox, which means that the granularity of changing privacy-revealing
features is not controllable. This lack of control over the transformation process could
potentially lead to the loss of important information or features that could be useful for
other applications.

To address this limitation, future research can explore the use of other time series
transformers that provide more control over the transformation process. One area for
further exploration is the use of time series transformers [42] to convert time series data.
Time series data are a critical component of IoT systems, and the use of time series trans-
formers could offer a more effective way to preserve the privacy of IoT devices. Time series
transformers are specifically designed to handle time series data, which could make them
more effective at preserving the important features of IoT data while preventing adversaries
from inferring device types.

In conclusion, while the proposed data transformation method is an important step
towards protecting the privacy of IoT devices, further research is needed to explore other
transformation methods that provide more control over the transformation process. The use
of time series transformers is a promising area for future exploration, as it could offer a
more effective way to preserve the privacy of IoT devices, especially when dealing with
time series data.
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