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Abstract: Recent advances in machine learning have created an opportunity to embed artificial
intelligence in software-intensive systems. These artificial intelligence systems, however, come with a
new set of vulnerabilities making them potential targets for cyberattacks. This research examines the
landscape of these cyber attacks and organizes them into a taxonomy. It further explores potential
defense mechanisms to counter such attacks and the use of these mechanisms early during the
development life cycle to enhance the safety and security of artificial intelligence systems.
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1. Introduction

Advances in Artificial Intelligence (AI) technology have contributed to the enhance-
ment of cybersecurity capabilities of traditional systems with applications that include
detection of intrusion, malware, code vulnerabilities and anomalies. However, these sys-
tems with embedded machine learning models have opened themselves to a new set of
vulnerabilities, commonly known as AI attacks. Currently, these systems are prime targets
for cyberattacks, thus compromising the security and safety of larger systems that encom-
pass them. Modern day AI attacks are not only limited to just coding bugs and errors. They
manifest due to the inherent limitations or vulnerabilities of systems [1]. By exploiting
the vulnerabilities in the AI system, attackers aim at either manipulating its behavior or
obtaining its internal details by tampering with its input, training data, or the machine
learning (ML) model. McGraw et al. [2] have classified AI attacks broadly as manipulation
and extraction attacks. Based on the inputs given to the system, the training dataset used
for learning, and manipulation of the model hyperparameters, attacks on AI systems can
manifest in different types, with different degrees of severity. For example, adversarial or
evasion attack can be launched by manipulating the input to the AI system, which results
in the system producing an unintended outcome. A poisoning or causative attack can be
launched by tainting the training dataset, which would result in the AI system exhibiting
unethical behavior.

Therefore, it is important that we start thinking about designing security into AI
systems, rather than retrofitting it as an afterthought. This research addresses the following
research questions:

RQ1: What are the cyberattacks that AI systems can be subjected to?
RQ2: Can the attacks on AI systems be organized into a taxonomy, to better understand

how the vulnerabilities manifest themselves during the system development.
RQ3: What are possible defense mechanisms to prevent AI systems being subjected

to cyberattacks?
RQ4: Is it possible to devise a generic defense mechanism against all kinds of

AI attacks.
To address these research questions and determine the extent of risk to safety and

security of AI systems, we first conducted a systematic literature review looking for AI
attacks on systems reported in the literature. We then organized these attacks into a
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taxonomy to not only understand the types of vulnerabilities, but also the stage in the
development of AI systems when these vulnerabilities manifest themselves. We then
conducted further literature search looking for any defense mechanisms to counter these
attacks and improve the safety and security of AI systems.

This study is organized as follows. In Section 2, we report the results of the systematic
literature review and identify the attacks, from an AI system development perspective,
and their vulnerabilities. In Section 3, we introduce a taxonomy of AI attacks along with
defense mechanisms and countermeasures to mitigate their threats. Section 4 concludes the
study and highlights major findings.

2. Literature Review

This survey was founded on searching, by keywords, to find related articles to cyberse-
curity of AI systems. The top most used keywords are as follow: cybersecurity, cyberattack,
and vulnerabilities. We searched Scopus, an Elsevier abstracts and citation database, for
articles having titles that matched the search query (“cyber security” OR “cybersecurity”
OR “security” OR “cyberattack” OR “vulnerability” OR “vulnerabilities” OR “threat” OR
“attack” OR “AI attack”) AND (“AI” OR “ML” OR “Artificial Intelligence” OR “Machine
Learning”) AND (“system”)).

The search resulted in a total of 1366 articles. Within these articles, we looked for
those in computer science or computer engineering subject areas that were published in
journals in the English language, leaving us with 415 manuscripts. We carefully reviewed
the abstracts of the papers to determine their relevance. Only articles that discussed the
vulnerabilities of AI systems to attacks and/or their defense mechanisms were considered.

During the learning or training stage, an AI system needs data for training a machine
learning model. The training data are subject to manipulation attacks, requiring that their
integrity be verified. Ma et al. [3] used a visual analytics framework for explaining and
exploring ML model vulnerabilities to data poisoning attacks. Kim and Park [4] proposed a
blockchain-based environment that collects and stores learning data whose confidentiality
and integrity can be guaranteed. Mozaffari-Kermani et al. [5] focused on data poisoning
attacks on, and the defenses for, machine learning algorithms in healthcare.

During the inference or testing stage, an AI system can be subjected to manipulation
attacks by presenting falsified data to be classified as legitimate data. Adversarial or
evasion attacks and/or potential defenses against such attacks are discussed in [6–14].
Chen et al. [15] looked at such attacks in the context of reinforcement learning. Li et al. [16]
proposed a low latency decentralized framework for identifying adversarial attacks in
deep learning-based industrial AI systems. Garcia-Ceja et al. [17] described how biometric
profiles can be generated to impersonate a user by repeatedly querying a classifier and
how the learned profiles can be used to attack other classifiers trained on the same dataset.
Biggio et al. [18] examined vulnerabilities of biometric recognition systems and their
defense mechanisms. Ren et al. [19] also looked at querying-based attacks against black-box
machine learning models and potential defense mechanisms against such attacks. Wang
et al. [20] looked at a variant, termed the Man-in-the-Middle attack, using generative models
for querying. Threats from, and potential defense against, attacks on machine learning
models in 5G networks is discussed in [21,22]. Apruzzese et al. [23] provided an approach
to mitigating evasion attacks on AI-based network intrusion detection systems. Zhang
et al. [24] explored adversarial attacks against commonly used ML-based cybersecurity
systems. Liu et al. [25] discussed how to improve robustness of ML-based CAD systems
against adversarial attacks. Building malware detection systems that are more resilient
to adversarial attacks was the focus of [26,27], and Gardiner and Nagaraja [28] provided
a comprehensive survey on vulnerabilities of ML models in malware detection systems.
Dasgupta and Collins [29] surveyed game theoretical approaches that can be used to make
ML algorithms robust against adversarial attacks.
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During the inference or testing stage, extraction attacks are possible using the feature
vector of a model for model inversion or reconstruction and gaining access to private data
that was used as input or for training an AI system [30].

Hansman and Hunt [31] and Gao et al. [32] proposed a taxonomy of network and com-
puter attacks to categorize different attack types. Their taxonomy includes four dimensions
to categorize attacks on AI systems, including attack classes, attack targets, vulnerabilities
and exploits used by the attacks and whether the attack has a payload or effect beyond
itself. Their taxonomical structure is very comprehensive and can be used to analyze a
system for its dependability, reliability and security.

Despite the benefits of machine learning technologies, the learning algorithms can
be abused by cybercriminals to conduct illicit and undesirable activities. It was shown
in [33,34] that attackers might gain a significant benefit by exploiting vulnerabilities in the
learning algorithms, which can sometimes become a weakest link in the security chain.
Several studies related to attacks on machine learning algorithms have been reported in
the literature using different threat models. Barreno et al. [35,36], Huang et al. [36], Biggio
et al. [37] and Munoz-Gonzalez et al. [38] discussed different attack scenarios against
machine learning models with different attack models. The frameworks they proposed
characterize the attacks according to the attacker’s goal, their capabilities to manipulate the
data and influence the learning system, familiarity with the algorithms, the data used by
the defender and the attacker’s strategy. For example, data poisoning attacks, also known
as causative attacks, are a major emerging security threat to data-driven technologies. In
these types of attacks, it can be assumed that the hacker has control over the training
dataset that is being used by the learning algorithm. The hacker can actively influence
the training dataset in order to subvert the entire learning process, thus decreasing the
overall performance of the system, or to produce particular types of errors in the system
output. For example, in a classification task, the hacker may poison the data to modify the
decision boundaries learned by the learning algorithm, thus resulting in misclassification
of instances, or a higher error rate for a specific type of class. This is a kind of threat that is
related to the reliability of the large amount of data collected by the systems [38,39].

This survey is distinct from [31,39] in studying attacks on an AI system from the
perspective of a software engineering team, that organizes its work around different stages
of an AI system’s development life cycle. For these different stages of an AI system, and
their corresponding attacks, potential defense mechanisms are also provided. Organizing
the literature using this perspective can be valuable to systematically study the design of
AI systems for security purposes, to explore the trade offs that result from using different
defense mechanisms, and to develop a catalog of patterns and tactics for designing AI
systems for security purposes.

Table 1 lists various attacks carried out at different stages of the AI system development
processes and the countermeasures that are taken against these attacks.

Table 1. Attacks on AI systems at different stages of its development.

Attacks AI System Development Vulnerabilities Defense Mechanisms

Poisoning attacks [1,37] During training of the
model

Weakness in the federated learning
algorithms, resulting in stealing of
the data and algorithm from indi-
vidual user devices.

See list of defense mechanisms for both the data and
model poisoning attacks.

Data poisoning attacks
[38–40]

During the training
stage

Tampering of the features and class
information in the training dataset

Adversarial training, Feature squeezing, Transfer-
ability blocking, MagNet, Defense-GAN, Local in-
trinsic dimensionality, Reject On Negative Impact
(RONI), L-2 Defense, Slab Defense, Loss Defense and
K-NN Defense.
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Table 1. Cont.

Attacks AI System Develop-
ment

Vulnerabilities Defense Mechanisms

Model poisoning attacks
[41–44]

During the training
stage

Trust ability of the trainer, based on
a privately held validation dataset.

Use of pre-trained models that
are corrupted.

Securely hosting and disseminating pre-trained mod-
els in virtual repositories that guarantee integrity to
preclude benevolent models from being manipulated.
Identifying backdoors in malevolently trained models
acquired from untrustworthy trainers by fine-tuning
untrusted models.

Transfer learning attacks
[42,44–46]

During the training
stage

Similarity of the model structures. Obtain pre-trained models from trusted source.
Employ activation-based pruning with different train-
ing examples.

Model poisoning in feder-
ated learning [41,45,47,48]

During the training
stage

Obstruct the convergence of the ex-
ecution of the distributed Stochastic
Gradient Descent (SGD) algorithm,

Robust aggregation methods, robust learning rate.

Model inversion attack
[49–52]

During Inference
and/or testing stage

Models are typically trained
on rather small, or imbalanced,
training sets.

L2 Regularizer [49], Dropout and Model Staking [50],
MemGuard [51] and Differential privacy [52].

Model extraction attack
[53,54]

During Inference
and/or training stage

Models having similar character-
istics (parameters, shape and size,
similar features etc.)

Hiding or adding noises to the output probabilities
while keeping the class label of the instances intact.
Suppressing suspicious queries or input data.

Inference attack [55] During Inferencing,
Training, and Testing

Model Leaking information lead-
ing to inferences being made on
private data.

Methods proposed in [55] have leveraged heuristic
correlations between the records of the public data and
attribute values to defending against inference attacks.
Modifying the identified k entries that have large cor-
relations with the attribute values to any given tar-
get users.

The following section systematically explores attacks on AI systems and their defenses
in more detail.

3. AI Attacks and Defense Mechanisms

Research has been carried out to identify new threats and attacks on different levels
of design and implementation of AI systems. Kaloudi and Li [56], stressed the dearth of
proper understanding of the malicious intention of the attacks on AI-based systems. The
authors introduced 11 use cases divided into five categories: (1) next generation malware,
(2) void synthesis, (3) password-based attacks, (4) social bots, and (5) adversarial training.
They developed a threat framework to categorize the attacks. Turchin [57] pointed out
the lack of desired behaviors of AI systems that could be exploited to design attacks in
different phases of system development. The research lists the following modes of failure
of AI systems:

• The need for better resources for self-upgradation of AI systems can be exploited
by adversaries

• Implementation of malicious goals make the AI systems unfriendly
• Flaws in the user-friendly features
• Use of different techniques to make different stages of AI free from the boundaries of

actions expose the AI systems to adversaries

Similar research is carried out by Turchin and Denkenberger [58] where the classifi-
cation of attacks was based on intelligence levels of AI systems. The authors introduced
three levels of AI intelligence with respect to human intelligence: (1) “Narrow AI” which
requires human assistance, (2) “Young AI” which has capability a bit better than human,
and (3) “Mature AI” whose intelligence is super-human. While classifying the intelligence
levels of AI systems, the authors investigated several vulnerabilities during the evolution of
capabilities of AI systems. Yampolsky [59] projected a holistic view of tracks as to why an
AI system could be malicious, classifying the tracks into two stages: (1) Pre-deployment and
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(2) Post-deployment. This includes the intrinsic and extrinsic reasons for AI technologies to
be malicious, such as design flaws, intentional activities, or environmental factors.

3.1. Types of Failures

Shiva Kemar et al. [60] discussed two modes of failures of machine learning (ML)
systems. They claimed that AI systems can fail either due to the inherent design of the
systems (unintentional failures) or by the hand of an adversary (intentional failures).

Unintentional Failures: The unintentional failure mode leads to the failure of an
AI/ML system when the AI/ML system generates formally correct, but completely
unsafe, behavior.

Intentional failures: Intentional failures are caused by the attackers attempting to
destabilize the system either by (a) misclassifying the results, by introducing private
training data, or b) by stealing the foundational algorithmic framework. Depending on
the accessibility of information about the system components (i.e., knowledge), intentional
failures can be further subdivided into different subcategories.

3.1.1. Categories of Unintentional Failures

Unintentional failures happen when AI/ML systems produce an unwanted or unfore-
seen outcome from a determined action. It happens mainly due to system failures. In this
research we further categorize different types of unintentional failures.

• Reward Hacking: Reward hacking is a failure mode that an AI/ML system experi-
ences when the underlying framework is a reinforcement learning algorithm. Reward
hacking appears when an agent has more return as reward in an unexpected manner
in a game environment [61]. This unexpected behavior unsettles the safety of the
system. Yuan et al. [62] proposed a new multi-step reinforcement learning framework,
where the reward function generates a discounted future reward and, thus, reduces
the influence of immediate reward on the current state action pair. The proposed
algorithm creates the defense mechanism to mitigate the effect of reward hacking in
AI/ML systems.

• Distributed Shift: This type of mode appears when an AI/ML model that once
performed well in an environment generates dismal performance when deployed to
perform in a different environment. One such example is when the training and test
data come from two different probability distributions [63]. The distribution shift is
further subdivided into three types [64]:

1. Covariate Shift: The shifting problem arises due to the change in input features
(covariates) over time, while the distribution of the conditional labeling function
remains the same.

2. Label Shift: This mode of failure is complementary to covariate shift, such that the
distribution of class conditional probability does not change but the label marginal
probability distribution changes.

3. Concept Shift: Concept shift is a failure related to the label shift problem where
the definitions of the label (i.e., the posteriori probability) experience spatial or
temporal changes.

Subbaswamy and Saria proposed an operator-based hierarchy of solutions that are
stable to the distributed shift [65]. There are three operators (i.e., conditioning, intervening
and computing counterfactuals) that work on a graph specific to healthcare AI. These oper-
ators effectively remove the unstable component of the graph and retain the stable behavior
as much as possible. There are also other algorithms to maintain robustness against the
distributed shift. Rojas-Carulla et al. [66] proposed a data-driven approach, where the
learning of models occurs using data from diverse environments, while Rothenhausler
et al. [67] devised bounded magnitude-based robustness, where the shift is assumed to
have a known magnitude.



J. Cybersecur. Priv. 2023, 3 171

• Natural Adversarial Examples: The natural adversarial examples are real-world
examples that are not intentionally modified. Rather, they occur naturally, and result
in considerable loss of performance of the machine learning algorithms [68]. The
instances are semantically similar to the input, legible and facilitate interpretation
(e.g., image data) of the outcome [69]. Deep neural networks are susceptible to natural
adversarial examples.

3.1.2. Categories of Intentional Failures

The goal of the adversary is deduced from the type of failure of the model. Chakraborty
et al. [70] identify four different classes of adversarial goals, based on the machine learning
classifier output, which are the following: (1) confidence reduction, where the target model
prediction confidence is reduced to a lower probability of classification, (2) misclassifica-
tion, where the output class is altered from the original class, (3) output misclassification,
which deals with input generation to fix the classifier output into a particular class, and
(4) input/output misclassification, where the label of a particular input is forced to have a
specific class.

Shiv Kumar et al. [60] identified the taxonomy of intentional failures/attacks, based
on the knowledge of the adversary. It deals with the extent of knowledge needed to trigger
an attack for the AI/ML systems to fail. The adversary is better equipped with more
knowledge [70] to perform the attack.

There are three types of classified attacks based on the adversary’s access to knowledge
about the system.

1 Whiteb ox Attack: In this type of attack, the adversary has access to the parameters
of the underlying architecture of the model, the algorithm used for training, weights,
training data distribution, and biases [71,72]. The adversary uses this information
to find the model’s vulnerable feature space. Later, the model is manipulated by
modifying an input using adversarial crafting methods. An example of the whitebox
attack and adversarial crafting methods are discussed in later sections. The researchers
in [73,74] showed that adversarial training of the data, filled with some adversarial
instances, actually helps the model/system become robust against whitebox attacks.

2 Blackbox Attack: In blackbox attacks the attacker does not know anything about the
ML system. The attacker has access to only two types of information. The first is the
hard label, where the adversary obtained only the classifier’s predicted label, and the
second is confidence, where the adversary obtained the predicted label along with
the confidence score. The attacker uses information about the inputs from the past to
understand vulnerabilities of the model [70]. Some blackbox attacks are discussed in
later sections. Blackbox attacks can further be divided into three categories:

• Non-Adaptive Blackbox Attack: In this category of blackbox attack, the adversary
has the knowledge of distribution of training data for a model, T. The adversary
chooses a procedure, P, for a selected local model, T’, and trains the model on known
data distribution using P for T’ to approximate the already learned T in order to trigger
misclassification using whitebox strategies [53,75].

• Adaptive Blackbox Attack: In adaptive blackbox attack the adversary has no
knowledge of the training data distribution or the model architecture. Rather, the
attacker approaches the target model, T, as an oracle. The attacker generates a selected
dataset with a label accessed from adaptive querying of the oracle. A training process,
P, is chosen with a model, T’, to be trained on the labeled dataset generated by the
adversary. The model T’ introduces the adversarial instances using whitebox attacks
to trigger misclassification by the target model T [70,76].

• Strict Blackbox Attack: In this blackbox attack category, the adversary does not
have access to the training data distribution but could have the labeled dataset (x, y)
collected from the target model, T. The adversary can perturb the input to identify the
changes in the output. This attack would be successful if the adversary has a large set
of dataset (x,y) [70,71].
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Grayb ox attacks: In whitebox attacks the adversary is fully informed about the
target model, i.e., the adversary has access to the model framework, data distribution,
training procedure, and model parameters, while in blackbox attacks, the adversary has
no knowledge about the model. The graybox attack is an extended version of either
whitebox attack or blackbox attack. In extended whitebox attacks, the adversary is partially
knowledgeable about the target model setup, e.g, the model architecture, T, and the training
procedure, P, is known, while the data distribution and parameters are unknown. On the
other hand, in the extended blackbox attack, the adversarial model is partially trained, has
different model architecture and, hence, parameters [77].

3.2. Anatomy of Cyberattacks

To build any machine learning model, the data needs to be collected, processed,
trained, and tested and can be used to classify new data. The system that takes care of
the sequence of data collection, processing, training and testing can be thought of as a
generic AI/ML pipeline, termed the attack surface [70]. An attack surface subjected to
adversarial intrusion may face poisoning attack, evasion attack, and exploratory attack.
These attacks exploit three pillars of the information security, i.e., Confidentiality, Integrity,
and Availability, known as the CIA triad [78]. Integrity of a system is compromised by
the poisoning and evasion attacks, confidentiality is subject to intrusion by extraction,
while availabilty is vulnerable to poisoning attacks. The entire AI pipeline, along with the
possible attacks at each step, are shown in Figure 1.

Figure 1. ML Pipeline with Cyberattacks Layout.
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3.3. Poisoning Attack

Poisoning attack occurs when the adversary contaminates
the training data. Often ML algorithms, such as intrusion detection systems, are

retrained on the training dataset. In this type of attack, the adversary cannot access the
training dataset, but poisons the data by injecting new data instances [35,37,40] during the
model training time. In general, the objective of the adversary is to compromise the AI
system to result in the misclassification of objects.

Poisoning attacks can be a result of poisoning the training dataset or the trained
model [1]. Adversaries can attack either at the data source, a platform from which a
defender extracts its data, or can compromise the database of the defender. They can
substitute a genuine model with a tainted model. Poisoning attacks can also exploit the
limitations of the underlying learning algorithms. This attack happens in federated learning
scenarios where the privacy on individual users’ dataset is maintained [47]. The adversary
takes advantage of the weakness of federated learning and may take control of both the
data and algorithm on an individual user’s device to deteriorate the performance of the
model on that device [48].

3.3.1. Dataset Poisoning Attacks

The major scenarios of data poisoning attacks are error-agnostic poisoning attacks and
error-specific poisoning attacks. In the error-agnostic type of poisoning attack the hacker
aims to cause a Denial of Service (DOS) kind of attack. The hacker causes the system to
produce errors, but it does not matter what type of error it is. For example, in a multi-class
classification task a hacker could poison the data leading to misclassification of the data
points irrespective of the class type, thus maximizing the loss function of the learning
algorithm. To launch this kind of attack, the hacker needs to manipulate both the features
and the labels of the data points. On the other hand, in error-specific poisoning attacks, the
hacker causes the system to produce specific misclassification errors, resulting in security
violation of both integrity and availability. Here, the hacker aims at misclassifying a
small sample of chosen data points in a multi-class classification task. The hacker aims to
minimize the loss function of the learning algorithm to serve the purpose, i.e., to force the
system into misclassifying specific instances without compromising the normal system
operation, ensuring that the attack is undetected [38,39].

A model is built up from a training dataset. So, attacking the dataset results in
poisoning the model. By poisoning the dataset, the adversary could manipulate to generate
natural adversarial examples, or inject instances with incorrect labels into the training
dataset. The model may learn the pattern on misclassified examples in the data that serves
the goal of the adversary. The dataset poisoning attacks can be further subdivided into two
categories [79].

• Data Modification: The adversary updates or deletes training data. Here, the attacker
does not have access to the algorithm. They can only manipulate labels. For instance,
the attacker can draw new labels at random from the training pool, or can optimize
the labels to cause maximum disruption.

• Data Injection: Even if the adversary does not have access to the training data or
learning algorithm, he or she can still inject incorrect data into the training set. This
is similar to manipulation, but the difference is that the adversary introduces new
malicious data into the training pool, not just labels.

Support Vector Machines (SVMs) are widely used classification models for malware
identification, intrusion detection systems, and filtering of spam emails, to name a few
applications. Biggio, Nelson and Laskov [40] illustrated poisoning attacks on the SVM
classifier, with the assumption that the adversary has information about the learning
algorithm, and the data distribution. The adversary generates surrogate data from the
data distribution and tampers with the training data, by introducing the surrogate data,
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to drastically reduce the model training accuracy. The test data remains untouched. The
authors formed an equation, expressing the adversarial strategy, as:

MAXx A(x) = ∑k
i=1(1− yi fx(xi)) = ∑k

i=1 (−gi)

where xl ≤ x ≤ xu and D = (xi, yi}k
i=1 is the validation data.

The goal of the adversary is to maximize the loss function A(x) with the surrogate
data instance (x, y) to be added into the training set Dtr in order to maximally reduce the
training accuracy of classification. gi is the status of the margin, influenced by the surrogate
data instance (x, y).

Rubinstien et al. [80] presented the attack on SVM learning by exploiting training data
confidentiality. The objective is to access the features and the labels of the training data by
examining the classification on the test set.

Figure 2 explains the poison attack on the SVM classifier. The left sub-figure indicates
the decision boundary of the linear SVM classifier, with support vectors and classifier
margin. The right sub-figure shows how the decision boundary is drastically changed
by tampering with one training data instance without changing the label of the instance.
It was observed that the classification accuracy would be reduced by 11% by a mere 3%
manipulation of the training set [81]. Nelson et al. [39] showed that an attacker can breach
the functionality on the spam filter by poisoning the Bayesian classification model. The
filter becomes inoperable under the proposed Usenet dictionary attack, wherein 36% of the
messages are misclassified with 1% knowledge regarding the messages in the training set.

Figure 2. Poisoning attack changing the decision boundary.

Munoz-Gonzalez et al. [38] illustrated poisoning attacks on multi-class classification
problems. The authors identified two attack scenarios for the multi-class problems: (1) error-
generic poisoning attacks and (2) error-specific poisoning attacks. In the first scenario,
the adversary attacks the bi-level optimization problem [40,82], where the surrogate data
is segregated into training and validation sets. The model is learned on the generated
surrogate training dataset with the tampered instances. The validation set measures the
influence of the tampered instances on the original test set, by maximizing the binary class
loss function. It is expressed in the following equation:

D∗x = argmaxD′x
A
(

D
′
x, σ
)
= L(

︷ ︸︸ ︷
D̂val ,

︷︸︸︷
θ )

Such as
︷︸︸︷

θ = minw∗L(D̂tr U D
′
x, θ∗)

The surrogate data D̂ is segregated into training D̂tr and validation sets D̂val . The
model is trained on D̂tr along with D

′
x (i.e., the tampered instances). D̂val is used to measure

the influence of the tainted samples on the genuine data via the function A
(

D
′
x, σ
)

that

explains the loss function, L, with respect to the validation dataset D̂val and the parameters︷︸︸︷
θ of the surrogate model. In the multi-class scenario, the multi-class loss function is

used for error-generic poisoning attacks.
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In error-specific poisoning attacks, the objective remains to change the outcome of
specific instances in a multi-class scenario. The goal of desired misclassification is expressed
with the equation:

(
D
′
x, σ
)
= −L(

︷ ︸︸ ︷
D̂∗val ,

︷︸︸︷
θ )

D̂∗val is the same as the D̂val with different labels for desired misclassified instances that the
adversary chose. The attacker aims to minimize the loss of the chosen misclassified samples.

In separate research, Kloft and Laskov [83] explained the adversarial attack on de-
tection of outliers (anomalies), where the adversary is assumed to have knowledge about
the algorithm and the training data. Their work introduced a finite sliding window, while
updating the centre of mass iteratively for each new data instance. The objective is to accept
the poisoned data instance as a valid data point, and the update on the center of mass is
shifted in the direction of the tainted point, that appears to be a valid one. They show that
relative displacement, d, of the center of mass under adversarial attack is lower bounded
by the following inequality when the training window length is infinite:

di ≤ ln(1 +
i
n
)

where i and n are the number of tampered points and number of training points, respectively.
The intuition behind the use of anomaly detection is to sanitize the data by removing

the anomalous data points, assuming the distribution of the anomalies is different from that
of the normal data points. Koh, Steinhardt, and Liang [84] presented data poisoning attacks
that outsmart data sanitization defenses for traditional anomaly detection, by nearest
neighbors, training loss and singular value decomposition methods. The researchers
divided the attacks into two groups:

• High Sensitive: An anomaly detector usually considers points as anomalous when
the point is far off from its closest neighbors. The anomaly detector cannot identify a
specific point as abnormal if it is surrounded by other points, even if that tiny cluster
of points are far off from remaining points. So, if an adversary/attacker concentrates
poison points in a few anomalous locations, then the anomalous location is considered
benign by the detector.

• Low Sensitive : An anomaly detector drops all points away from the centroid by
a particular distance. Whether the anomaly detector deems a provided point as
abnormal does not vary much by addition or deletion of some points, until the
centroid of data does not vary considerably.

Attackers can take advantage of this low sensitivity property of detectors and optimize
the location of poisoned points such that it satisfies the constraints imposed by the defender.

Shafahi et al. [85] discussed how classification results can be manipulated just by
injecting adversarial examples with correct labels. which is known as the clean-label attack.
The clean-label attack is executed by changing the normal (“base”) instance to reflect the
features of another class, as shown in Figure 3. The Gmail image is marked with blue dots
and lies on the feature space of the target dataset. This poisoned data is used for training
and shifts the decision boundary, as shown in Figure 4.

Due to the shift, the target instance is classified as “base” instance. Here, the adversary
tries to craft a poison instance such that it is indistinguishable from the base instance, i.e.,
the instance looks similar, and also minimizes the feature representation between the target
and poison instances so that it triggers misclassification while training. This attack can be
crafted using the optimization problem by means of the following equation:

p = argminx || f (x)− f (t)||22 + β ∗ ||x− b||22
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where b is the base instance, and t and p are the target and poison instances, respectively.
The parameter β identifies the degree to which p appears to be a normal instance to the
human expert.

Figure 3. Clean-label attack procedure and example.

Figure 4. Badnet of MINST sample [42].

Suciu et al. [86] presented a similar type of attack on neural networks, but with the con-
straint that at least 12.5% of every mini-batch of training data should have tainted examples.

3.3.2. Data Poisoning Defense Mechanisms

There are studies that propose potential defense mechanisms to resolve the problems
related to the data poisoning attacks discussed thus far. Devising a generic defense strategy
against all attacks is not possible. The defense strategies are specific to the attack and a
defense scheme specific to an attack makes the system susceptible to a different kind of
attack. Some advanced defense strategies include:

1. Adversarial Training : The goal of adversarial training is to inject instances generated
by the adversary into the training set to increase the strength of the model [87,88].
The defender follows the same strategy, by generating the crafted samples, using the
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brute force method, and training the model by feeding the clean and the generated
instances. Adversarial training is suitable if the instances are crafted on the original
model and not on a locally-trained surrogate model [89,90].

2. Feature Squee zing: This defense strategy hardens the training models by dimin-
ishing the number of features and, hence, the complexity of data [91]. This, in
turn, reduces the sensitivity of the data, which evades the tainted data marked by
the adversary.

3. Transferability blocking: The true defense mechanism against blackbox attacks is to
obstruct the transferability of the adversarial samples. The transferability enables the
usage of adversarial samples in different models trained on different datasets. Null
labeling [92] is a procedure that blocks transferability, by introducing null labels into
the training dataset, and trains the model to discard the adversarial samples as null
labeled data. This approach does not reduce the accuracy of the model with normal
data instances.

4. MagNet: This scheme is used to arrest a range of blackbox attacks through the use
of a detector and a reformer [93]. The detector identifies the differences between the
normal and the tainted samples by measuring the distance between them with respect
to a threshold. The reformer converts a tampered instance to a legitimate one by
means of an autoencoder.

5. Defense-GAN: To stave off both blackbox and whitebox attacks, the capability of
General Adversarial Network (GAN) [94] is leveraged [95]. GAN uses a generator to
construct the input images by minimizing the reconstruction error. The reconstructed
images are fed to the system as input, where the genuine instances are closer to the
generator than the tainted instances. Hence, the performance of the attack degrades.

6. Local Intrinsic Dimensionality: Weerashinghe et al. [96] addressed resistance against
data poisoning attack on SVM classifiers during training. They used Local Intrinsic
Dimensionality (LID), a metric of computing dimension of local neighborhood sub-
space for each data instance. They also used K-LID approximation for each sample to
find the likelihood ratio of K-LID values from the distribution of benign samples to
that from tainted samples. Next, the function of the likelihood ratio is fitted to predict
the likelihood ratio for the unseen data points’ K-LID values. The technique showed
stability against adversarial attacks on label flipping.

7. Reject On Negative Impact (RONI): The functioning of the RONI technique is very
similar to that of the Leave-One-Out (LOO) validation procedure [97]. Although
effective, this technique is computationally expensive and may suffer from overfitting
if the training dataset used by the algorithm is small compared to the number of
features. RONI defense is not well suited for applications that involve deep learning
architectures, as those applications would demand a larger training dataset [39].
In [98], a defensive mechanism was proposed based on the k-Nearest Neighbors
technique, which recommends relabeling possible malicious data points based on the
labels of their neighboring samples in the training dataset. However, this strategy
fails to detect attacks in which the subsets of poisoning points are close. An outlier
detection scheme was proposed in [99] for classification tasks. In this strategy, the
outlier detectors for each class are trained with a small fraction of trusted data points.
This strategy is effective in attack scenarios where the hacker does not model specific
attack constraints. For example, if the training dataset is poisoned only by flipping
the labels, then this strategy can detect those poisoned data points which are far from
the genuine ones. Here, it is important to keep in mind that outlier detectors used in
this technique need to first be trained on small curated training points that are known
to be genuine [99].

In many studies, the defense strategies are for the time of filtering of data during
anomaly detection (i.e., before the model is trained). Koh, Steinhardt, and Liang [84] con-
sidered data sanitization defenses of five different types, from the perspective of anomaly
detection, each with respective anomaly detection parameters β and parametrarized scores
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Sβ
which identify the degree of anomaly. Dclean and Dpoison are the datasets for clean and

poisoned instances D = Dclean ∪ Dpoisin and β is derived from D.
(1) L-2 Defense: This type of defense discards the instances that are distant from the

center of the corresponding class they belong to, from the perspective of the L-2 distance
measure. The outlier detection parameter and parametrarized score for the L-2 defense are
expressed as:

βy = ExpectationD(x|y)

Sβ(x, y) = ||x− βy||2

(2) Slab Defense: Slab defense [81] draws the projections of the instances on the
lines or planes joining the class centers and discards those that are too distant from the
centers of the classes. Unlike the L-2 defense, this mechanism considers only the distances
between the class centers as pertinent dimensions. The outlier detection parameter and
parametrarized score for the slab defense are expressed as:

βy = ExpectationD(x|y)

Sβ(x, y) = |(β1 − β−1)
T(x− βy

)
|

where θ is the learning parameter that minimizes the training loss, x denotes the data point
and y is the class.

(3) Loss Defense: Loss defense removes points that are not fitted well by the trained
model on D. The feature dimensions are learned based on loss function l. The outlier
detection parameter and parametrarized score for the loss defense are expressed as:

βy = argminθExpectationDlθ [(x|y)]

Sβ(x, y) = lβ(x|y)

(4) SVD Defense : SVD defense is the mechanism that works on the basis of sub-space
assumption [100]. In this defense mechanism the normal instances are assumed to lie in
low-ranked sub-space while the tampered instances have components that are too large to
fit into this sub-space. The outlier detection parameter and parametrarized score for the
loss defense are expressed as:

β = |M|kRSV

Sβ(x, y) = ||
(

I − ββT
)

x||
2

The term |M|kRSV is the matrix of Sβ(x, y) = |
((

I − ββT)x∣∣|2 right singular vector of
data matrix d.

(5) K-NN Defense: The K-NN defense discards data instances that are distant from
the K nearest neighbors. The outlier detection parameter and parametrarized score for the
k-NN defense are expressed as:

β = D

Sβ(x, y) = distk-NN ∈ β
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Koh, Steinhardt, and Liang [84] have tested these 5 types of data sanitization de-
fenses on four types of datasets: The MNIST dataset [101], Dogfish [102], Enron spam
detection [103] and the IMDB sentiment classification datasets [104]. The first two datasets
are image datasets. The results showed that these defenses could still be evaded with
concentrated attacks where the instances concentrated in a few locations appear to be
normal. However, it was observed that L-2, slab and loss defenses still diminished the test
error (which is exploited by the adversary to launch a data poisoning attack) considerably,
compared to the SVD and k-NN defenses.

Peri et al. [105] proposed a defense mechanism resisting clean-label poison attacks, based
on k-NN, and identified 99% of the poisoned instances, which were eventually discarded
before model training. The authors claimed that this scheme, known as Deep K-NN, worked
better than the schemes provided by [84], without reducing the model’s performance.

3.3.3. Model Poisoning Attacks

Poisoning of models is more like a traditional cyberattack. If attackers breach the AI
system, then either they can compromise the existing AI model with the poisoned one or
they can execute “A man in the middle” attack [106] to have the wrong model downloaded,
while transferring learning.

Model poisoning is generally done using Backdoored Neural Network (BadNet)
attack [45]. BadNets are modified neural networks, in which the model is trained on clean
and poisoned inputs. In this, the training mechanism is fully or partly outsourced to the
adversary, who returns the model with secret backdoor inputs. Secret backdoor inputs are
inputs added by the attacker which result in misclassification. The inputs are known only
to the attacker. BadNet is categorized into two related classes:

1. Outsource training attack, when training is outsourced, and
2. Transfer learning attack, when a pre-trained model is outsourced and used.

In the following subsections, we also explore model poisoning attacks on the federated
learning scenario, where the training of the model is distributed on multiple computing
devices and the results of the training are aggregated from all the devices to form the
final training model. Bhagoji et al. [41] classified the model poisoning attack strategies on
federated learning scenarios as: (1) explicit boosting, and (2) alternating minimization.

Outsourced Training Attack

We want to train the parameters of a model, M. using the training data. We outsource
the description of M to the trainer who sends the learned parameters back to us βM. Our
trustability of the trainer depends on a privately held validation dataset, with a targeted
accuracy, or on the service agreement between us and the trainer.

The objective of the adversary is to return a corrupted model with backdoored trained
parameters β

′
M. This is different from βM and either should not lower the validation

accuracy or decrease the model accuracy of the inputs with a backdoor trigger. Thus, the
training attack can be targeted or untargeted. In a targeted attack, the adversary switches
the label of the outputs for specific inputs, while in an untargeted attack, the input of the
backdoored property remains misclassified to degrade the overall model accuracy.

Figure 4 depicts an example of backdoor attacks where the second and third images are
the original image’s backdoored version, whereas Figure 5 depicts an example of BadNet
attacks on traffic images.

Figure 5. Badnet Example [42].
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Figure 6 illustrates a special type of potential BadNet (i.e., BadNet with backdoor
detector) which makes use of a parallel link to identify the backdoor trigger. It also uses
a combining layer to produce misclassifications if the backdoor appears. This perturbed
model would not impact the results on a cleaned dataset, so the user would not be able to
identify if the model has been compromised.

Figure 6. Badnet Model [42].

In terms of defense mechanisms, Backdoor attacks like BadNet happen when we use
pre-trained models. So, the less pre-trained the model, the less the attack. However, today,
almost all networks are built using pre-trained models.

To make the models robust against backdoor attacks, Gu et al. [42] proposed the
following defense strategies:

• Securely hosting and disseminating pre-trained models in virtual repositories that
guarantee integrity, to preclude benevolent models from being manipulated. The
security is characterized by the fact that virtual archives should have digital signatures
of the trainer on the pre-trained models with the public key cryptosystem [43].

• Identifying backdoors in malevolently trained models acquired from an untrustworthy
trainer by retraining or fine-tuning the untrusted model with some added compu-
tational cost [44,46]. These researchers considered fully outsourced training attacks.
Another research [107], proposed a defense mechanism with an assumption that the
user has access to both clean and backdoored instances.

Transfer Learning Attack

The objective of transfer learning is to save computation time, by transferring the
knowledge of an already-trained model to the target model [45]. The models are stored in
online repositories from where a user can download them for an AI/ML application. If the
downloaded model, Mcor, is a corrupted model, then, while transferring learning, the user
generates his/her model and parameters based on Mcor. In transfer learning attacks, we
assume that the newly adapted model, Mcor , and the uncorrupted model have the same
input dimensions but differ in number of classes.

Figure 7 compares a good network (left), that rightly classifies its input, to BadNet
(right), that gives misclassifications but has the same architecture as the good network.

Figure 8 describes the transfer learning attack setup with backdoor strengthening
factor to enhance the impact of weights.

In terms of potential defense mechanisms, the obvious defense strategy is to obtain
pre-trained models from trusted online sources, such as Caffe Model Zoo and Keras trained
Model Library [108], where a secure cryptographic hashing algorithm (e.g., SHA-1) is
used as a reference to verify the downloads. However, the researchers in [42] showed
that downloaded BadNet from “secure” online model archives can still hold the backdoor
property, even when the user re-trains the model to perform his/her tasks.
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Figure 7. Transfer learning using the BadNet [42].

Figure 8. Transfer Learning set up attacks [42].

Wu et al. [109] devised methodologies to resolve transfer learning attacks related
to misclassification. They proposed activation-based pruning [110] and developed the
distilled differentiator, based on pruning. To augment strength against attacks, the ensemble
construct from the differentiators is implemented. As the individual distilled differentiators
are diverse, in activation-based pruning, different training examples promote divergence
among the differentiators; hence, increasing the strength of ensemble models. Pruning
changes the model structure and arrests the portability of attack from one system to the
other [44,46]. Network pruning removes the connectives between the model and generates a
sparse model from a dense network model. The sparsity helps in fine tuning the model and
eventually discarding the virulence of the attacks. Comprehensive evaluations, based on
classification accuracy, success rate, size of the models, and time for learning, regarding the
defense strategies suggested by the authors, on image recognition showed the new models,
with only five differentiators, to be invulnerable against more than 90% of adversarial
inputs, with accuracy loss less than 10%.

Attack on Federated Learning

In the federated learning scenario, each and every individual device has its own model
to train, securing the privacy of the data stored in that device [47]. Federated learning
algorithms are susceptible to model poisoning if the owner of the device becomes malicious.
Research [111,112] introduced a premise for federated learning, where a single adversary
attacks the learning by changing the gradient updates to arbitrary values, instead of
introducing the backdoor property into the model. The objective of the attacker is to obstruct
the convergence of the execution of the distributed Stochastic Gradient Descent (SGD)
algorithm. In a similar study, Bagdasaryan et al. [48] proposed a multi-agent framework,
where multiple adversaries jointly conspired to replace the model during model covergence.
Bhagoji et al. [41] worked on targeted misclassification by introducing a sequence of attacks
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induced by a single adversary: (1) explicit boosting, and (2) alternating minimization. The
underlying algorithm is SGD.

• Explicit Boosting: The adversary updates the boosting steps to void the global aggre-
gated effect of the individual models locally distributed over different devices. The
attack is based on running of boosting steps of SGD until the attacker obtains the
parameter weight vector, starting from the global weight, to minimize the training loss
over the data and the class label. This enables the adversary to obtain the initial update,
which is used to determine the final adversarial update. The final update is obtained
by the product of the final adversarial update and the inverse of adversarial scaling
(i.e., the boosting factor), so that the server cannot identify the adversarial effect.

• Alternating Minimization: The authors in [45] showed that, in an explicit boosting
attack, the malicious updates on boosting steps could not evade the potential defense
related to measuring accuracy. Alternating minimization was introduced to exploit
the fact that it is updates related only to the targeted class that need to be boosted. This
strategy improves adversarial attack that can bypass the defense mechanism with the
goal of minimizing training loss and boosting parameter updates for the adversarial
goals and achieved a high success rate.

In terms of potential defense mechanisms, two typical strategies are deployed, de-
pending on the nature of the attacks on federated learning: (1) robust aggregation methods,
and (2) robust learning rate.

• Robust aggregation methods: These methods incorporate security into federated
learning by exploring different statistical metrics that could replace the average (mean)
statistic, while aggregating the effects of the models, such as trimmed mean, geometric
median, coordinate-median, etc [47,111,113–116]. Introducing the new statistic while
aggregating has the primary objective of staving off attacks during model convergence.
Bernstein et al. [117] proposed a sign aggregation technique on the SGD algorithm,
distributed over individual machines or devices. The devices interact with the server
by communicating the signs of the gradients. The server aggregates the signs and
sends this to the individual machines, which use it to update their model weights. The
weight update rule can be expressed by the following equation:

wt+1 = wt + γ(sgn∑i∈At
sgn(∆i

t))

where ∆i
t is the weight update of the device i at time t. ∆i

t = wk
t − wt.wt is the weight

the server sent to the set of devices At at time t and γ is the server learning rate.

This approach is robust against convergence attacks, but susceptible to backdoor
attacks in federated learning scenarios.

In a recent study, [118] the authors modified the mean estimator of the aggregate
by introducing weight-cutoff and addition of noise [119] during weight update to deter
backdoor attacks. In this method, the server snips the weights when the L2 norm of a weight
update surpasses a pre-specified threshold, and then aggregates the snipped weights, along
with the noise, during aggregation of weights.

• Robust Learning Rate: Ozdayi, Katancioglu, and Gel [120] introduced the defense
mechanism by making the model learning rate robust with a pre-specified boundary
of malicious agents. With the help of the updated learning rate, the adversarial
model weight approaches the direction of the genuine model weight. This work is
an extension of the signed aggregation proposed in [117]. The authors proposed a
parameter-learning threshold δ. The learning rate for the i-th dimension of the data
can be represented as:

γδ,i =

{
γ if

∣∣∣∑k∈St sgn
(

∆k
t,i

)∣∣∣
−γ otherwise

≥ δ
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The server weight update at time t + 1 is

wt+1 = wt + γδ �
∑k∈St nk 4k

t

∑k∈St nk

where γδ is the overall learning rate, including all dimensions, and � is the feature-wise
product operation. ∆k is the update on the gradient descent update of the k-th player in the
system, and k may be the adversary or the regular user.

3.4. Model Inversion Attack

The model inversion attack is a way to reconstruct the training data, given the model
parameters. This type of attack is a concern for privacy, because there are a growing number
of online model repositories. Several studies related to this attack hve been under both
the blackbox and whitebox settings. Yang et al. [121] discussed the model inversion attack
in the blackbox setting, where the attacker wants to reconstruct an input sample from the
confidence score vector determined by the target model. In their study, they demonstrated
that it is possible to reconstruct specific input samples from a given model. They trained
a model (inversion) on an auxiliary dataset, which functioned as the inverse of the given
target model. Their model then took the confidence scores of the target model as input and
tried to reconstruct the original input data. In their study, they also demonstrated that their
inversion model showed substantial improvement over previously proposed models. On
the other hand, in a whitebox setting, Fredrikson et al. [122] proposed a model inversion
attack that produces only a representative sample of a training data sample, instead of
reconstructing a specific input sample, using the confidence score vector determined by the
target model. Several related studies were proposed to infer sensitive attributes [122–125]
or statistical information [126] about the training data by developing an inversion model.
Hitaj et al. [71] explored inversion attacks in federated learning where the attacker had
whitebox access to the model.

Several defense strategies against the model inversion attack have been explored
that include L2 Regularizer [49], Dropout and Model Staking [50], MemGuard [51], and
Differential privacy [52]. These defense mechanisms are also well-known for reducing
overfitting in the training of deep neural network models.

3.5. Model Extraction Attack

A machine learning model extraction attack arises when an attacker obtains black-
box access to the target model and is successful in learning another model that closely
resembles. or is exactly the same as, the target model. Reith et al. [54] discussed model
extraction against the support vector regression model. Juuti et al. [127] explored neural
networks and showed an attack, in which an adversary generates queries for DNNs with
simple architectures. Wang et al., in [128], proposed model extraction attacks for stealing
hyperparameters against a simple architecture similar to a neural network with three layers.
The most elegant attack, in comparison to the others, was shown in [129]. They showed
that it is possible to extract a model with higher accuracy than the original model. Using
distillation, which is a technique for model compression, the authors in [130,131], executed
model extraction attacks against DNNs and CNNs for image classification.

To defend against model extraction attacks, the authors in [53,132,133] proposed either
hiding or adding noises to the output probabilities, while keeping the class label of the
instances intact. However, such approaches are not very effective in label-based extraction
attacks. Several others have proposed monitoring the queries and differentiating suspicious
queries from others by analyzing the input distribution or the output entropy [127,134].

3.6. Inference Attack

Machine learning models have a tendency to leak information about the individual
data records on which they were trained. Shokri et al. [49] discussed the membership
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inference attack, where one can determine if the data record is part of the model’s training
dataset or not, given the data record and blackbox access to the model. According to them,
this is a concern for privacy breach. If the advisory can learn if the record was used as part
of the training, from the model, then such a model is considered to be leaking information.
The concern is paramount, as such a privacy beach not only affects a single observation,
but the entire population, due to high correlation between the covered and the uncovered
dataset [135]. This happens particularly when the model is based on statistical facts about
the population.

Studies in [136–138] focused on attribute inference attacks. Here an attacker gets access
to a set of data about a target user, which is mostly public in nature, and aims to infer the
private information of the target user. In this case, the attacker first collects information
from users who are willing to disclose it in public, and then uses the information as a
training dataset to learn a machine learning classifier which can take a user’s public data as
input and predict the user’s private attribute values.

In terms of potential defense mechanisms, methods proposed in [55,139] leveraged
heuristic correlations between the records of the public data and attribute values to defend
against attribute inference attacks. They proposed modifying the identified k entries that
have large correlations with the attribute values to any given target users. Here k is used to
control the privacy–utility trade off. This addresses the membership inference attack.

4. Conclusions

Using an extensive survey of the literature, this research addresses two research
questions regarding attacks on AI systems and their potential defense mechanisms.

RQ1: What are the cyberattacks that AI systems can be subjected to?
To answer this question, we discussed different categories of intentional and uninten-

tional failures, along with the details of poisoning attacks on data and machine learning
models. We also introduced backdoored neural network (discussing it from the perspec-
tive of research carried out on outsourced training attacks, transfer learning attack and
federated learning attacks), model inversion, model extraction and inference attacks.

RQ2: Can the attacks on AI systems be organized into a taxonomy, to better understand
how the vulnerabilities manifest themselves during system development?

Upon reviewing the literature related to attacks on AI systems, it was evident that,
at different stages of the AI/ML pipeline development, vulnerabilities manifest; thus,
providing an opportunity to launch attacks on the AI system. Table 1 and Figure 1 organize
the AI attacks into a taxonomy, to better understand how vulnerabilities manifest and how
attacks can be launched during the entire system development process.

RQ3: What are possible defense mechanisms to defend AI systems from cyberattacks?
While addressing the second research question, we reviewed multiple state of the art

methods that are used as potential defense mechanisms for each type of attack.
RQ4: Is it possible to device a generic defense mechanism against all kinds of AI attacks?
Based on the literature review of cyberattacks on AI systems. it is clearly evident that

there is no single. or generic, defense mechanism that can address diverse attacks on AI
systems. Vulnerabilities that manifest in AI systems are more specific to the system design
and its composition. Therefore, a defense mechanism has to be tailored, or designed, in
such a way that it can suit the specific characteristics of the system.

This survey sheds light on the different types of cybersecurity attacks and their corre-
sponding defense mechanisms in a detailed and comprehensive manner. Growing threats
and attacks in emerging technologies, such as social media, cloud computing, AI/ML sys-
tems, data pipelines and other critical infrastructures, often manifest in different forms. It is
worth noting that it is challenging to capture all patterns of threats and attacks. Therefore,
this survey attempted to capture a common set of general threat and attack patterns that
are specifically targeted towards AI/ML systems. Organizing this body of knowledge.
from the perspective of an AI system’s life cycle, can be useful for software engineering
teams when designing and developing intelligent systems. In addition, this survey offers
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a profound benefit to the research community focused on analyzing the cybersecurity
of AI systems. Researchers can implement and replicate these attacks on an AI system,
systematically apply defenses against these attacks, understand the trade offs that arise
from using defense mechanisms, and create a catalog of patterns or tactics for designing
trustworthy AI systems.
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