
Citation: Tayyab, U.-e.-H.; Khan, F.B.;

Durad, M.H.; Khan, A.; Lee, Y.S. A

Survey of the Recent Trends in Deep

Learning Based Malware Detection. J.

Cybersecur. Priv. 2022, 2, 800–829.

https://doi.org/10.3390/jcp2040041

Academic Editor: Hossein Saiedian

Received: 11 August 2022

Accepted: 22 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

A Survey of the Recent Trends in Deep Learning Based
Malware Detection
Umm-e-Hani Tayyab 1, Faiza Babar Khan 1 , Muhammad Hanif Durad 1, Asifullah Khan 2,3,4,*
and Yeon Soo Lee 5,*

1 CIPMA Lab, DCIS, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
2 Pattern Recognition Lab (PRLab), Department of Computer & Information Sciences, Pakistan Institute of

Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
3 PIEAS Artificial Intelligence Center (PAIC), Pakistan Institute of Engineering & Applied Sciences, Nilore,

Islamabad 45650, Pakistan
4 Deep Learning Lab, Center for Mathematical Sciences (CMS), Pakistan Institute of Engineering & Applied

Sciences, Nilore, Islamabad 45650, Pakistan
5 Department of Biomedical Engineering, College of Medical Science, Catholic University of Daegu Hayangro,

13-13, Hayang-Eup, Gyoungsan-si 38430, Gyoungsangbuk-do, Korea
* Correspondence: asif@pieas.edu.pk (A.K.); yeonsoolee@cu.ac.kr (Y.S.L.)

Abstract: Monitoring Indicators of Compromise (IOC) leads to malware detection for identifying
malicious activity. Malicious activities potentially lead to a system breach or data compromise.
Various tools and anti-malware products exist for the detection of malware and cyberattacks utilizing
IOCs, but all have several shortcomings. For instance, anti-malware systems make use of malware
signatures, requiring a database containing such signatures to be constantly updated. Additionally,
this technique does not work for zero-day attacks or variants of existing malware. In the quest to fight
zero-day attacks, the research paradigm shifted from primitive methods to classical machine learning-
based methods. Primitive methods are limited in catering to anti-analysis techniques against zero-day
attacks. Hence, the direction of research moved towards methods utilizing classic machine learning,
however, machine learning methods also come with certain limitations. They may include but not
limited to the latency/lag introduced by feature-engineering phase on the entire training dataset as
opposed to the real-time analysis requirement. Likewise, additional layers of data engineering to cater
to the increasing volume of data introduces further delays. It led to the use of deep learning-based
methods for malware detection. With the speedy occurrence of zero-day malware, researchers chose
to experiment with few shot learning so that reliable solutions can be produced for malware detection
with even a small amount of data at hand for training. In this paper, we surveyed several possible
strategies to support the real-time detection of malware and propose a hierarchical model to discover
security events or threats in real-time. A key focus in this survey is on the use of Deep Learning-based
methods. Deep Learning based methods dominate this research area by providing automatic feature
engineering, the capability of dealing with large datasets, enabling the mining of features from limited
data samples, and supporting one-shot learning. We compare Deep Learning-based approaches with
conventional machine learning based approaches and primitive (statistical analysis based) methods
commonly reported in the literature.

Keywords: malware; machine learning; Deep Learning; few shot learning; Cyber Attacks

1. Introduction

According to the Panda Security report [1], hackers are involved in creating around
230,000 malware samples daily, a number expected to grow in the coming years. According
to an FBI report [2], ransomware is considered to be one of the fastest-growing threats, with
over 4000 ransomware attacks occurring every day since 2016. Ransomware is capable of
targeting home users, small and large businesses, and has the potential to cause the loss of

J. Cybersecur. Priv. 2022, 2, 800–829. https://doi.org/10.3390/jcp2040041 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp2040041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0002-6751-8360
https://orcid.org/0000-0003-2039-5305
https://doi.org/10.3390/jcp2040041
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp2040041?type=check_update&version=2

J. Cybersecur. Priv. 2022, 2 801

sensitive information temporarily or permanently according to [3]. Critical infrastructure is
the most luring target for the ones who are well versed with the damages that can be caused
by ransomware. Ransomware is the type of malware that uses the encryption module
to encrypt the data and makes it unusable for the user [4]. Over the past few decades
ransomware has affected not only small businesses but has victimized big companies
like FedEx, Nissan, Russian and German railways, and NHS organizations in the UK
according to Ref. [5]. According to a report [6] produced by Kaspersky, spam emails are
the constant features of phishing, and this trend is unlikely to change soon. Symantec’s
Internet Security Threat report of 2019 [7] stated that supply chains remained a soft target,
with attacks increasing by 78% in 2019 compared to the previous year. The same report
mentions blocking 69 million cryptojacking events in 2018, four times increase compared
to 2017. Small businesses are severely affected by cyber-attacks and according to statistics
in 2019, 40% of small companies were attacked, out of which only 13% could detect and
mitigate the attacks [8]. Due to economic losses caused by cyber-attacks, 60% of small
companies collapsed. Accenture reports that the US $2.4 M is spent by companies to
support malware detection and defense from web-based attacks. Cyber-attacks have
heavily created chaos in critical infrastructure as well. State-sponsored attackers had been
found involved in launching attacks over industrial control systems lately. One of the
biggest examples of such malware is Stuxnet which was designed to choke the working of
the Iranian Nuclear Power Plant’s centrifuges [9,10]. Cyber physical systems are almost
applied in all critically important areas such as traffic lights, health care, power generation,
water industry, transportation system, etc. [11]. Communication of these cyber physical
systems with network make them vulnerable and many stealthy attacks launching different
malicious payloads can be expected easily by looking at the statistics [12]. Malfunctioning
of such significantly important systems can cause severe accidents and damages. To protect
the cyber physical systems working in all crucial areas, researchers have been trying
their level best to device an anti-malware system that can protect them. There are many
tools and anti-virus products available in the market for the detection of malware and
cyberattacks, however, they have their inherent shortcomings. Anti-virus products work
over the signatures of malware, and the signature database needs to be constantly updated.
This technique also does not work for zero-day attacks and for the new variants of existing
malware (which can have a different signature).

Various strategies have been implemented to speed up the real time detection of
different types of malware as explained in Appendix A.1 so that the effect of the malware
can be mitigated. A taxonomy of malware analysis is explained in Appendix A.2 and is
illustrated in Figure 1: static analysis focuses on detecting a malicious file without executing
it, whereas dynamic analysis works by first executing the file. A hybrid strategy involves a
combination of both static and dynamic analysis

Figure 1. Taxonomy of Malware Analysis.

Various approaches have been reported in the literature to detect malicious behavior and
files, involving: (i) statistical data analysis-based research for malware classification; (ii) machine
learning methods (including Deep Learning) for malware detection and identification.

The key motivation has been to develop the capability of detecting and identifying malware
in a cost-effective manner, and in real-time so that the effects of malware can be mitigated.

J. Cybersecur. Priv. 2022, 2 802

Different survey papers have been written in the domain of cyber security surveying
the work done in malware detection. Unlike other survey papers, our paper is not focusing
on a single strategy to be reported in this literature survey, instead, we have accumulated
the research trends in malware detection from various application areas of data science as
well as AI. Table 1 shows the comparison between our work and other survey papers.

Table 1. Related survey Papers on Malware Detection Approaches.

Coverage Other Papers Our Survey Paper

Survey of statistical based methods for malware
detection [13,14]

Survey of machine learning based algorithms for
malware detection [15]

Survey of deep learning based techniques to detect
malware [13,16,17]

Analysis of problems associated with statistical based
approaches of detecting malware [18]

Analysis of shortcomings of machine learning based
solutions for detecting malware [15]

Analysis of disadvantages of using deep learning
based methods to detect malware [13,16]

Survey of FSL methods in the domain of malware
detection

The contributions of this work are as follows:

• Description of malware classification and identification strategies
• Mechanisms for classifying and detecting malware and a comparative analysis be-

tween these methods
• Potential issues and challenges in the different categories of proposed solutions
• The future direction of research in this domain

This paper is organized in the following order (Shown in Figure 2): Section 2 describes
the methods used in the case of the different trends in malware detection. Section 3 presents
the comparative analysis of these trends. It also discusses the issues and challenges faced
in each trend. Section 4 highlights future trends in the domain of malware identification
and classification.

Figure 2. Organization of Paper.

J. Cybersecur. Priv. 2022, 2 803

2. Trends in Malware Detection

Information, in today’s era, is one of the most valued but vulnerable assets. There
is a constant threat of serious damage to infrastructure caused by evolving sophisticated
malware. Various techniques, trends, and strategies are proposed to alleviate the threats
triggered by malicious codes. These methods may range from the primitive type of mal-
ware detection based on statistical analysis to machine learning-based methodologies and
specifically deep neural networks. As this paper is concerned with malware detection
methodologies, so it is important to go through the evolution of malware identification and
detection. In this section, a hierarchy is built to represent this development of malware
detection according to the methodology used.

2.1. Malware Detection with Primitive Methods (Statistical Analysis Based Methods)

Malware detection is being performed with different techniques. Many researchers
have explored the different practices for malware discovery and recognition. Ref. [19]
focused on detecting a malicious pattern in executables. Majorly [19] has stated that
malware detection is a kind of obfuscation-de obfuscation game in today’s era, therefore
authors in [19] have focused on the techniques of obfuscation to check whether present
anti-virus products can overcome the variability introduced by obfuscation or not. They
implemented SAFE (Static Analyzer for executables) which is claimed to detect a malicious
pattern in executables. Further, they developed an obfuscator for executables that uses
four different techniques to obfuscate the executable and then tested antivirus scanners
by providing them with obfuscated variants of existing malicious executables. Ref. [19]
presented a general architecture for detecting a malicious pattern in executables with
two main components i.e., Program annotator and malicious code detector. Obfuscation
transformations that are supported by the obfuscator detailed in [19] include register
reassignment, dead-code insertion, code transposition, and instruction substitution.

Ref. [20] used a heuristic approach for detecting malware by analyzing windows
binary files of obfuscated executables. They have come up with a framework that first
generates a risk score by statically analyzing the windows PE (See Appendix B) file for
8 characteristics (abnormal ordinals, Nonstd_name, In_code, TLSection, DLL_no_export,
Flagged Section Name, Low function Call, Other_badPEformat). This framework assigns
weight and risk score to each characteristic. The risk score is assigned based on experience
and comparison between malware and benign files. A total of 2014 windows files were
used in experiments.

Ref. [21] primarily focused on malware detection through statistically making use of
opcodes. In their methodology, first, the frequency of opcodes appearing in malware and
benign files is calculated and then the statistics-based discrimination ratio is calculated
through which weights are obtained for opcode sequences. Then the similarity between two
executables is computed using weights of opcode sequences. Malware files are collected
from the VxHeavens website, which was a total of 13,189 executables. For benign dataset
13,000 files are collected from their computer. The basic assembler is used to disassemble
the executables. After obtaining the assembly file, a profile of opcodes’ frequency is
maintained. This file contains the unnormalized frequency of opcodes appearing in both
datasets. Finally, the relevance of all opcodes is calculated giving mutual information
between opcode and classification class. Finally, malware opcode sequences are extracted
and their frequency of appearance is calculated to detect maliciousness. After calculating
weighted term frequency, a vector of weighted opcode sequence frequency is obtained.
Experimentally first opcode sequences of lengths 1 and 2 are extracted and the similarity
in the sequences appearing in both malware and executables are calculated but, in both
datasets, they are appearing almost with the same frequency due to which afterward opcode
sequences of length 1 and 2 are combined to check the similarity of their appearance in both
datasets. Malware variants have great similarity in terms of frequency of opcode sequences
whereas similarity measure is low between malware and benign dataset.

J. Cybersecur. Priv. 2022, 2 804

One kind of malware is a botnet that scans the internet to find vulnerable hosts
to perform various malicious activities. Normally botnets are coordinated through a
Command-and-Control channel C&C and most of the control protocols are IRC based
whereas other protocols such as HTTP can also be used. Ref. [22] focused on detecting
and confining DDoS and portscan. Authors in [22] brought up a platform that focused
on detecting malicious activities by monitoring communication between botnet and C&C
and by monitoring traffic for detecting and confining DDoS along with the detection of
zombie computers on the network. Resultantly they managed to filter botnet-related traffic,
confined infected parts of the network, and found methods for disabling botnets. To collect
malware, high and low interaction honeypots were used. Low interaction honeypots
used in the experiment were (1) Nepenthes and (2) Honeyd. After the malware was
captured, it was analyzed manually. They were identified using various anti-virus tools
and were sandboxed to collect useful information. Then a victim PC was connected to the
analysis workstation and traffic generated by the victim PC in a clean state was monitored.
Wireshark was started on an analysis workstation. Afterward, the victim’s PC was rebooted
with malware installed on it, and then events related to DNS requests attempted to connect
to unknown ports and scanning of unknown ports was recorded. Dnsmsaq, fakemta relay-
Http, relay, and Wireshark were used as tools for different purposes. This methodology was
cumbersome to perform intended functionalities, therefore, MWNA (Malware Network
Analyzer) was developed. It is based on the Linux Packet Filter mechanism. The published
method for detecting DDoS analyzes packets during normal traffic: first to establish a
baseline and then to derive thresholds. Then finally some attack features are extracted.
Finally, above mentioned method is combined with a rate-limiting scheme so that amount
of monitored traffic can be reduced.

A hybrid approach is also being used for taking benefit from the amalgam of malware
detection methods. Ref. [23] focused on availing the advantages of all techniques for
malware detection due to which the implemented framework by [23] is hybrid. They
presented a framework that works on the detection methodology involving API calls
extracted from the suspected file by running it in a VM environment. Then a graph is
built using the information of API calls and operating system resources being utilized.
Graph nodes represent API calls and operating system resources, and edges represent the
reference between nodes. Then the constructed graph is minimized. Finally, to find a match
between two graphs, the Graph Edit Distance algorithm is used, and to make use of this
algorithm cost matrix is utilized.

Ref. [24] developed a tool, PyTrigger, which provides the user actions required to
trigger, collect, and distill malware behavior profiles. Their paper has made three major
contributions including the development of an algorithm that helps in extracting malware
behavior, user-triggered malware behavior from among a similar event along with an
event recording and playback system, and the full implementation of the PyTrigger system.
PyTrigger has two major subsystems: (1) the recording and playback system and (2) the
behavior analysis system. The recording and playback subsystem of PyTrigger is supposed
to record the values of all objects’ data states such as windows’ titles, mutable text field
values, drop-down menu choices, etc. and are then forcibly entered in GUI while being
replayed to create the scenario which triggers the malware behavior. PyTrigger system
executes the malware sample several times in VM and uses Events Tracing for Windows
to trace the events. PyTrigger system was evaluated on 4100 malware samples from 35
different malware families. Typical user activity that was recorded was related to Gmail,
Facebook, and Google HSBC, text editing, file browsing, and execution (Windows Explorer).
An added advantage of this system is its ability to extract delegated events. Events that are
delegated by the malicious process to other processes which are legitimate and lie outside
the malware process chain are called delegated events.

Ref. [25] concentrated on the solution for detecting malicious activity which should
be low cost and should not be using any third-party software so that in less time and low
budget detection can be done. Secondly, since some malware behavior can overcome the

J. Cybersecur. Priv. 2022, 2 805

virtual environment, therefore, running malware in a virtual machine for dynamic analysis
can compromise some of the triggering scenarios. The authors manipulated windows audit
logs into interpretable features and presented a linear classification model for detecting
malicious behavior using the windows audit log as a feature set with high accuracy. This
approach explored some new malware behaviors. For performing validation, six different
experiment sets were designed. One of the experiments for validation involved a dataset
that had malware a year or two older than the malware presented in training. Second
experiment for validation was performed based on malware families. Secondly, the same
trained classifier was run in a virtual environment as well as in an enterprise environment
to cater to the variable of the environment. The experimental dataset consisted of 32,078
samples out of which 17,399 were benign samples and 14,679 malicious samples. 6,898,593
unique features were extracted, and 20,362 audit logs were collected from binaries executed
in a cuckoo sandbox.

Figure 3 shows the performance metrics used by the surveyed papers that fall in the
category of statistical based methods.

Figure 3. Performance Metrics Used in Literature Proposing Primitive Methods for Malware Detection.

2.2. Malware Detection with Conventional Machine Learning Based Methods

Machine learning plays an important role to capture helpful properties in malware to
advance security measures. This whole process of knowledge extraction and learning of
patterns helped the researchers to pave their steps into machine learning-based malware
analysis and detection. Machine learning has been extensively used not only in malware
detection but also for detecting malicious activity through network traffic [26].

Ref. [27] worked on Belief propagation with the file system but could not do well for
new samples. Ref. [28] conducted malicious graph matching and extracted APIs/System
calls but they used a small dataset. Ref. [29] used a Rule-based classifier and SVM and
performed detection based on byte sequences but made use of only specific malware classes
for evaluating their model. They built datasets from Windows system files and the Anti-
Virus Platform. Ref. [30] also used a Rule-Based Classifier and extracted APIs/System
calls but this APIs/System calls categorization was not up to the mark. They conducted
their tests on features of the Windows XP system and Program Files folders. Authors
of [31,32] used Random Forest and used network and API system calls, Registry, and File
system but the dataset was small. Ref. [33] used Decision Trees in their research work
and [34] used Naïve Bayes, Random Forest, and SVM and worked on byte sequences,
APIs/system calls, file systems, and Windows registry. Ref. [35] used KNN for detecting
malicious PEs. Malware code causes damage to the resources, and with a little code change,
malware developers can easily beat the protection layer. A lot of research was done for the
detection of these variants. Ref. [36] explored the Decision Tree and Random Forest and
made use of Opcodes. They used small datasets of Windows XP system and Program Files
folders and generated code of malware for making part of the dataset. Ref. [37] performed

J. Cybersecur. Priv. 2022, 2 806

Clustering with locality-sensitive hashing Byte sequences but the used dataset was very
small. Ref. [38] worked on a Rule-based classifier, they worked on APIs/System calls,
and Windows Registry. Ref. [39] used the clustering technique which was being used for
variants detection by past researchers also. The authors chose DBSCAN but their approach
was not coping with malware evasion techniques. Ref. [40] worked on Logistic Regression
and Neural Networks and operated on Byte sequences and APIs/system calls.

Table 2 shows the datasets and performance metrics used by the researchers in the
surveyed papers that apply conventional machine learning algorithms.

Table 2. Datasets and Performance Metrics Used in Literature Proposing Machine Learning Methods
for Malware Detection.

Title Author
Data Samples Used Performance Metrics Used

Source Malicious Benign

Support Vector Machine for
malware analysis and
classification

M. Kruczkowski, E.
N. Szynkiewicz N6 Platform - -

Classification Accuracy =
0.9498
Sensitivity = 0.9774
Specificity = 0.8971
AUC = 0.9901
F1 = 0.9623
Precision = 0.9475

Improving the detection of
malware behavior using
simplified data dependent
API call graph

E. Elhadi, M. A.
Maarof, B. Barry VxHeavens 75 10

Detection Rate = 98.6%
Accuracy = 98.8%
False Alarm = 0%

Dynamic VSA: a framework
for malware detection based
on register contents

M. Ghiasi, A. Sami, Z.
Salehi

Windows XP system,
Program Files Folder,
and Private
Repository

850 390

TP = 0.988
FP = 0.125
Recall = 0.988
Precision = 0.888
F-Measure = 0.940
Accuracy = 0.930

Novel feature extraction,
selection, and fusion for
effective malware family
classification

M. Ahmadi, G.
Giacinto, D. Ulyanov,
S. Semenov, M.
Trofimov

Microsoft’s Malware
classification
challenge

21,741 0 Accuracy, Logloss

Probabilistic inference on
integrity for access behavior
based malware detection

W. Mao, Z. Cai, D.
Towsley, X. Guan

Windows XP SP3
VxHeavens 7257 534 TPR, AUC

Robust and effective malware
detection through
quantitative data flow graph
metrics

T. W¨uchner, M.
Ochoa, A. Pretschner

Legitimate app
downloads
Malicia

6994 513 Detection Rate, FPR,
Precision, F-Measure

An alternative to NCD for
large sequences, Lempel Ziv
Jaccard distance

E. Raff, C. Nicholas Industry Partner 237,349 240,000 Balanced Accuracy

Proposing a HMM-based
approach to detect
metamorphic malware

M. Gharacheh, V.
Derhami, S. Hashemi,
S. M. H. Fard

Cygwin
VxHeavens - -

Detection Rate = 0.9803
FPR = 0.0058
Accuracy = 0.9833

Heuristic metamorphic
malware detection based on
statistics of assembly
instructions using
classification algorithms

P. Khodamoradi, M.
Fazlali, F. Mardukhi,
M. Nosrati

Windows XP system
and Program Files
folder
Self-generated
metamorphic
malware

280 550 Accuracy

A malware similarity testing
framework J. Upchurch, X. Zhou Sampled from

security incidents 85 0 PR Curve

A behavior based malware
variant classification
technique

G. Liang, J. Pang, C.
Dai Anubis Website 330,248 0 Similarity measure

J. Cybersecur. Priv. 2022, 2 807

Table 2. Cont.

Title Author
Data Samples Used Performance Metrics Used

Source Malicious Benign

Scaling Malware Execution
with Sequential Multi
Hypothesis Testing

P. Vadrevu, R.
Perdisci

Security Company
and Large Research
Institute

1,651,906 0 Jaccard Index

Fast malware classification by
automated behavioral graph
matching

Y. Park, D. Reeves, V.
Mulukutla, B.
Sundaravel

Legitimate apps
Anubis Sandbox 300 80 Similarity measurement

Automated malware
classification based on
network behavior

S. Nari, A. A.
Ghorban

Communi-cation
Research Centre
Canada

3768 0 Accuracy = 94.5783%

Malware function
classification using APIs in
initial behavior

N. Kawaguchi, K.
Omote FFRI Inc. 408 236 Accuracy, FPR, FNR

Feature selection and
extraction for malware
classification

C.-T. Lin, N.-J. Wang,
H. Xiao, C. Eckert Sandbox 3899 389

Micro Precision, Micro Recall,
Micro Specificity, Macro
Precision, Macro Recall,
Macro F1

High fidelity, behavior based
automated malware analysis
and classification

A. Mohaisen, O.
Alrawi, M. Mohaisen AMAL system 115,157 0

Clustering for malware
classification

S. Pai, F. Di Troia, C.
A. Visaggio, T. H.
Austin, M. Stamp

Cygwin utility files
and Malicia 8052 213 Silhouette coefficient, purity

Towards Automatic
Reverse Engineering of Large
Datasets of Binaries

M. Polino, A. Scorti, F.
Maggi, S. Zanero,
Jackdaw

- - - Jaccard Index

Subroutine based detection of
APT malware

J. Sexton, C. Storlie, B.
Anderson - 197 4622 Similarity index

A static signal processing
based malware triage

D. Kirat, L. Nataraj,
G. Vigna, B.
Manjunat

Windows XP, ZDNet,
NSRL, Anubis 1,200,000 52,750 Precision and Recall

2.3. Malware Detection with Deep Learning Based Methods

Deep Learning is a specialized form of machine learning in the domain of Artificial
Intelligence (AI) that applies deep artificial neural networks also famous as deep neural
networks. They are the techniques of machine learning that simulate the process of learning
by a human brain. The human brain consists of cells which are referred to as neurons in
neural networks. Similarly, in a human brain, all the cells are connected through axons
and dendrites with the connection region known as synapses. These connections when
found in ANN (Artificial Neural Networks), contain weights to behave as the connections
between nerve cells in the human brain. Figure A2 (Appendix B) shows the human brain
and simulated version of the human brain through the artificial neural network.

The major difference between conventional neural networks and deep neural networks
is the number of layers. Deep neural networks make use of many hidden layers for
the high-level abstraction of data. They can learn the features of data. This process of
feature engineering is carried out with the help of a big number of examples input to the
deep learning-based algorithm which leads to the production of results in the form of
classification, identification, or generation of data after learning the most suitable features
during feature engineering. The major motivation for using deep learning in various fields
was to organize and analyze a large amount of data. Different areas where deep networks
are preferred to be used include image processing, speech processing, healthcare, and with
the increase in cyber space, now even cybersecurity.

Depending upon its features, this domain can be further categorized into different sub-
domains as shown in Figure 4. All features of PE files hold some significance in defining
degree of maliciousness in a particular file. Features from the header and Imports, all play

J. Cybersecur. Priv. 2022, 2 808

a significant role in defining the nature of PE file as malicious or benign. Ref. [41] made use
of LSTM for the selection of optimal features of PEs. These optimal features were selected
to train a deep learning based model for detecting malicious PE file.

Figure 4. Types of Deep Learning.

Refs. [42,43] made use of sequential dynamic data and claimed that an ensemble of
recurrent neural networks can be capable to detect the maliciousness of an executable within
the first 4 s of execution with almost 93% accuracy. GRU (Gated Recurrent Units) were used
with RNN to reduce training time. User CPU usage, and system CPU usage, sent packets
to count, received bytes count, total bytes sent, count of the processes being executed, the
maximum number of processes being carried out, the number of milliseconds elapsed since
the file started to run and maximum process ID assigned were used as features.

Ref. [44] combined two types of neural network layers i.e., convolutional, and recurrent
layers for modeling system call sequences for classifying malware. These two types of
layers use dissimilar types of approaches for modeling sequential data. Convolutional
networks use sequences in the form of a set of n-grams, and recurrent networks tend to
train a stateful model by using full sequential information. The input of the system was 60
distinct system calls.

Ref. [45] performed malware detection using stacked AutoEncoders (SAE) with the
input of Windows API calls mined from the PE files. The SAEs model worked on a greedy
layer-wise training operation for performing unsupervised feature learning. Then this
process was followed by supervised parameter fine-tuning. Results showed that the model
with 3 hidden layers and 100 neurons at each layer gave the best training and testing
accuracy as compared with ANN, SVM, Naïve Bayes, and Decision Tree.

Ref. [46] implemented a method that manipulates raw inputs to detect maliciousness.
The implemented model called eXpose picks generic short strings from security inputs.
These strings include malicious URLs, mutexes, registry keys, etc. Then it learns to identify
their maliciousness. eXpose makes use of a neural network convolutional kernel for feature
extraction. The architecture is composed of notional components along with character
embedding, feature detection components, and classifier. Results showed that eXpose
outperformed manual feature extraction approaches, attaining a 5–10% detection rate gain
at a 0.1% false-positive rate compared to these baselines.

The proposed model by Ref. [47] is comprised of phases of OpCode-Sequence Graph
Generation, Deep Eigensapce Learning, and Feature Selection for the detection of Internet
of Battlefield Things (IoBT) malware. Ref. [47] used a Convolutional Network for the deep
learning module, because it can give more accurate results of classification when the data
patterns are complex and nonlinear. This approach achieved 99 % accuracy and 98% Recall.

J. Cybersecur. Priv. 2022, 2 809

Ref. [48] focused on addressing the detection task of malware variants with the help
of deep learning methods. The authors got a method published in which they transformed
the nasty code into a grayscale image. Then the images were recognized and classified by
employing a Convolutional Neural Network (CNN) which could extract the features of the
malware images automatically. The implemented CNN was composed of an input layer,
convolutional, and subsampling layers. This model also classified malware into related
malware families.

Ref. [49] used the approach of converting the disassembled malware code into a
greyscale image using SimHash and then used a Convolutional Neural Network to identify
the malware family. The presented methodology is comprised of three phases: Feature
extraction, Malware image generation, and CNN training. Results showed that the authors
were successful to obtain an accuracy of approximately 99% with 10,805 samples.

Ref. [50] have focused on the description of state-targeted APT using a Deep Neural
Network (DNN). Researchers utilized the ability of Deep Neural Networks (DNN) to make
use of raw features as input, whereas the learning of higher-level features was done during
the training process. In this progression, every hidden layer extracted higher-level features
from the preceding layer, building a hierarchy of higher-level features.

Ref. [51] devised an approach of using a neural network comprised of convolutional
and feed-forward neural constructs for malware classification. In this approach PE file
metadata, import features and Assembly opcode features categories were used.

Ref. [52] made use of a dynamic analysis approach based on Windows API call graphs
and SAE models. A Behavior-based Deep Learning Framework (BDLF) was developed in
this paper which makes use of SAE for feature reduction from behavior graphs and then
performs classification through Decision Tree, KNN, Naïve Bayes, and SVM.

Ref. [53] focused on malware detection based on process behavior in possible infected
terminals. The published solution applies DNN in 2 stages, the first stage is for extracting
process activities by RNN and converting them into feature vectors. Feature vectors were
then treated as images that were classified by CNN.

Ref. [54] have worked on a new image processing technique with optimized param-
eters for Machine Learning algorithms and Deep Learning architectures to produce an
efficient zero-day detection system of malware. First malware detection was performed
using deep learning based on static analysis on ember dataset and privately collected
samples and it was deduced that the performance of malware detection can marginally
be enhanced by using a hybrid system pipeline proposed as Windows-Static-Brain-Droid
(WSBD), which was composed of both classical machine learning algorithms and deep
learning models. In the next stage of research, malware detection was performed using
deep learning based on dynamic analysis. It conducted a comparison between classical
machine learning algorithms and deep learning architectures based on dynamic analysis,
and deep learning architectures outperformed all experiments. Finally, experiments were
conducted for categorizing the malware into malware families using deep learning based
on image processing. A novel technique DeepImageMAlDetect (DIMD) was proposed
which is based on the image processing technique and uses CNN and LSTM. The proposed
method can work on malware from different operating systems. Finally, architecture by
the name of ScaleMalNet was developed. It collects data from different data sources and
uses self-learning techniques such as classical machine learning algorithms, deep learning
architectures, and image processing techniques for detecting, classifying, and categorizing
malware to their corresponding malware family efficiently.

Authors in [55] proposed a new technique to generate a signature for malware that does
not depend on any specific behavior of malware so that it can be used for variants of malware as
well. To achieve the goal, researchers first recorded the behavior of malware through Sandbox
and then converted the output text file into a binary vector sized. After creating a binary vector
Deep Belief Network was trained by a Deep Stack of Denoising Autoencoders.

Ref. [56] focused on a technique that made use of a Deep Neural Network for malware
detection using features extracted statically with more accuracy and minimum FPR. There

J. Cybersecur. Priv. 2022, 2 810

are three main components of the framework defined in this paper: (1) the First component
focuses on the extraction of four features from benign and malicious binaries (2) 2nd
component is a Deep Neural Network consisting of an input layer, two hidden layers, and
one output layer (3) 3rd component is the score calibrator.

Research of [57] focused on one-shot learning which is referred to when there are
very few samples to learn from. It implements a model LRUA-MANN which modifies the
memory access capability of a Neural Turing Machine to adapt a one-shot learning task.
LRUA-MNN is used with LSTM as a controller and makes use of LSTM state and memory
bank as memory.

Ref. [58] has focused on carrying out the process of malware detection without having
in-depth knowledge of malware and its analysis. Two Neural Networks were used; one
was fully connected, and the other was a Recurrent Neural Network. The model had 3
LSTM layers with attention mechanisms before classification. Sax et al. used Neural nets
and extracted Strings and PE file characteristics but did not cope with obfuscation and did
not produce good accuracy in such situations.

Ref. [59] implemented the idea of a multitasking learning model which was trained
for seven classification tasks for malware image classification. The implemented model
by [59] consisted of 5 CNN layers with PRelu activation function.

Ref. [60] have explored the advantages of using transfer learning in the domain of
malware identification. Their research focused on utilizing transfer learning for extracting
the features of malware dataset. They made use of an already trained deep learning model
(trained over ImageNet) and finally classified the malware into their respective families.

Figure 5 summarizes the types of deep learning algorithms used by researchers over
the years and Table 3 summarizes the performance metrics used by researchers while using
deep learning based methods for malware detection.

Figure 5. Deep Learning Techniques Used for Malware Detection.

Critical analysis of all the surveyed papers that implemented deep learning algorithms,
emphasizes the grave need of using a large dataset to produce reliable results. Deep learning
architectures heavily make use of supervised learning that requires a large no. of labeled
examples for training the model as mentioned by [61]. Using the small dataset does not
help the model to learn the features properly during the training phase which leads to
non-reliable results. Another aspect that got unveiled during this survey referred to the
fact that this large dataset is supposed to contain a large no. of examples for each class that
must be identified by the trained model. And processing the bulk of data in deep learning
needs powerful hardware, high computational processing power, and high training time
which diminishes the chance of applying the trained models to real-time data. Because of
these unavoidable features of deep learning models, the market could not get successful in

J. Cybersecur. Priv. 2022, 2 811

replacing the signature-based anti-malware systems with artificially intelligent systems.
Therefore, researchers shifted their direction of research from developing deep models for
feature learning to finding out the possibilities of developing models that can work over
small datasets. In the quest of achieving the previously mentioned objective, researchers
explored the concept of Few Shot Learning (FSL) which is based on meta learning with
a focus on learning the strategy of how to learn the meaningful properties of data. Meta
learning utilizes the concept of transfer learning (multi-task learning) and semi-supervised
or unsupervised learning approaches which need a few examples for the training. And thus,
according to [62], the meta learning model can be trained with the help of prior knowledge.
Meta learning based algorithms that are being used in malware analysis include Few Shot
Learning (FSL), One shot Learning (OSL), and Zero Shot Learning (ZSL). Figure 6 shows
the relationship between machine learning and meta learning models. Major advantages of
meta learning based algorithms are listed in Figure 7.

Figure 6. Relationship Between Machine Learning and Meta Learning.

Table 3. Datasets and Performance Metrics Used in Literature Proposing Deep Learning Methods for
Malware Detection.

Title Author Year
Dataset Samples Performance

Metrics

Source Malicious Benign

Early Stage Malware
Prediction Using
Recurrent Neural
Networks

Rhode,
Matilda,
et al.

2018 Machine Activity collected in
VM using Cuckoo Sandbox 594 594

Accuracy = 93%
(After 4 min of
malware execution)

DL4MD: A Deep
Learning Framework
for Intelligent
Malware Detection

Hardy,
William,
et al.

2016 Comodo Cloud Security
Centre 22,500 22,500

TP = 22,035
FP = 953
TN = 21,547
FN = 465
Accuracy = 96.85%

eXpose: A Character
Level Convolutional
Neural Network with
Embeddings for
Detecting Malicious
URLs, File Paths and
Registry Key

Saxe, Joshua,
and
Konstant-in
Berlin.

2017 VirusTotal

URLs 7,211,705 1,496,198
TPR = 0.77 × 10−4

FPR = 0.84 × 10−3

AUC = 0.993

File Paths 869,836 3,677,404
TPR = 0.16 × 10−4

FPR = 0.43 × 10−3

AUC = 0.978

Regist-ry
Keys 250,819 1,282,292

TPR = 0.51 × 10−4

FPR = 0.62 × 10−3

AUC = 0.992

J. Cybersecur. Priv. 2022, 2 812

Table 3. Cont.

Title Author Year
Dataset Samples Performance

Metrics

Source Malicious Benign

Robust Malware
Detection for the
Internet of
(Battlefield) Things
Devices Using Deep
Eigenspace Learning

Azmood-eh,
Amin, Ali
Dehghanta-
nha, and
Kim Kwang
Raymond
Choo.

2018 VirusTotal 1078 128 Accuracy = 99%
Recall = 98%

Detection of
Malicious Code
Variants Based on
Deep Learning

Cui, Zhihua,
et al. 2018 Vision Research Lab 9342 (25 Malware

Families) -

Accuracy = 94.5
Precision = 94.6
Recall = 94.5
Runtime = 20 ms

Malware
Identification Using
visualization images
and deep learning

Ni, Sang,
Quan Qian,
and Rui
Zhang

2018 Kaggle 2015 10,085 (9 Malware
Families) - Accuracy = 99%

End-to-End Deep
Neural Networks
and Transfer
Learning for
Automatic Analysis
of Nation State
Malware

Rosenberg,
Ishai,
Guillaume
Sicard, and
Eli David.

2018 Cuckoo Sandbox 3200 (2 APT classes) - Accuracy = 98.6%

Empowering
Convolutional
Networks for
Malware
Classification and
Analysis

Kolosnjaji,
Bojan, et al. 2017 Virusshar, Maltrieve, Private

Collection - -
Precision = 0.93
Recall = 0.93
F-1 Score = 0.92

Malware Detection
Based on Deep
Learning of Behavior
Graphs

Fei Xiao et al. 2019 Vx Heaven 880 880
Precision = 0.986
Recall = 0.992
F-1 Score = 0.989

Deep Learning for
Classification of
Malware System Call
Sequences

Bojan et al. 2016 Virusshar, Maltrieve, Private
Collection 4753 - Precision = 85.6%

Recall = 89.4%

Malware Detection
with Deep Neural
Network Using
Process Behavior

Shun
Tobiyama
et al.

2016 NTT Secure Platform
Laboratory 81 69 AUC = 0.96

Robust Intelligent
Malware Detection
Using Deep Learning

R. Vinaya
Kumar et al.

2018

WSBD Ember 70,140 69,860

Accuracy = 98.9%
Precision = 99.7%
Recall = 98.1%
F-1 score = 98.9%

WDBD Cukoo
Sandbox 173,946 169,509

Accuracy = 93.6%
Precision = 94.8%
Recall = 92.0%
F-1 Score = 93.4%

DIMD
Malimg,
Virus-sign,
Virus-share

24,851 - Accuracy = 96.3%

Deep Neural
Network Based
Malware Detection
Using Two
Dimensional Binary
Program Features

Joshua et al. 2015 81,910 350,016 TPR = 95.2%
AUC = 0.999

J. Cybersecur. Priv. 2022, 2 813

Table 3. Cont.

Title Author Year
Dataset Samples Performance

Metrics

Source Malicious Benign

Learning the PE Header,
Malware Detection With
Minimal Domain
Knowledge

Edward Raff,
Jared Sylvester,
Charles Nicholas

2017
Group A Virus- share 301,575 291,285 Accuracy = 90.8%

AUC = 97.7%

Group B Industry
Partner 240,000 237,349 Accuracy = 83.7%

AUC = 91.4%

One Shot Learning
Approach for Unknown
Malware Classification

True Kien,
Hiroshi Sato,
Masao Kubo

2018 Malicia Project, Virustotal 23,080

Accuracy (with
training) = 0.74
Accuracy (without
training) = 0.85

DTMIC: Deep transfer
learning for malware
image classification

Sanjeev Kumar,
B. Janet 2022 MalImg and MS BIG dataset 9339 + 10,868

Accuracy on MalImg
= 98.92%
Accuracy on BIG
dataset = 93.19

Deep multitask learning
for malware image
classification

Ahmed
Bensaoud, Jugal
Kalita

2022 Virusshare, Virus total,
contagio

Accuracy = 99.97%
TPR = 99.98
FPR = 0.73

DTMIC: Deep transfer
learning for malware
image classification

Sanjeev Kumar,
B. Janet 2022 MalImg and Microsoft 9339 + 21,741

Accuracy = 98.92
Precision = 99
Recall = 99

Figure 7. Advantages of Meta Learning.

Ref. [63] have explored the Siamese network for malware image classification. Siamese
network architecture is the application of one shot learning field. The basic approach used
by [63] was to transform the features into malware images that were input to Siamese
Convolutional Neural Networks shown in Figure 8. Siamese CNNs used by the [63]
produce 2 feature vectors. Finally, the Manhattan distance between those feature vectors
was calculated and given to the sigmoid function to generate the similarity score.

Another surveyed paper [57] mentioned the use of one shot learning approach with
a memory augmented neural network using the API calls sequence. Ref. [57] adapted an
approach that has two domains of learning. The first domain in this approach is used to
train the model with known malware and 2nd domain is used to train or test with a dataset
of an unknown type of malware. Domain 2 makes use of domain 1′s trained model. The
working of the implemented approach [57] is shown in Figure 9.

Ref. [64] have explored one shot learning approach with matching and prototypical
networks. The developed model by [64] is shown in Figure 10. Ref. [64] take advantage of
visual dissimilarity in the images of different malware families (shown in Figure 11) and
have converted the malware binaries into 8-bit greyscale images to be given as input to the
few shot learning models.

Ref. [65] presents a few shot learning based neural network ConvProtoNet. ConvPro-
toNet in [65] used stacked convolutional layers rather than only computing means, to

J. Cybersecur. Priv. 2022, 2 814

generate features of malware classes. ConvProtoNet is capable of being trained on one
dataset and tested on another.

Ref. [66] composed the dataset of splash screen images showing the message of the
system being attacked by the ransomware. They trained their one shot learning model on a
dataset of 50 ransomware families splash screen images. Different augmentation techniques
are used by [66] to tune the images for adapting one shot learning.

Figure 8. Siamese CNN used by [50].

Figure 9. Proposed Approach of [46]. 2 Phases of Training and Testing, Domain 1 and Domain 2.

Figure 10. Proposed Approach in [51].

J. Cybersecur. Priv. 2022, 2 815

Figure 11. Visual Samples showing Dissimilarity Between the Images of Different Families [51].

3. Issues and Challenges

Every trend in malware detection and analysis has come forward with some of its
shortcomings due to which trend of research got shifted to other technologies for detecting
malware in real-time with minimum false positive rate and maximum accuracy. This
section will highlight all the challenges faced by each trend and the disadvantages of
different techniques adapted for malware detection and analysis. Tables 4–6 summarize all
issues of surveyed papers based on different analysis methods.

Table 4. Limitations of Surveyed Papers Proposing Primitive Methods for Malware Detection.

Title Author Year Weakness/Limitation

The architecture of a Platform for
Malware Analysis and
Confinement

Gilles Berger et al. 2010
Usage of low interactive honeypots. Malware that gets
active under certain conditions might not be detected
in such a scenario.

A Comparison of Static, Dynamic,
and Hybrid Analysis for Malware
Detection

Anusha Damodaran et al. 2015
In this research work, the comparison is performed
only on opcode and system calls whereas there are
many more static and dynamic useful features.

PyTrigger: A System to Trigger &
Extract User-Activated Malware
Behavior

Dan Fleck et al. 2013
Selected features were used in this research work
which could have compromised the information which
could be gained by other features.

Malicious Behavior Detection
Using Windows Audit Logs Konstantin et al. 2015

Researchers in this search have not mentioned if they
have dealt with obfuscated logs. Moreover, each
sample is run for four minutes, and this window audit
log is not sufficient for slow-moving malware.

Static Analysis of executables to
Detect Malicious Patterns Mihai et al. 2006

The detection algorithm is context insensitive and
cannot track the calling context of the executable. It can
be made context-sensitive.

Idea: Opcode-Sequence-Based
Malware Detection Igor Santos, Felix Brezo et al. 2010

One of the limitations of this paper was that the
authors did not deal with packed executables which
are a major part of real time data. Secondly, they used
quite a small dataset.

Malware Detection Based on
Hybrid Signature Behavior
Application Programming
Interface Call Graph

Ammar Ahmed et al. 2012 Evasion techniques were not catered to.

A Heuristic Approach for the
Detection of Obfuscated Malware Scott Treadwell, Mian Zhou 2009 Some legitimate applications are reported as malware

so the False Positive Rate is high.

Detecting Metamorphic Malware
Using Code Graphs

Jusuk Lee, Kyoochang Jeong,
Heejo Lee 2010

Only 3 obfuscation techniques were mitigated whereas
there are 6 to 8 more obfuscation techniques that are
normally applied by the malware writers.

J. Cybersecur. Priv. 2022, 2 816

Table 5. Limitations of Surveyed Papers Proposing Machine Learning Based Solutions.

Title Author Year Weakness/Limitation

Improving the detection of
malware behavior using
simplified data dependent API
call graph

E. Elhadi, M. A. Maarof, B. Barry 2015 One of the major limitations of this research work was
the small dataset.

Dynamic VSA: a framework for
malware detection based on
register contents

M. Ghiasi, A. Sami, Z. Salehi 2015

The authors of this paper used a small dataset which
means there is a great chance that models were not
trained well. Secondly, a subset of features was used
which means there might be many more useful
features that were ignored while training.

Novel feature extraction, selection,
and fusion for effective malware
family classification

M. Ahmadi, G. Giacinto, D.
Ulyanov, S. Semenov, M. Trofimov 2015 Feature optimization ignored real distribution

Probabilistic inference on integrity
for access behavior based
malware detection

W. Mao, Z. Cai, D. Towsley, X.
Guan 2015

This research work was carried out on a small dataset,
and evasion techniques were not even taken care of,
due to which reliability is compromised. Some of the
malware need human interaction to get activated as
they get triggered over certain input. This important
fact was even ignored while the feature extraction
process.

Robust and effective malware
detection through quantitative
data flow graph metrics

T. W¨uchner, M. Ochoa, A.
Pretschner 2015

One of the major limitations of this research work was
the usage of a small dataset, secondly, since
obfuscation was not dealt with while training so in
case encountering the obfuscated malware model
would not perform well.

An alternative to NCD for large
sequences, Lempel-Ziv Jaccard
distance

E. Raff, C. Nicholas 2017
Researchers did not consider the obfuscation while
training the models, therefore the performance of
models would not be good on real time data.

Proposing a hmm-based approach
to detect metamorphic malware

M. Gharacheh, V. Derhami, S.
Hashemi, S. M. H. Fard 2015

The authors of this paper used a small dataset,
secondly, a subset of features was used which means
there might be many more useful features that were
ignored while training.

Heuristic metamorphic malware
detection based on statistics of
assembly instructions using
classification algorithms

P. Khodamoradi, M. Fazlali, F.
Mardukhi, M. Nosrati 2015

Once again, this research work has used small, and
again a subset of features is used in this work which
means the research has ignored many useful features
also.

A malware similarity testing
framework J. Upchurch, X. Zhou 2015 An extremely small dataset which raises a serious

question on the reliability of the model’s training.

A behavior-based malware
variant classification technique G. Liang, J. Pang, C. Dai 2016 Small dataset, non-optimized feature set, ignored real

distribution

Scaling Malware Execution with
Sequential Multi Hypothesis
Testing

P. Vadrevu, R. Perdisci 2016

Since this research work ignored evasion techniques
and user interaction for triggering malware behavior
during feature extraction, therefore model might not
perform well on real time data.

Automated malware classification
based on network behavior S. Nari, A. A. Ghorban 2013 Using small dataset in training machine learning

algorithms, compromises the reliability of results.

Malware function classification
using APIs in initial behavior N. Kawaguchi, K. Omote 2015 The small dataset which has been used in this research

work is the main limitation of this paper.

Feature selection and extraction
for malware classification

C.-T. Lin, N.-J. Wang, H. Xiao, C.
Eckert 2015

Since this research work ignored evasion techniques
and user interaction for triggering malware behavior
during feature extraction, therefore model might not
perform well on real time data. Moreover, a small
dataset was used for training which establishes the fact
that the models were not well trained.

High-fidelity, behavior based
automated malware analysis and
classification

A. Mohaisen, O. Alrawi, M.
Mohaisen 2015 This research work ignored evasion techniques.

Clustering for malware
classification

S. Pai, F. Di Troia, C. A. Visaggio,
T. H. Austin, M. Stamp 2015

Researchers did not consider the obfuscation while
training the models, therefore the performance of
models would not be good on real time data. Secondly,
a small dataset was used for training the models which
is not recommended.

J. Cybersecur. Priv. 2022, 2 817

Table 5. Cont.

Title Author Year Weakness/Limitation

Towards Automatic Reverse
Engineering of Large Datasets of
Binaries

M. Polino, A. Scorti, F. Maggi, S.
Zanero, Jackdaw 2015

Evasion techniques, packed malware, and user
interaction for triggering malware behavior were
ignored while extracting features. Although all these
phenomena are found in real time data. Therefore, the
model’s performance on real time data will not be
accurate.

Subroutine based detection of
APT malware J. Sexton, C. Storlie, B. Anderson 2015

Obfuscated samples are quite commonly found in real
time data and this research work ignored obfuscated
samples while training the model.

On the comparison of malware
detection methods using data
mining with two feature sets

S. Srakaew, W. Piyanuntcharatsr,
S. Adulkasem 2015 Ignored real distribution

A static signal processing based
malware triage

D. Kirat, L. Nataraj, G. Vigna, B.
Manjunat 2013 Ignored real distribution

Towards an Automated Pipeline
for Detecting and Classifying
Malware through Machine
Learning

Nicola Loi et al. 2021 Used static features only

Table 6. Limitations of Surveyed Papers Proposing Deep Learning Based solutions for Malware Detection.

Title Author Year Weakness/Limitation

Early Stage Malware Prediction
Using Recurrent Neural Networks Rhode, Matilda, et al. 2018

The system should be tested for large data. This
approach can be a failure if the attacker comes to know
that file is being monitored in the first 5 s so this can be
evaded.

DL4MD: A Deep Learning
Framework for Intelligent
Malware Detection

Hardy, William, et al. 2016 Sparsity constraints are not imposed on SAE which can
improve malware detection.

eXpose: A Character-Level
Convolutional Neural Network
with Embeddings for Detecting
Malicious URLs, File Paths and
Registry Key

Saxe, Joshua, and Konstantin
Berlin. 2017

The computational cost of training on long strings is
very high. This approach labeled any sample that had
0 occurrences in malware data as benign, and the rest
was labeled malware. So, strings, file paths, and
registry keys due to less training data can decrease this
model’s generalizability.

Robust Malware Detection for the
Internet of (Battlefield) Things
Devices Using Deep Eigenspace
Learning

Azmoodeh, Amin, Ali
Dehghantanha, and Kim-Kwang
Raymond Choo.

2018
Dataset was small for training the neural network
which implies that the network could not learn the
features at its best.

Detection of Malicious Code
Variants Based on Deep Learning Cui, Zhihua, et al. 2018

The model required all the input images to be of fixed
size due to which images could have lost meaningful
information while image processing.

Malware Identification Using
visualization images and deep
learning

Ni, Sang, Quan Qian, and Rui
Zhang 2018

Detection of packed, encrypted malware or malware
using anti-debugging and anti-dissembling approaches
is not performed. Real time data consist of all these
kind of malware, therefore network might not work
well with real time data.

End-to-End Deep Neural
Networks and Transfer Learning
for Automatic Analysis of Nation
State Malware

Rosenberg, Ishai, Guillaume
Sicard, and Eli David. 2018

Due to the unavailability of nation-state APT, the
proposed classifier is not evaluated for it. Moreover,
static features provided by Cuckoo sandbox are not
verified

Empowering Convolutional
Networks for Malware
Classification and Analysis

Kolosnjaji, Bojan, et al. 2017

Results of only static malware analysis are used. Code
obfuscation can affect the proposed approach. A
system unknown family of malware can affect the
system’s performance.

Malware Detection Based on Deep
Learning of Behavior Graphs Fei Xiao et al. 2019

The time of execution for extracting API calls is not
mentioned. If the time of execution would have been
small, then the results would not be reliable

J. Cybersecur. Priv. 2022, 2 818

Table 6. Cont.

Title Author Year Weakness/Limitation

Deep Learning for Classification
of Malware System Call
Sequences

Bojan et al. 2016

The approach did not consider the evasion of malware
detectors by inserting noise in system calls. Moreover,
work depends on system calls’ paths which depend on
input data.

Malware Detection with Deep
Neural Network Using Process
Behavior

Shun Tobiyama et al. 2016 Due to the small amount of data, large Deep Neural
Networks are not used.

Robust Intelligent Malware
Detection Using Deep Learning R. Vinaya Kumar et al. 2018

Malware are transformed into fixed-size images but
can be converted to variable size to get good model
learning.

Deep Neural Network-Based
Malware Detection Using Two
Dimensional Binary Program
Features

Joshua et al. 2015
A small amount of data is used for getting low false
positives, moreover only syntactic features are used,
and semantic features are not focused.

Learning the PE Header, Malware
Detection With Minimal Domain
Knowledge

Edward Raff, Jared Sylvester,
Charles Nicholas 2017 In one of the baseline approaches, features were not

normalized

One-Shot Learning Approach for
Unknown Malware Classification

True Kien, Hiroshi Sato, Masao
Kubo 2018 For training, only malware samples were given.

Malware families given for training were insufficient

Windows PE Malware Detection
Using Ensemble Learning Nureni Ayofe Azeez et al. 2021 Base ensemble classifiers only used static features.

Ensemble-Based Classification
Using Neural Networks and
Machine Learning Models for
Windows PE Malware Detection

Robertas Damaševičius et al. 2021 Base ensemble classifiers only used static features.

3.1. Shortcomings of Primitive Methods (Statistical Analysis Based Methods) for
Detecting Malware

Primitive methods of malware analysis depend upon statistical analysis of changes
in the system or probabilistic explanation of an executable being malware based on the
appearance of literals. But this probabilistic or statistical approach gives approximation
over only a few features of malware and even gets stuck with obfuscated malware.

Packed executables were ignored by [21] and even the dataset was small which led to
the uncertainty of results if the implemented solution is deployed in real-time. Ref. [19]
made use of a detection algorithm that is context insensitive and is unable to track the
calling context of the executable.

Another framework that was mentioned by [25] made use of windows audit logs but
since windows audit logs can be obfuscated then in such case the presented solution is of
no use. Secondly, researchers in [25] run the experiments for only 4 min which could have
easily ignored the slow executing malware.

The solution given by [24] did not consider all those features which play an important
role in the detection of malware.

The solution modeled by [22] used low interactive honeypots which allow only limited
interaction of malware; thus, some malware can get undetected and get active only on the
occurrence of certain conditions.

In the work done by [20], FPR is too high to implement the system in a real environ-
ment. The solution given by [67] tried to cater to metamorphism but dealt with only 3
techniques of obfuscation whereas there are many more techniques to obfuscate due to
which claimed results cannot be reproduced in a real environment.

Hence, papers surveyed proposing the solutions for malware detection based on
heuristic and statistical approaches, show that there is a need of adopting other techniques.
Those techniques should be capable of improving FPR to generate a robust and reliable
solution that can be implemented in real-time.

J. Cybersecur. Priv. 2022, 2 819

3.2. Shortcomings of Conventional Machine Learning Based Methods for Detecting Malware

In the case of static analysis being used by researchers, the foremost problem which
hinders the analysis process is obfuscation, encryption, and packing. Refs. [34,35,68–71]
have executed the solution without catering to the issue of obfuscation, packing, and en-
cryption. One of the major problems seen in many papers during the survey is the problem
of anti-analysis techniques which can be called evasion techniques also. Professional mal-
ware developers or in other words sophisticated malware developers take care of the fact
that the target machine can be an analysis machine or can have a virtual environment setup,
so they purposefully make use of evading techniques through which, normally, first they
check for the presence of virtual environment and in case of its presence malware hibernates
itself. This is called environmental awareness and is very clearly stated in [58]. Malware
can easily comprehend and identify if it is being run in a virtual or debugging environment.
Another evasion approach is timing-based which means malware gets only active at any
date or time or gets activated at user interaction only. In solutions applied by [32,39,72–74]
detection accuracy gets noticeably reduced on facing the evasion techniques, encrypted
malware, and if malware needs user interaction for getting activated. Another problem
that was identified during the survey was the small or insufficient datasets being used for
analysis due to which results produced might not be reliable.

Researchers in [28,30,32,37,38,68–72,74–79] used small dataset. Since conventional
machine learning algorithms are supposed to carry out the process of feature engineering,
therefore, a very prominent problem that could be seen during the paper survey related to
machine learning-based solutions for malware detection was the use of few features out of
all those features which can very distinctively play a vital role in the detection of malware.
Solutions carried through in [30,36,38,80,81] considered only a subset of useful features.
Another shortcoming was the lack of capability of detecting the variants of malware.

3.3. Shortcomings of Deep Learning Based Methods for Malware Detection

The approach of deep learning has taken over the field of malware analysis because of
its capability of automatic feature engineering but since still it is in the phase of evolution,
therefore, certain issues still need to be catered to. One of the issues faced by deep learning-
based methods is small data. The solution published by [43] indicates that the system was
tested against small data and malware was executed for a very small time which can be
easily catered by malware writers through evading techniques. Similarly, the research work
of [46] used small data for training to avoid computational constraints but it affected the
generalization. Again, the same problem was seen in the work of [47] due to which results
of the given solution cannot be relied upon when implementing the presented framework
in a real-time environment. Solutions given by [25,53,57] also suffer from the same problem.

Another problem that can be seen is the size of the input. Since CNN works over
images and it is observed that most of the produced solutions work over the fixed size of
images only. Solutions presented by [48,54] could perform better by handling variable size
input data. Ref. [52] have not mentioned the execution time of samples for extracting API
calls. In case samples would not have run for enough time, then claimed results would be
non-reliable. Some of the proclaimed solutions have not catered to obfuscated samples due
to which if they are implemented in real-time, their results will be affected on encountering
packed or obfuscated samples.

Solutions communicated by [44,49,51] have not catered to the circumstances where
evasion techniques could have been applied. In the research work of [45], sparsity constraint
was not considered. Most of the solutions adapting dynamic analysis did not pay heed to
multipath execution problems. Comparison between approaches carried out by [35] is not
reliable because, in one of the approaches, features were not normalized whereas the value
of features had a big range. Research work of [57] made use of only malware samples for
malware classification although the real time system receives benign as well as malicious
files so the system should have been trained on both types of files. Secondly, even malware
families that were considered for training were too few.

J. Cybersecur. Priv. 2022, 2 820

The solution proposed by [82] is a stacked approach consisting of two stages. In the
first stage, multiple base line machine learning based classifiers were used using the static
features only. In the 2nd stage, the final classifier was used which worked over the dataset
created by the predictions of the base classifiers used in the 1st stage. Similarly proposed
methodology in [83] is also following the ensemble method. The first stage of ensemble
classification in [83] is using multiple machine learning algorithms which are trained using
static features only.

4. Direction for Future Work

There are different trivial problems that we have outlined in this paper and need to
be addressed to produce a viable product capable of detecting malware in real-time. This
section will highlight all such issues which need to be paid heed to, in future work.

4.1. Moderate Sized and Updated Dataset

As highlighted in the previous section, most of the survey papers have taken a small
dataset which is not enough for research to produce reliable results. This problem is mainly
due to the constraints of handling big data or due to the unavailability of the labelled
datasets. Small datasets that have been used in research produce biased results that can’t be
reproduced in a real environment. Problems of unavailability of labeled data, imbalanced
data, or unavailability of enough samples for a particular class of malware can be coped
with through Few Shot Learning (FSL) and its variants. So that improved or state-of-the-art
results can be achieved without jumping into the problems of handling and processing
large datasets. Secondly, some of the datasets used for research purposes were quite old.
Since malware is being produced daily with the latest and new characteristics, therefore,
research carried out on outdated data might not be helpful in real-time. It is recommended
that up-to-date data should be collected which should consist of all the latest variants
of malware. Another issue that needs to be taken care of is the reflection of real data
distribution in the datasets for training and validation of proposed frameworks.

4.2. Using Significant Features

The selection of appropriate features plays a vital role in training a model for producing
effective results. Features extracted statically and dynamically both hold their contributions
to the detection of malicious behavior. Most of the surveyed papers have used a subset
of features or have used either statically extracted or in some cases dynamically extracted
features only which paves way for the concern that some features which might be quite
decisive in detecting malicious nature, may have been ignored. Many papers indicated that
non-optimal features were focused on and should be taken care of in future work. Using
the combination of static and dynamic features can train the model with better learned
capabilities. To deploy the anti-malware system in real time environment, extracting
dynamic features can pose a problem as per the limitations available in the market. In such
a case, the application of neural networks can be helpful. Neural networks can deal with
the images of samples of both malicious and benign classes. This way rather than focusing
on any feature, all the static semantic features of the samples can be focused on. The usage
of neural networks automates the process of feature engineering. Rather than selecting the
features on the hit and trial method, embedding layers of the neural network can be used
to automatically select the most contributing features.

4.3. Handling Evasion Techniques

As described earlier evasion techniques can be categorized as environment awareness-
based or timing-based. A framework that can be claimed to be deployed in a real-time
environment should be accurate and effective so that it does not get affected by evasion
techniques. It should be taken care of in future work because new malware can detect the
virtual environment. Another sophisticated capability of malware is to get activated at a
particular date and time and till that activating time, it does not exhibit malicious behavior.

J. Cybersecur. Priv. 2022, 2 821

Some malware gets triggered over getting certain input otherwise they behave as a benign
file. This kind of behavior can be traced by multipath execution which should be the focus
of future work.

4.4. Combating Anti sAnalysis Techniques

Malware developers perform various anti-analysis techniques to suppress the detec-
tion and analysis of their released malware. Obfuscating a sample, compressing/packing
the binary/exe, and encrypting the file, all are tools to make it difficult to detect and analyze
the malware. Future work can be to mitigate all these anti-analysis tools to eradicate the
possibility of the destructive threat posed by malware.

In short, the aggressively dynamic nature of the cyber world demands researchers
to take care of the following points while conducting their research in this domain of
malware detection.

• Since malware easily changes its shape due to sophisticated techniques used by
malware writers so research in the future should be conducted with the motive of
dealing with metamorphic, polymorphic, and obfuscated malware.

• The day-by-day increase in malware is the prime reason for the increasing no. of
malware families and with the passage of a certain period various new forms of
malware keep on showing up on the surface of the cyber world. Future research
should focus on developing a generic model that should be capable of detecting zero
day malware.

• To implement the real time solution, a model should be reliable enough to handle any
kind of unseen malware as well.

Deep learning based research has proved to be fruitful by producing quotable results in
the detection of malware. To further improve the solution, meta learning based algorithms
can be exploited in conjunction with deep learning. Meta learning based algorithms help
in producing generic models. These generic models are trained for self-learning. Through
self-learning, the strategies of learning the properties of even unseen types of malware can
be learned easily. More specifically few shot learning has proved itself worthy of being
explored in the future due to its effectiveness, efficiency, and robustness.

5. Conclusions

In this survey paper, we investigated the research lack in building a real-time anti-
malware system. This literature survey is about different techniques adapted to detect
malware and analyze them. Work in this paper is organized in such a way that three
different trends in techniques of detecting and analyzing malware are highlighted. Different
malware detection trends have been categorized into primitive methods, which include
statistical measures only, machine learning-based methods, and methods that involve
new emerging technology of deep learning. The presented work’s contributions include
the distribution of techniques into three different trends, issues, and challenges faced
by all different methods and directions of future work by mitigating all the issues faced
by existing methods. Different statistical strategies are categorically highlighted that are
used in the literature for detecting malware. Additionally, we shed light on machine
learning algorithms and features that are used to detect malware. And finally, we discuss
different deep learning models that are used in detecting and analyzing malware. This
work indicates different issues related to datasets, the use of features’ subsets, effects of
evasion techniques, and hindrance caused by anti-analysis techniques.

Finally, future direction leading towards meta learning based algorithms have been
suggested for producing a viable product capable of detecting and analyzing malware in
real-time with improved accuracy.

Author Contributions: Conceptualization, U.-e.-H.T. and F.B.K.; Methodology, U.-e.-H.T.; Validation,
A.K., M.H.D. and F.B.K.; Formal Analysis, U.-e.-H.T. and F.B.K.; Investigation, U.-e.-H.T. and F.B.K.;
Resources, A.K. and M.H.D.; Data Curation, U.-e.-H.T. and F.B.K.; Writing—Original Draft Prepara-

J. Cybersecur. Priv. 2022, 2 822

tion, U.-e.-H.T. and F.B.K.; Writing—Review & Editing, A.K., M.H.D. and Y.S.L.; Supervision, A.K.
and M.H.D.; Project Administration, A.K.; funding acquisition, A.K. and Y.S.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: This research work was supported by the Higher Education Commission (HEC)
Pakistan and the Ministry of Planning, Development and Special Initiatives under National Centre for
Cyber Security. Moreover, we thank the CIPMA and PR Lab, Department of computer Information
Sciences, PIEAS, Islamabad and department of Cybersecurity, AIR university, Islamabad for providing
the necessary computational resources and a healthy research environment.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Taxonomy of Malware Analysis

Appendix A.1. Malware Types

Malware is a piece of code, which on executing performs, illegal actions such as steal-
ing users’ personal information, faltering the working of a system, creating any backdoor
without user’s information, and encrypting the data to make it useless for the user. Malware
can be dedicated with the sole purpose to hinder the working of any system like Stuxnet
as described by [84] or of a kind, which can victimize several systems or applications.
Malware mostly falls into the following malware families:

• Virus: It can replicate itself by getting attached to any file/document. It has the
potential to corrupt the system, destroy the data, and can pose a great threat to assets.

• Worm: It behaves just like a virus but can replicate itself over the network.
• Trojan horse: It masquerades itself as a useful program but contains malicious code.
• Backdoor: It gets itself installed on the system and gives access to the attacker without

or with very little authentication.
• Botnet: It behaves just like a backdoor. The difference lies when it comes to the

command and control server. All systems compromised by the botnet receive the same
command from the same command and control server.

• Spyware: It behaves as a useful application but leaks users’ data.
• Downloader: It is normally installed by the attacker on victims’ machines. Its sole

purpose is to download malicious code on the system.
• Rootkit: It gets paired with other malware and hides the existence of that malware.

Another devastating effect of the rootkit is the root level access that it gives to the mal-
ware.

• Scareware: It frightens the users to buy their products to keep their data and sys-
tem safe.

• Many malware fall into more than one category as they exhibit features of more than
one malware family.

Malware analysis is the process that has become extremely important, not only to
mitigate network attacks but massive destruction can also be prevented. These attacks can
pave the way through the execution of malware on a standalone, dedicated system or by
controlling no. of systems on a network.

Appendix A.2. Malware Analysis

Major objectives of malware analysis include:

• To gain the capability of responding to network intrusion
• To determine how can systems and files be infected
• To analyze the potential of suspected binaries/PE
• To devise the mechanism for identifying malware
• To find host-based signatures or indicators
• To find network-based signatures or indicators

J. Cybersecur. Priv. 2022, 2 823

• The scale of devastation that malware can pose

Normally in the case of malware what we get hold of for the sake of analysis are binary
files or executables which are not easily understandable by humans. Therefore, different
analysis techniques have been proposed to get full insights into malware. Broad categories
of these techniques are shown in Figure A1.

Static Analysis: It refers to the phenomena of analyzing a file without executing it
to keep the process of analysis safe. This approach includes the extraction of low-level
information such as CFGs (Control Flow Graphs), DFGs (Data Flow Graphs), and system
call analysis. Different tools can aid in static analysis such as IDAPro for disassembling
the file. The static analysis gets failed when malware is obfuscated as it cannot penetrate
through the packed samples as explained by [18].

Basic Static Analysis: It can confirm the maliciousness of the file. It can provide infor-
mation about the functionality of malware, but it can’t work with diligently programmed
malware because of the lack of understanding of sophisticated malware’s behavior.

Advanced Static Analysis: It refers to reverse engineering, which can be performed
through a disassembler to understand the instruction code of the malware.

Figure A1. Malware Analysis Techniques.

Dynamic Analysis: When the file is executed in the safe/virtual environment for the
sake of analysis then, it is called dynamic analysis It should be conducted by hiding the
virtual environment from malware otherwise, malware can hibernate itself. This approach
gets failed, when a particular triggering condition doesn’t occur on which malware executes
in its malicious state.

Basic Dynamic Analysis: It executes the malware in a safe environment to observe
behavior to find any signature. It provides low-level information so cannot work with
sophisticatedly programmed malware.

Advanced Dynamic Analysis: It uses a debugger to investigate the internal state of
running malicious executables. It extracts detailed information, which helps in understand-
ing the code as shown by [85].

Hybrid Analysis: This approach is a combination of both static and dynamic ap-
proaches. Researchers are trying to make use of the beneficial features of both approaches.

Table A1 refers to the summary of the advantages and disadvantages of static and
dynamic approaches in malware analysis.

J. Cybersecur. Priv. 2022, 2 824

Table A1. Comparative Analysis of static and Dynamic Approaches to Malware Analysis.

Advantages Disadvantages

Static Analysis
• Fast and safe
• Low FPR
• Can analyze multipath

• Cannot deal with
obfuscation

• Cannot detect unknown
malware

Dynamic Analysis
• Can deal with obfuscation
• Can detect new malware
• Can observe behavioral

changes made by malware

• It is slow
• Malware can hibernate on

detecting a safe environment
(high FPR)

• Cannot trace multipath

Appendix B. Glossary of All Terms

This section is organized to help the reader get aware of some technical terms that
he/she would come across quite frequently while reading this paper.

Obfuscation: Ref. [86] explains it as the process of hiding a code using different
techniques so that malware can bypass security devices/software.

Polymorphism: Ref. [87] states it as the strategy through which malware keeps on
changing its appearance to overcome detection. It is achieved through encryption using a
different set of keys every time the malware executes.

Metamorphism: Using metamorphism malware changes its code and signature pat-
tern but it is achieved without using encryption.

PE (Portable Executable): It is a file format for executables used in versions of windows.
Opcode: In machine language, the opcode is the part of instruction that refers to the

operation.
DDOS: It is an acronym for Distributed Denial of Service, and it is categorized as a

network attack.
Honeypot: It is a system attached to the network to attract cyber attackers as men-

tioned by [88] in their work. It works by luring the attackers away from the systems having
critical info. Furthermore, it helps in observing the attacker’s behavior and collecting
information about the attacker’s activity. Honeypots are the systems that imitate to contain
the data values for the attacker, but these systems do not get accessed by legitimate users.

Ref. [89] further categorized into low interaction honeypots and high interaction
honeypots. Low interaction honeypots contain software that emulates the real service
whereas high interaction honeypots contain a complete operating system, services, and
applications to give a complete real feeling of a valuable system to the attacker.

Machine Learning: It is a specialized field that comes under the hood of Artificial
Intelligence. It makes use of AI to take decisions by mining the information from data as
described by [90].

Supervised Learning: It is a learning technique used by AI-based algorithms for
finding out the mapping function between input (x) and output (y) provided input and
corresponding output.

Unsupervised Learning: It is a learning technique utilized by AI-based algorithms to
find the underlying structure in data when only input is given.

Classification: It is a supervised learning technique that is applied when the output
variable is a category and there is no relationship among the values of the output.

Regression: It is a supervised learning technique and is shed when the output variable
is a real value and values of the output variable have a relationship (greater than or
less than).

Clustering: It is an unsupervised learning technique in which data is divided into
groups based on some similarity measure.

J. Cybersecur. Priv. 2022, 2 825

SVM: Support Vector Machine-It is a machine learning algorithm based on supervised
learning and can be used for both classification and regression.

KNN: K Nearest Neighbour-It is a machine learning algorithm that works by measur-
ing similarity.

Random Forest: It is a machine learning algorithm that can be used for both classifica-
tion and regression.

Naïve Bayes: It is a supervised learning-based machine learning algorithm that works
over applied Bayes.

LSH: It is a clustering-based machine learning algorithm.
Neural Networks: Neural networks also known as artificial neural networks are

techniques of machine learning that simulate the process of learning by a human brain.
The human brain consists of cells which are referred to as neurons in neural networks.
Similarly, in a human brain, all the cells are connected through axons and dendrites with the
connection region known as synapses. These connections when found in ANN (Artificial
Neural Networks), contain weights to behave as the connections between nerve cells in the
human brain. Figure A2 shows the human brain and simulated version of the human brain
through the artificial neural network.

Deep Learning: Ref. [13] explained it as a specialized form of machine learning in
the domain of Artificial Intelligence (AI) which applies deep artificial neural networks
also known as deep neural networks. The major difference between conventional neural
networks and deep neural networks is the number of layers. Deep neural networks make
use of many hidden layers. Deep learning networks can be further categorized into different
types of models such as deep neural networks (DNN), recurrent neural networks (RNN),
and long short-term memory (LSTM). Unlike machine learning, it is capable to deal with
unstructured data as well.

RNN: Recurrent Neural Network is a generalized form of feed-forward network
that can handle sequential data by processing the current input as well as the previously
received input stored in its internal memory (hidden units). The internal memory of RNN
refers to the hidden units in intermediate or hidden layers which have got the capability of
retaining and processing the previous inputs concerning time, having interdependency on
each other. The Standard and unfolded architecture of RNN is shown in Figure A3. It is
used where sequence and time series are important.

Autoencoder: According to [91] it is a type of feed forward neural network which
makes use of an encoder and decoder to first compress the input and then decompress it.
This process of compression and decompression is to learn the features of input first so that
the same input can be reconstructed at the output. This is a type of NN that makes use of
learned most important features of data to reconstruct it.

Stacked AutoEncoder: It is a neural network that consists of many AutoEncoder
layers with the output of each layer connected to the input of the successive layer as
explained by [89].

Figure A2. Human Brain and its Simulation Through ANN Ref. [82].

J. Cybersecur. Priv. 2022, 2 826

Figure A3. RNN Ref. [83].

References
1. PandaLabs Annual Report 2018; Panda Security: Chertsey, UK, 2018.
2. FBI. Addressing Threats to the Nations Cybersecurity 1. FBI Report, Retrieved 3 August 2022. Available online: https://www.fbi.

gov/file-repository/addressing-threats-to-the-nations-cybersecurity-1.pdf/view (accessed on 10 August 2022).
3. Manavi, F.; Hamzeh, A. A novel approach for ransomware detection based on PE header using graph embedding. J. Comput.

Virol. Hacking Tech. 2022, 14, 1–12. [CrossRef]
4. Zahoora, U.; Rajarajan, M.; Pan, Z.; Khan, A. Zero-day Ransomware Attack Detection using Deep Contractive Autoencoder and

Voting based Ensemble Classifier. Appl. Intell. 2022, 1–20. [CrossRef]
5. Mohurle, S.; Patil, M. A brief study of Wannacry Threat: Ransomware Attack 2017. Int. J. Adv. Res. Comput. Sci. 2017, 8, 1938–1940.
6. Maria Vergelis, T.S. Spam and Phishing in Q2 2019; SecureList by Kaspersky: Moscow, Russia, 2019.
7. ISTR Internet Security Threat Report; Symantec: Tempe, AZ, USA, 2019; Volume 24.
8. Cyberattacks. Available online: https://www.cnbc.com/2019/10/13/cyberattacks-cost-small-companies-200k-putting-many-

out-of-business.html (accessed on 9 March 2022).
9. Baezner, M.; Robin, P.; Wenger, A. Stuxnet. 2017. Available online: https://css.ethz.ch/ (accessed on 5 July 2020).
10. Mo, Y.; Chabukswar, R.; Sinopoli, B. Detecting integrity attacks on SCADA systems. IEEE Trans. Control Syst. Technol. 2014, 22,

1396–1407. [CrossRef]
11. Marelli, D.; Sui, T.; Fu, M.; Lu, R. Statistical Approach to Detection of Attacks for Stochastic Cyber-Physical Systems. IEEE Trans

Autom. Contr 2021, 66, 849–856. [CrossRef]
12. Sui, T.; Mo, Y.; Marelli, D.; Sun, X.; Fu, M. The Vulnerability of Cyber-Physical System under Stealthy Attacks. IEEE Trans Autom.

Contr 2021, 66, 637–650. [CrossRef]
13. Aslan, O.; Samet, R. A Comprehensive Review on Malware Detection Approaches. IEEE Access 2020, 8, 6249–6271. [CrossRef]
14. Souri, A.; Hosseini, R. A state-of-the-art survey of malware detection approaches using data mining techniques. Hum. Cent.

Comput. Inf. Sci. 2018, 8, 3. [CrossRef]
15. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2019, 81, 123–147.

[CrossRef]
16. Mahdavifar, S.; Ghorbani, A.A. Application of deep learning to cybersecurity: A survey. Neurocomputing 2019, 347, 149–176.

[CrossRef]
17. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security. Information 2019, 10,

122. [CrossRef]
18. Komatwar, R.; Kokare, M. A Survey on Malware Detection and Classification. J. Appl. Secur. Res. 2021, 16, 390–420. [CrossRef]
19. Christodorescu, M.; Jha, S. Static analysis of executables to detect malicious patterns. In Proceedings of the 12th USENIX Security

Symposium (USENIX Security 03), Washington, DC, USA, 4–8 August 2003. [CrossRef]
20. Santos, I. Idea: Opcode-sequence-based malware detection. In Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2010; Volume 5965. [CrossRef]
21. Sabbatel, G.B.; Korczynski, M.; Duda, A. Architecture of a Platform for Malware Analysis and Confinement. In Proceedings of

the Proceeding MCSS 2010: Multimedia Communications, Services and Security, Cracow, Poland, 2–3 June 2011.
22. Elhadi, A.A.E.; Maarof, M.A.; Osman, A.H. Malware detection based on hybrid signature behavior application programming

interface call graph. Am. J. Appl. Sci. 2012, 9, 283–288. [CrossRef]
23. Fleck, D.; Tokhtabayev, A.; Alarif, A.; Stavrou, A.; Nykodym, T. PyTrigger: A system to trigger & extract user-activated malware

behavior. In Proceedings of the 2013 International Conference on Availability, Reliability and Security, Regensburg, Germany, 2–6
September 2013. [CrossRef]

24. Berlin, K.; Slater, D.; Saxe, J. Malicious behavior detection using windows audit logs. In Proceedings of the 8th ACM Workshop
on Artificial Intelligence and Security, Denver, CO, USA, 16 October 2015. [CrossRef]

25. Kumar, G.; Thakur, K.; Ayyagari, M.R. MLEsIDSs: Machine learning-based ensembles for intrusion detection systems—A review.
J. Supercomput. 2020, 76, 8938–8971. [CrossRef]

26. Chen, L.; Li, T.; Abdulhayoglu, M.; Ye, Y. Intelligent malware detection based on file relation graphs. In Proceedings of the 2015
IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), Anaheim, CA, USA, 7–9 February 2015. [CrossRef]

27. Elhadi, A.A.E.; Maarof, M.A.; Barry, B.I.A. Improving the detection of malware behaviour using simplified data dependent API
call graph. Int. J. Secur. Its Appl. 2013, 7, 29–42. [CrossRef]

28. Feng, Z.; Xiong, S.; Cao, D.; Deng, X.; Wang, X.; Yang, Y.; Zhou, X.; Huang, Y.; Wu, G. HRS: A Hybrid Framework for Malware
Detection. In Proceedings of the 2015 ACM International Workshop on International Workshop on Security and Privacy Analytics,
San Antonio, TX, USA, 4 March 2015. [CrossRef]

https://www.fbi.gov/file-repository/addressing-threats-to-the-nations-cybersecurity-1.pdf/view
https://www.fbi.gov/file-repository/addressing-threats-to-the-nations-cybersecurity-1.pdf/view
http://doi.org/10.1007/s11416-021-00414-x
http://doi.org/10.1007/s10489-022-03244-6
https://www.cnbc.com/2019/10/13/cyberattacks-cost-small-companies-200k-putting-many-out-of-business.html
https://www.cnbc.com/2019/10/13/cyberattacks-cost-small-companies-200k-putting-many-out-of-business.html
https://css.ethz.ch/
http://doi.org/10.1109/TCST.2013.2280899
http://doi.org/10.1109/TAC.2020.2987002
http://doi.org/10.1109/TAC.2020.2987307
http://doi.org/10.1109/ACCESS.2019.2963724
http://doi.org/10.1186/s13673-018-0125-x
http://doi.org/10.1016/j.cose.2018.11.001
http://doi.org/10.1016/j.neucom.2019.02.056
http://doi.org/10.3390/info10040122
http://doi.org/10.1080/19361610.2020.1796162
http://doi.org/10.1109/ISI.2009.5137328
http://doi.org/10.1007/978-3-642-11747-3_3
http://doi.org/10.3844/ajassp.2012.283.288
http://doi.org/10.1109/ARES.2013.16
http://doi.org/10.1145/2808769.2808773
http://doi.org/10.1007/s11227-020-03196-z
http://doi.org/10.1109/ICOSC.2015.7050784
http://doi.org/10.14257/ijsia.2013.7.5.03
http://doi.org/10.1145/2713579.2713585

J. Cybersecur. Priv. 2022, 2 827

29. Ghiasi, M.; Sami, A.; Salehi, Z. Dynamic VSA: A framework for malware detection based on register contents. Eng. Appl. Artif.
Intell. 2015, 44, 111–122. [CrossRef]

30. Kwon, B.J.; Dumitras, T. The Dropper Effect: Insights into Malware Distribution with Downloader Graph Analytics Categories
and Subject Descriptors. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(Ccs’15), Denver, CO, USA, 12–16 October 2015.

31. Mao, W.; Cai, Z.; Towsley, D.; Guan, X. Probabilistic inference on integrity for access behavior based malware detection. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Cham, Switzerland, 2015; Volume 9404. [CrossRef]

32. Piyanuntcharatsr, S.S.W.; Adulkasem, S.; Chantrapornchai, C. On the comparison of malware detection methods using data
mining with two feature sets. Int. J. Secur. Its Appl. 2015, 9, 293–318. [CrossRef]

33. Wüchner, T.; Ochoa, M.; Pretschner, A. Robust and effective malware detection through quantitative data flow graph metrics.
In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Cham, Switzerland, 2015; Volume 9148. [CrossRef]

34. Raff, E.; Nicholas, C. An alternative to NCD for large sequences, lempel-ZiV jaccard distance. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; Volume 129685.
[CrossRef]

35. Khodamoradi, P.; Fazlali, M.; Mardukhi, F.; Nosrati, M. Heuristic metamorphic malware detection based on statistics of assembly
instructions using classification algorithms. In Proceedings of the 18th CSI International Symposium on Computer Architecture
and Digital Systems, (CADS 2015), Tehran, Iran, 7–8 October 2015. [CrossRef]

36. Upchurch, J.; Zhou, X. Variant: A malware similarity testing framework. In Proceedings of the 2015 10th International Conference
on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October 2015. [CrossRef]

37. Liang, G.; Pang, J.; Dai, C. A Behavior-Based Malware Variant Classification Technique. Int. J. Inf. Educ. Technol. 2016, 6, 291.
[CrossRef]

38. Vadrevu, P.; Perdisci, R. MAXS: Scaling malware execution with sequential multi-hypothesis testing. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, Xi’an, China, 30 May–3 June 2016. [CrossRef]

39. Dahl, G.E.; Stokes, J.W.; Deng, L.; Yu, D. Large-scale malware classification using random projections and neural networks. In
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
26–31 May 2013. [CrossRef]

40. Ravi, V.; Alazab, M.; Selvaganapathy, S.; Chaganti, R. A Multi-View attention-based deep learning framework for malware
detection in smart healthcare systems. Comput. Commun. 2022, 195, 73–81. [CrossRef]

41. Rama, K.; Kumar, P.; Bhasker, B. Deep Learning to Address Candidate Generation and Cold Start Challenges in Recommender
Systems: A Research Survey. arXiv 2019, arXiv:1907.08674.

42. Rhode, M.; Burnap, P.; Jones, K. Early-stage malware prediction using recurrent neural networks. Comput Secur 2018, 77, 578–594.
[CrossRef]

43. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep learning for classification of malware system call sequences. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Cham, Switzerland, 2016; Volume 9992. [CrossRef]

44. Hardy, W.; Chen, L.; Hou, S.; Ye, Y.; Li, X. DL 4 MD: A Deep Learning Framework for Intelligent Malware Detection; CSREA Press: Las
Vegas, NV, USA, 2016; pp. 61–67.

45. Saxe, J.; Berlin, K. eXpose: A Character-Level Convolutional Neural Network with Embeddings For Detecting Malicious URLs,
File Paths and Registry Keys. arXiv 2017, arXiv:1702.08568.

46. Azmoodeh, A.; Dehghantanha, A.; Choo, K.K.R. Robust Malware Detection for Internet of (Battlefield) Things Devices Using
Deep Eigenspace Learning. IEEE Trans. Sustain. Comput. 2019, 4, 88–95. [CrossRef]

47. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.G.; Chen, J. Detection of Malicious Code Variants Based on Deep Learning. IEEE Trans
Ind. Inf. 2018, 14, 3187–3196. [CrossRef]

48. Ni, S.; Qian, Q.; Zhang, R. Malware identification using visualization images and deep learning. Comput Secur 2018, 77, 871–885.
[CrossRef]

49. Rosenberg, I.; Sicard, G.; David, E. End-to-end deep neural networks and transfer learning for automatic analysis of nation-state
malware. Entropy 2018, 20, 390. [CrossRef]

50. Kolosnjaji, B.; Eraisha, G.; Webster, G.; Zarras, A.; Eckert, C. Empowering convolutional networks for malware classification
and analysis. In Proceedings of the International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017.
[CrossRef]

51. Xiao, F.; Lin, Z.; Sun, Y.; Ma, Y. Malware Detection Based on Deep Learning of Behavior Graphs. Math. Probl. Eng. 2019, 2019,
8195395. [CrossRef]

52. Tobiyama, S.; Yamaguchi, Y.; Shimada, H.; Ikuse, T.; Yagi, T. Malware Detection with Deep Neural Network Using Process
Behavior. In Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta,
GA, USA, 10–14 June 2016; Volume 2. [CrossRef]

53. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Venkatraman, S. Robust Intelligent Malware Detection Using
Deep Learning. IEEE Access 2019, 7, 46717–46738. [CrossRef]

http://doi.org/10.1016/j.engappai.2015.05.008
http://doi.org/10.1007/978-3-319-26362-5_8
http://doi.org/10.14257/ijseia.2015.9.3.23
http://doi.org/10.1007/978-3-319-20550-2_6
http://doi.org/10.1145/3097983.3098111
http://doi.org/10.1109/CADS.2015.7377792
http://doi.org/10.1109/MALWARE.2015.7413682
http://doi.org/10.7763/IJIET.2016.V6.702
http://doi.org/10.1145/2897845.2897873
http://doi.org/10.1109/ICASSP.2013.6638293
http://doi.org/10.1016/j.comcom.2022.08.015
http://doi.org/10.1016/j.cose.2018.05.010
http://doi.org/10.1007/978-3-319-50127-7_11
http://doi.org/10.1109/TSUSC.2018.2809665
http://doi.org/10.1109/TII.2018.2822680
http://doi.org/10.1016/j.cose.2018.04.005
http://doi.org/10.3390/e20050390
http://doi.org/10.1109/IJCNN.2017.7966340
http://doi.org/10.1155/2019/8195395
http://doi.org/10.1109/COMPSAC.2016.151
http://doi.org/10.1109/ACCESS.2019.2906934

J. Cybersecur. Priv. 2022, 2 828

54. David, O.E.; Netanyahu, N.S. DeepSign: Deep learning for automatic malware signature generation and classification. In
Proceedings of the International Joint Conference on Neural Networks, Killarney, Ireland, 12–17 July 2015. [CrossRef]

55. Saxe, J.; Berlin, K. Deep neural network based malware detection using two dimensional binary program features. In Proceedings
of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October
2015. [CrossRef]

56. Tran, T.K.; Sato, H.; Kubo, M. One-shot learning approach for unknown malware classification. In Proceedings of the 2018 5th
Asian Conference on Defense Technology (ACDT), Hanoi, Vietnam, 25–26 October 2018. [CrossRef]

57. Raff, E.; Sylvester, J.; Nicholas, C. Learning the PE header, malware detection with minimal domain knowledge. In Proceedings
of the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017. [CrossRef]

58. Bensaoud, A.; Kalita, J. Deep multi-task learning for malware image classification. J. Inf. Secur. Appl. 2022, 64, 103057. [CrossRef]
59. Kumar, S.; Janet, B. DTMIC: Deep transfer learning for malware image classification. J. Inf. Secur. Appl. 2022, 64, 103063.

[CrossRef]
60. Mohammadi, F.G.; Amini, M.H.; Arabnia, H.R. An introduction to advanced machine learning: Meta-learning algorithms,

applications, and promises. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 1123.
[CrossRef]

61. Kadam, S.; Vaidya, V. Review and analysis of zero, one and few shot learning approaches. In Advances in Intelligent Systems and
Computing; Springer: Cham, Switzerland, 2020; Volume 940. [CrossRef]

62. Hsiao, S.C.; Kao, D.Y.; Liu, Z.Y.; Tso, R. Malware image classification using one-shot learning with siamese networks. Procedia
Comput. Sci. 2019, 159, 1863–1871. [CrossRef]

63. Tran, T.K.; Sato, H.; Kubo, M. Image-based unknown malware classification with few-shot learning models. In Proceedings of
the 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), Nagasaki, Japan, 26–29
November 2019. [CrossRef]

64. Tang, Z.; Wang, P.; Wang, J. ConvProtoNet: Deep prototype induction towards better class representation for few-shot malware
classification. Appl. Sci. 2020, 10, 2847. [CrossRef]

65. Atapour-Abarghouei, A.; Bonner, S.; McGough, A.S. A King’s Ransom for Encryption: Ransomware Classification using
Augmented One-Shot Learning and Bayesian Approximation. In Proceedings of the 2019 IEEE International Conference on Big
Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019. [CrossRef]

66. Lee, J.; Jeong, K.; Lee, H. Detecting metamorphic malwares using code graphs. In Proceedings of the 2010 ACM Symposium on
Applied Computing, Sierre, Switzerland, 22–26 March 2010. [CrossRef]

67. Santos, I.; Devesa, J.; Brezo, F.; Nieves, J.; Bringas, P.G. OPEM: A static-dynamic approach for machine-learning-based malware
detection. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2013; Volume 189. [CrossRef]

68. Pai, S.; di Troia, F.; Visaggio, C.A.; Austin, T.H.; Stamp, M. Clustering for malware classification. J. Comput. Virol. Hacking Tech.
2017, 13, 95–107. [CrossRef]

69. Polino, M.; Scorti, A.; Maggi, F.; Zanero, S. Jackdaw: Towards automatic reverse engineering of large datasets of binaries. In
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Cham, Switzerland, 2015; Volume 9148. [CrossRef]

70. Sexton, J.; Storlie, C.; Anderson, B. Subroutine based detection of APT malware. J. Comput. Virol. Hacking Tech. 2016, 12, 225–233.
[CrossRef]

71. Lin, C.T.; Wang, N.J.; Xiao, H.; Eckert, C. Feature selection and extraction for malware classification. J. Inf. Sci. Eng. 2015, 31,
965–992.

72. Mohaisen, A.; Alrawi, O.; Mohaisen, M. AMAL: High-fidelity, behavior-based automated malware analysis and classification.
Comput Secur 2015, 52, 251–266. [CrossRef]

73. Lindorfer, M.; Kolbitsch, C.; Milani Comparetti, P. Detecting environment-sensitive malware. In Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2011;
Volume 6961. [CrossRef]

74. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]

75. Park, Y.; Reeves, D.; Mulukutla, V.; Sundaravel, B. Fast malware classification by automated behavioral graph matching. In
Proceedings of the 6th Annual Workshop on Cyber Security and Information Intelligence Research (CSIIRW ’10), Oak Ridge, TN,
USA, 21–23 April 2010. [CrossRef]

76. Islam, R.; Tian, R.; Batten, L.M.; Versteeg, S. Classification of malware based on integrated static and dynamic features. J. Netw.
Comput. Appl. 2013, 36, 646–656. [CrossRef]

77. Nari, S.; Ghorbani, A.A. Automated malware classification based on network behavior. In Proceedings of the 2013 International
Conference on Computing, Networking and Communications (ICNC), San Diego, CA, USA, 28–31 January 2013. [CrossRef]

78. Kawaguchi, N.; Omote, K. Malware function classification using apis in initial behavior. In Proceedings of the 2015 10th Asia
Joint Conference on Information Security, Kaohsiung, Taiwan, 24–26 May 2015. [CrossRef]

79. Gharacheh, M.; Derhami, V.; Hashemi, S.; Fard, S.M.H. Proposing an HMM-based approach to detect metamorphic malware. In
Proceedings of the 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Zahedan, Iran, 9–11 September 2015.
[CrossRef]

http://doi.org/10.1109/IJCNN.2015.7280815
http://doi.org/10.1109/MALWARE.2015.7413680
http://doi.org/10.1109/ACDT.2018.8593203
http://doi.org/10.1145/3128572.3140442
http://doi.org/10.1016/j.jisa.2021.103057
http://doi.org/10.1016/j.jisa.2021.103063
http://doi.org/10.1007/978-3-030-34094-0_6
http://doi.org/10.1007/978-3-030-16657-1_10
http://doi.org/10.1016/j.procs.2019.09.358
http://doi.org/10.1109/CANDARW.2019.00075
http://doi.org/10.3390/app10082847
http://doi.org/10.1109/BigData47090.2019.9005540
http://doi.org/10.1145/1774088.1774505
http://doi.org/10.1007/978-3-642-33018-6_28
http://doi.org/10.1007/s11416-016-0265-3
http://doi.org/10.1007/978-3-319-20550-2_7
http://doi.org/10.1007/s11416-015-0258-7
http://doi.org/10.1016/j.cose.2015.04.001
http://doi.org/10.1007/978-3-642-23644-0_18
http://doi.org/10.1016/j.ins.2011.08.020
http://doi.org/10.1145/1852666.1852716
http://doi.org/10.1016/j.jnca.2012.10.004
http://doi.org/10.1109/ICCNC.2013.6504162
http://doi.org/10.1109/AsiaJCIS.2015.15
http://doi.org/10.1109/CFIS.2015.7391648

J. Cybersecur. Priv. 2022, 2 829

80. Loi, N.; Borile, C.; Ucci, D. Towards an Automated Pipeline for Detecting and Classifying Malware through Machine Learning.
arXiv 2021, arXiv:2106.05625.

81. Azeez, N.A.; Odufuwa, O.E.; Misra, S.; Oluranti, J.; Damaševičius, R. Windows PE malware detection using ensemble learning.
Informatics 2021, 8, 10. [CrossRef]

82. Damaševičius, R.; Venčkauskas, A.; Toldinas, J.; Grigaliūnas, Š. Ensemble-based classification using neural networks and machine
learning models for windows pe malware detection. Electronics 2021, 10, 485. [CrossRef]

83. Langner, R. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Secur. Priv. 2011, 9, 49–51. [CrossRef]
84. Roseline, S.A.; Geetha, S.; Kadry, S.; Nam, Y. Intelligent Vision-Based Malware Detection and Classification Using Deep Random

Forest Paradigm. IEEE Access 2020, 8, 206303–206324. [CrossRef]
85. Barriga, J.J.A.; Yoo, S.G. Malware detection and evasion with machine learning techniques: A survey. Int. J. Appl. Eng. Res. 2017,

12, 7207–7214.
86. Kim, K.; Moon, B.R. Malware detection based on dependency graph using hybrid genetic algorithm. In Proceedings of the 12th

annual conference on Genetic and evolutionary computation, Portland, OR, USA, 7–11 July 2010. [CrossRef]
87. Sanders, C.; Smith, J. Applied Network Security Monitoring; Elsevier: Amsterdam, The Netherlands, 2014. [CrossRef]
88. William Stallings, L.B. Computer Security: Principles and Practice, 4th ed.; Pearson: Upper Saddle River, NJ, USA, 2021.
89. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.

Intell. Rev. 2020, 53, 5455–5516. [CrossRef]
90. Vinh, P.C. Context-Aware Systems and Applications (ICCASA 2018) and Nature of Computation and Communication (ICTCC

2018). Mob. Netw. Appl. 2019, 24, 80–81. [CrossRef]
91. Chouhan, N.; Khan, A.; Rasheed, R.; Khan, H. Network anomaly detection using channel boosted and residual learning based

deep convolutional neural network. Appl. Soft Comput. J. 2019, 83, 105612. [CrossRef]

http://doi.org/10.3390/informatics8010010
http://doi.org/10.3390/electronics10040485
http://doi.org/10.1109/MSP.2011.67
http://doi.org/10.1109/ACCESS.2020.3036491
http://doi.org/10.1145/1830483.1830703
http://doi.org/10.1016/C2013-0-00546-4
http://doi.org/10.1007/s10462-020-09825-6
http://doi.org/10.1007/s11036-018-1137-5
http://doi.org/10.1016/j.asoc.2019.105612

	Introduction
	Trends in Malware Detection
	Malware Detection with Primitive Methods (Statistical Analysis Based Methods)
	Malware Detection with Conventional Machine Learning Based Methods
	Malware Detection with Deep Learning Based Methods

	Issues and Challenges
	Shortcomings of Primitive Methods (Statistical Analysis Based Methods) for Detecting Malware
	Shortcomings of Conventional Machine Learning Based Methods for Detecting Malware
	Shortcomings of Deep Learning Based Methods for Malware Detection

	Direction for Future Work
	Moderate Sized and Updated Dataset
	Using Significant Features
	Handling Evasion Techniques
	Combating Anti sAnalysis Techniques

	Conclusions
	Appendix A
	Malware Types
	Malware Analysis

	Appendix B
	References

