
Citation: Alghawazi, M.;

Alghazzawi, D.; Alarifi, S. Detection

of SQL Injection Attack Using

Machine Learning Techniques: A

Systematic Literature Review. J.

Cybersecur. Priv. 2022, 2, 764–777.

https://doi.org/10.3390/jcp2040039

Academic Editor: Marina

L. Gavrilova

Received: 31 July 2022

Accepted: 14 September 2022

Published: 20 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Detection of SQL Injection Attack Using Machine Learning
Techniques: A Systematic Literature Review
Maha Alghawazi , Daniyal Alghazzawi and Suaad Alarifi *

Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah 80200, Saudi Arabia
* Correspondence: salarifi@kau.edu.sa

Abstract: An SQL injection attack, usually occur when the attacker(s) modify, delete, read, and
copy data from database servers and are among the most damaging of web application attacks.
A successful SQL injection attack can affect all aspects of security, including confidentiality, integrity,
and data availability. SQL (structured query language) is used to represent queries to database
management systems. Detection and deterrence of SQL injection attacks, for which techniques from
different areas can be applied to improve the detect ability of the attack, is not a new area of research
but it is still relevant. Artificial intelligence and machine learning techniques have been tested and
used to control SQL injection attacks, showing promising results. The main contribution of this paper
is to cover relevant work related to different machine learning and deep learning models used to
detect SQL injection attacks. With this systematic review, we aims to keep researchers up-to-date and
contribute to the understanding of the intersection between SQL injection attacks and the artificial
intelligence field.

Keywords: SQL injection; machine learning; deep learning; adversarial attacks

1. Introduction

Most cyber-physical system (CPS) applications are safety-critical; misbehavior caused
by random failures or cyber-attacks can considerably restrict their growth. Thus, it is
important to protect CPS from being damaged in this way [1]. Current security solutions
have been well-integrated into many networked systems including the use of middle boxes,
such as antivirus protection, firewall, and intrusion detection systems (IDS). A firewall
controls network traffic based on the source or destination address. It alters network traffic
according to the firewall rules. Firewalls are also limited to their knowledge of the hosts
receiving the content and the amount of state available. An IDS is a type of security tool that
scans the system for suspicious activity, monitors the network traffic, and alerts the system
or network administrator [2]. In this context, a number of frameworks and mechanisms
have been suggested in recent papers.

In this paper, we have considered SQL injection attacks that target the HTTP/HTTPS
protocol, which aim to pass through the web application firewall (WAF) and obtain an
unauthorized access to proprietary data. SQL injection belongs to the injection family
of web attacks, wherein an attacker inserts inputs into a system to execute malicious
statements. The victim system is usually not ready to process this input, typically resulting
in data leakage and/or granting of unauthorized access to the attacker; in this case, the
attacker can access and/or modify the data, affecting all aspects of security, including
confidentiality, integrity, and data availability [3].

In an SQL injection, the attacker inserts an SQL statement into an exchange between a
client and database server [3]. SQL (structured query language) is used to represent queries
to database management systems (DBMSs). The maliciously injected SQL statement is
designed to extract or modify data from the database server. A successful injection can result

J. Cybersecur. Priv. 2022, 2, 764–777. https://doi.org/10.3390/jcp2040039 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp2040039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0001-8893-6652
https://orcid.org/0000-0002-5533-3203
https://doi.org/10.3390/jcp2040039
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp2040039?type=check_update&version=1

J. Cybersecur. Priv. 2022, 2 765

in authentication and bypass and changes to the database by inserting, modifying, and/or
deleting data, causing data loss and/or destruction of the entire database. Furthermore,
such an attack could overrun and execute commands on the hosted operating system,
typically leading to more serious consequences [4].

Thus, SQL injection attacks present aserious threats to organizations. A variety of
research has been undertaken to address this threat, presenting various artificial intelligence
(AI)techniques for detection of SQL injection attacks using machine learning and deep learn-
ing models [5]. AI techniques to facilitate the detection of threats are usually implemented
via learning from historical data representing an attack and/or normal data. Historical data
are useful for learning, in order to recognize patterns of attacks, understanding detected
traffic, and even predicting future attacks before they occur [6].

SQL injection attackers and defenders must understand how SQL language works to
know how it can be misused [3]. To extract data from a database or modify the data, queries
must be written using SQL language and they must follow a standard syntax, such as:

“SELECT * FROM books WHERE author = ‘MAHA’”

The above query will return all books authored by MAHA. Queries are submitted to
the DBMS and are usually written through a web browser. For the query to be transmitted
to the database server through the web browser, it has to be encoded through a long
URL string, such as: http://www.xyz_website.com?QUERY=SELECT%20*%20FROM%20
books%20WHERE%20author=7453.

What if the attacker adds to the previous SQL query? For example:

“SELECT * FROM books WHERE author = ′MAHA′ OR ′1′ = ′1′”

As the statement 1 = 1 is always true, the query will return all books in the database,
not just the books authored by MAHA.

The previous example might not represent a threat, especially if the stored list of books
is not confidential. However, it could be applied to valuable using different syntax, and if
successful, it might return sensitive data, such as passwords, bank accounts, trade secrets,
and personal data, which might be considered a privacy breach, among other consequences.

In some research, injecting a code using ‘OR’ followed by a TRUE statement, such as
1 = 1 is called “tautology” [7]. Methods other than tautology can be used, such as when
an attacker intentionally injects an incorrect query to force the database server to return a
default error page, which might contain valuable information that could help an attacker to
understand the database to form a more advance attack [7]. The SQL syntax “UNION” can
also be used to extract information, in addition to many other methods based on the same
idea, of misusing SQL syntax to extract or even update the data in the targeted database.

This is how SQL injection works; the question then becomes: how does one detect this
type of attack using deep learning methods?

Deep learning is a machine learning and artificial intelligence method. It can be used
to support the detection of SQL injection attacks by training a classifier to achieve the ability
to recognize and therefore detect an attack. The classifier is trained using deep learning
models and can be used to classify new data, such as traffic or data in log files. If the
classifier is passive, it will alert the administrator; if it is active, it will prevent data from
passing to the database server. The classifier can be trained to recognize and detect SQL
injection attacks using three different learning methods [8].

First is, unsupervised learning, where features are extracted from unclassified data, i.e.,
data that are labelled as neither normal nor abnormal. Using information and the Bayesian
probability theory, the classifier detects hidden structures in the unclassified dataset. An
unclassified dataset means that it is not known whether these data are normal or abnormal
(malicious). Different techniques can be used in unsupervised learning, such as clustering
and density estimation [8].

http://www.xyz_website.com?QUERY=SELECT%20*%20FROM%20books%20WHERE%20author=7453
http://www.xyz_website.com?QUERY=SELECT%20*%20FROM%20books%20WHERE%20author=7453

J. Cybersecur. Priv. 2022, 2 766

The second is, supervised learning, whereby a labelled training dataset is used to train
the classifier. As the input data are labelled, i.e., normal or abnormal, the output is known
beforehand. Therefore, the process involves simple mapping between the input training data
and the known output, followed by continuous modification of the algorithm and changing
of the weights until an acceptable classification accuracy is achieved. Then, a test dataset
is used to test the classifier; if the result is with an acceptable accuracy range, the classifier
is ready to detect novel data, i.e., data not previously used in training or testing. The main
drawback of supervised learning is generating and labelling the training and testing data,
which might consume processing time, especially for complex attacks. Supervised learning
is categorized into classification and regression algorithms. The most common supervised
learning algorithms include Bayesian networks, decision trees, support vector machines
(SVMs), K-nearest neighbors, and neural networks. Third is, semi-supervised learning, which
use combination of supervised and unsupervised learning methods [8].

The main contribution of this paper is to provide a systematic review of the machine
learning and deep learning solutions that, are used to improve the detectability of SQL
injection attacks. With this systematic review, we aim to keep researchers up-to-date and
contribute to the understanding of the intersection between an SQL injection attack and
artificial intelligence.

The paper is organized as follows. Section 1 is an introduction to SQL injection
attacks and deep learning algorithms. In Section 2, we discuss related studies and consider
previous systematic reviews. In Section 3, we present the research method and planning of
the systematic review. In Section 4, highlights the results and review all related studies. In
Section 5, presents the discussion and answers to research questions. Finally, in Section 6,
we present our conclusions.

2. Related Studies

In this section, four published systematic reviews were considered. Newer systematic
reviews typically include both recent and older studies in the area under investigation. There-
fore, all of the papers we considered were relatively recent. The first was published in 2017 [9]
and it covered previous primary studies on SQL injection attacks, techniques, and tools. In [9],
forty-six primary studies were analyzed related to SQL injection attacks, tools, and techniques,
in addition to the impact of the attack. We adapted the same methodology as that used
in [9] due to its comprehensiveness and because it achieves satisfying results, in addition, this
research was similar to that in [9] in terms of objectives, ideas, and the area of research.

Qiu et al. [10] provided a comprehensive review of using artificial intelligence in
attacking and defending against security attacks, concentrating on the training and testing
stages. In their study, they sorted technologies and applications of adversarial attacks
in terms of natural language processing, cyberspace security, computer vision, and the
physical world. Furthermore, the authors considered defense strategies in their research
and proposed methods to deal with specific types of adversarial attack. Martins et al. [11]
explored more than 15 papers that applied adversarial machine learning techniques used in
intrusion and malware detection models. In their study, the authors summarized the most
common adversarial attacks and defense mechanisms for intrusion and malware detection.

Muslihi et al. [12] conducted a review of more than 14 studies published using deep
learning methods to detect SQL injection attacks, including CNN, LSTM, DBN, MLP, and
Bi-LSTM. They also provided a comparison of methods in terms of objectives, techniques,
features, and datasets. Muhammad et al. [13] reviewed and analytically evaluated the
methods and tools that are commonly used to detect and prevent SQL injection attacks,
considering a total of 82 studies. Their review results showed that most researchers focused
on proposing approaches to detect and mitigate SQL injection attacks (SQLIAs) rather than
evaluating the effectiveness of existing SQLIA detection methods.

J. Cybersecur. Priv. 2022, 2 767

3. Research Method

This systematic literature review was conducted in four main phases: (A) planning the
systematic review; (B) conducting the review; (C) reporting the results; and (D) discussing
the results. In the planning phase, research questions and the research strategy were set.
Section 4 outlines the systematic review. We discuss our results in Section 5. Figure 1 is a
representation of the phases of this research.

J. Cybersecur. Priv. 2022, 2, x FOR PEER REVIEW 4 of 18

focused on proposing approaches to detect and mitigate SQL injection attacks (SQLIAs)
rather than evaluating the effectiveness of existing SQLIA detection methods.

3. Research Method
This systematic literature review was conducted in four main phases: (A) planning

the systematic review; (B) conducting the review; (C) reporting the results; and (D) dis-
cussing the results. In the planning phase, research questions and the research strategy
were set. Section 4 outlines the systematic review. We discuss our results in Section 5.
Figure 1 is a representation of the phases of this research.

Figure 1. Research phases.

3.1. Planning the Systematic Review
Research Questions
Q1: What are the machine learning and deep learning methods used to detect SQL injec-
tion attacks?
Q2: How are SQL injection attack datasets generated using machine learning techniques?
Q3: How can machine learning be used to generate adversarial SQL injection attacks?

The first question was the main question decided upon before starting the review,
whereas the second and third questions were added later after reviewing other systematic
reviews covered in Section 4.

3.2. Research Strategy
The libraries used to retrieve the research papers were ACM, IEEE, Springer and Sci-

ence Direct. The main search topics were SQL injection attacks and machine learning mod-
els. The search was configured to retrieve papers published between 2012 and 2021, and
we retrieved conference papers, journal articles, and review articles. Some inclusion crite-
ria were defined to select relevant papers among the publications retrieved at the time of
the search. These criteria were used to decide which papers to review and which to dis-
card and not include for further study.

3.2.1. Inclusion Criteria
• Papers related to SQL injection attacks;
• Papers that included our search keywords;
• Papers from the scientific databases ACM, IEEE, SpringerLink, and ScienceDirect.
• Papers on the topic of machine learning and the security domain.

Figure 1. Research phases.

3.1. Planning the Systematic Review
Research Questions

Q1: What are the machine learning and deep learning methods used to detect SQL
injection attacks?

Q2: How are SQL injection attack datasets generated using machine learning techniques?
Q3: How can machine learning be used to generate adversarial SQL injection attacks?
The first question was the main question decided upon before starting the review,

whereas the second and third questions were added later after reviewing other systematic
reviews covered in Section 4.

3.2. Research Strategy

The libraries used to retrieve the research papers were ACM, IEEE, Springer and
Science Direct. The main search topics were SQL injection attacks and machine learning
models. The search was configured to retrieve papers published between 2012 and 2021,
and we retrieved conference papers, journal articles, and review articles. Some inclusion
criteria were defined to select relevant papers among the publications retrieved at the time
of the search. These criteria were used to decide which papers to review and which to
discard and not include for further study.

3.2.1. Inclusion Criteria

• Papers related to SQL injection attacks;
• Papers that included our search keywords;
• Papers from the scientific databases ACM, IEEE, SpringerLink, and ScienceDirect.
• Papers on the topic of machine learning and the security domain.

3.2.2. Exclusion Criteria

• Papers not covering machine learning techniques and SQL injection attacks;
• Papers published before 2012; and
• Papers that are not available in full-text format.

J. Cybersecur. Priv. 2022, 2 768

4. Results
Conducting the Review

After filtering retrieved studies according to the inclusion criteria, 36 studied were
retained. Selected studies were reviewed, as they could possibly provided answers to the
research questions.

Q1: What are the machine learning and deep learning methods used to detect SQL
injection attacks?

Many researchers have demonstrated the use of machine learning and deep learning
algorithms to detect SQL injection attacks [14]. Hasan and Tarique [14] tested and compared
23 machine learning classifiers using MATLAB. They generated their own datasets, into
which they injected abnormal SQL syntax. They checked and manually verified the SQL
statements. A total of 616 SQL statements were used to train the test classifiers. The used
the following machine learning algorithms: “coarse k-NN, bagged trees, linear SVM, fine
k-NN, medium k-NN, RUS boosted trees, subspace discriminant, boosted trees, weighted k-
NN, cubic k-NN, linear discriminant, medium tree, subspace k-NN, simple tree, quadratic
discriminant, cubic SVM, fine Gaussian SVM, cosine k-NN, complex tree, logistic regression,
coarse Gaussian SVM, medium Gaussian, and SVM”. The five best models in terms of
accuracy were determined to be ensemble boosted, bagged trees, linear discriminant, cubic
SVM, and fine Gaussian SVM.

Gao et al. [15] proposed a model called ATTAR to detect SQL injection attacks by
analyzing web access logs to extract SQL injection attack features. The features were chosen
based on access behavior mining and a grammar pattern recognizer. The main target of this
model was detection of unknown SQL injection statements that had not been previously
used in the training data. Five machine learning algorithms were used for training: naive
Bayesian, random forest, SVM, ID3, and k-means. The experimental results showed that
the accuracy of the models based on random forest and ID3 achieved the best results in
detecting SQL injection attacks. We could not find what ATTAR stands for in [15].

Gandhi et al. [16] proposed a hybrid CNN-BiLSTM-based model for SQL injection
attack detection. The authors presented a detailed comparative analysis of different types
of machine learning algorithms used for detection of SQL injection attacks. The CNN-
BiLSTM approach provided accuracy of approximately 98%, compared withother described
machine learning algorithms.

Zhang [17] presented a machine learning classifier to detect SQL injection vulnera-
bilities in PHP code. Multiple machine learning algorithms were trained and evaluated,
including random forest, logistic regression, SVM, multilayer perceptron (MLP), long short-
term memory (LSTM), and a convolutional neural network (CNN). Zhang found that CNN
provided the best precision of 95.4%.

Gi Li et al. [18] proposed an adaptive deep forest model (ADF) with the integration of the
AdaBoost algorithm. AdaBoost stands for adaptive boosting, which is a statistical classification
algorithm, and the deep forest model is a layered model based on a deep neural network.
The adaptive deep forest model proposed in [16] achieved high efficiency, comparable to
that of traditional machine learning models, such as decision trees, and a better performance
compared with regular deep neural network models, such as RNN and CNN.

Uwagbole et al. [19] created a dataset using symbolic finite automata to train a clas-
sifier to detect SQL injection attacks. The generated data were labelled, and training was
conducted with a supervised learning model with an ML algorithm of two-class support
vector machine (TC SVM) and two-class logistic regression (TC LR). The generated models
were evaluated using a receiver operating characteristic (ROC) curve.

Ahmed et al. [20] proposed an SQL injection detection method using an ensemble
learning algorithm and natural language processing (NLP) to generate a bag-of-words
model used to train a random forest classifier. Prediction was also considered in this
research to improve the detection ability of the classifier. In this study, decision tree, naïve
Bayes, SVM, and k-NN classification models were also trained to classify the same testing
dataset, and their performances were compared with that of the proposed method. The

J. Cybersecur. Priv. 2022, 2 769

experimental results showed that the proposed method achieved better accuracy, higher
TPR, and lower FNR than the other four classifiers. Evaluation metrics were used to
measure the performance of the classifier. The measurements were based on a confusion
matrix, accuracy, precision, true-positive rate, false-positive rate, true-negative rate, false-
negative rate, receiver operating characteristic curve, and area under the curve.

Tripathy et al. [21] created a dataset by gathering and combining a large number
of smaller datasets. The generated dataset was labelled, and the learning model was
supervised learning. They trained seven machine learning models: decision tree, AdaBoost,
random forest, optimized linear, TensorFlow linear, deep ANN, and a boosted trees classifier.
Then, they compared the seven algorithms in terms of performance and accuracy. The
results showed that the random forest classifier outperformed all other classifiers and
achieved an accuracy of 99.8%.

Chinmay and Kulkarni [22] proposed a novel approach to detection of SQL injection
attacks using a human agent knowledge transfer (HAT) and TD machine learning algorithm.
In this model, a machine learning agent acted as a maze game to differentiated between
normal SQL queries and malicious SQL queries. If the incoming SQL query was an SQL
injection attack query, then it gained more rewards and was deemed an SQL injection
attack query before achieving the final state. This machine learning approach achieved an
accuracy of 95%.

Makiou et al. [23] proposed a detection system based on two approaches. The first
detection method was based on pattern matching, which is the same as a signature-based
detection system whereby the classifier has a database of SQL attack signatures and only
inspects the HTTP URL in an attempt to find a match. The second detection method used
was based on machine learning techniques. To build this model, the authors collected
malicious data and trained the classifier with these data by extracting the features represent-
ing attacks. The following algorithms were employed: SVM, naïve Bayes, and K-nearest
neighbor. The performance of the classifier was measured using the total cost ratio (TCR).

Kar et al. [24] trained a support vector machine (SVM) to detect malicious SQL queries
by modelling the WHERE clause of a query as an interaction network of tokens and
computing the centrality of the nodes. Node centralities were used to quantify the degree
of importance or centrality of a node in the network. The experimental results obtained on a
dataset collected from five web applications using some automated attack tools, confirmed
that three of the centrality measures used in this study can effectively detect SQL injection
attacks with minimal impact on performance.

Wang et al. [25] analyzed the existing SQL injection detection algorithms in an intelli-
gent transportation system. The authors proposed a long short-term memory (LSTM)-based
SQL injection attack detection method and a method of generating SQL injection samples
to augment the dataset. This method can simulate SQL injection attacks and generate valid
positive samples to solve the problem of overfitting caused by a lack of positive samples.
The experimental results showed that the accuracy, precision, and F1 score of the proposed
method were all above 92%.

Kamtuo and Soomlek. [26] proposed a framework for SQL injection prevention via
server-side scripting using machine learning and compiler platforms. A dataset of 1100
samples of SQL commands were trained in four machine learning models: boosted decision
tree, decision tree, support vector machine (SVM), and an artificial neural network. The
results indicate that the decision tree algorithm achieved the highest prediction efficiency
among the tested models.

Sivasangari et al. [27] used the AdaBoost algorithm to detect SQL injection attacks. In
this study, the data were converted into stumps, which were classified as weak stumps
providing less weight to the output or strong stumps providing the highest weight in the
overall output. The experimental result showed that the proposed algorithm accurately
and effectively detected injection attacks.

Daset al. [28] proposed a method for classifying dynamic SQL queries as either attacks
or normal based on a web profile prepared during the training phase. Naïve Bayes, SVM,

J. Cybersecur. Priv. 2022, 2 770

and parse tree approaches were used for the classification process. The overall detection
rate using the two datasets was 91% and 90%, respectively.

Kasim [29] designed a method to detect malicious SQL queries. Decision tree algo-
rithms were used for the classification processes to detect different levels of SQL injection.
The proposed model maintained an accuracy more than 98% in detecting SQL injection
attacks and an accuracy of 92% in classifying the level of attack as simple, unified, or lateral.

Tanget et al. [30] presented a simple method for SQL injection attack detection based
on an artificial neural network. First, a large amount of SQL injection data were analyzed
to extract the relevant features. Then, a variety of neural network models, such as MLP and
LSTM, were trained. The experimental results showed that the detection rate of MLP was
better than that of LSTM.

Erdődiet al. [31] automatized the process of exploiting SQL injection attacks through
reinforcement learning agents. In this study, the problem was modelled as a Markov
decision process. The experimental results show that reinforcement learning agents can be
used in the future to perform security assessment and penetration testing.

Kar et al. [32] presented a detection method by modeling SQL queries as a graph
of tokens and utilized the centrality measure of tokens to train single and multiple SVM
classifiers. The system was tested using directed and undirected graphs with different SVM
classifiers. The experimental results demonstrated that the proposed technique is able to
effectively identify malicious SQL queries.

Solomon et al. [33] presented a model of a two-class support vector machine (TCSVM)
to predict binary labelled outcomes concerning whether an SQL injection attack was
positive or negative in a web request. This model intercepted web requests at the proxy
level and applied ML predictive analytics to predict SQL injection attacks.

Mcwhirter et al. [34] presented a novel approach for classifying SQL queries. A gap-
weighted string subsequence kernel algorithm was used to compute the similarity metric
between the query strings. Then, the support vector machine was trained on the similarity
metrics to determine whether the query strings was normal or malicious. The proposed
approach was evaluated using a number of datasets and achieved 92.48% accuracy.

Mejia-Cabrera et al. [35] presented a new approach to the construction of a dataset
with a NoSQL query database. Six classification algorithms were trained and evaluated to
identify SQL injection attacks, which included: decision tree, SVM, random forest, k-NN,
neural network, and multilayer perceptron. The experimental results showed that the last
two algorithms obtained an accuracy of 97.6%.

Pathak et al. [36] trained a progressive neural network model with a naïve Bayesian
classifier to successfully detect SQL injection attacks. Progressive neural networks were
trained using parameters such as error-based, time-based, SQL query and, union-based
SQL injection attacks. The proposed method achieved an accuracy of 97.897%.

Wang et al. [37] proposed a hybrid approach using tree-vector kernels in SVM to learn
SQL statements. The authors used both the parse tree structure of SQL queries and the
query value similarity characteristic to distinguish between malicious and benign queries.
The results confirmed the benefit of incorporation to efficiently and accurately identify
abnormal queries.

Fang et al. [38] proposed a tool based on LSTM neural networks and the word vectors
of SQL tokens. According to the syntactic functions of the SQL queries, each query was
converted into sequences of tokens to build an SQL word vector model. Then, the LSTM
neural network was trained. The results of the experiment showed that the proposed tool
achieved an accuracy of 98.60%.

Zhang et al. [39] proposed a deep learning-based approach to detect SQL injection
attacks in network traffic. The proposed approach selected only the target features needed
by the model to be trained using a deep belief network (DBN) model. The authors also
employed test data to test the performance of different models, including LSTM, CNN, and
MLP. According to the experimental results, DBN achieved an accuracy of 96%.

J. Cybersecur. Priv. 2022, 2 771

Priyaa et al. [40] proposed a framework that combined the EDADT (efficient data
adaptive decision tree) algorithm and the SVM classification algorithm to detect SQL
injection attacks. The employed dataset was created using the MovieLens dataset system for
movie recommendations, which included user login and movie details. The experimental
results showed that the proposed approach achieved an accuracy of 99.87%.

Joshi et al. [41] proposed a method for detecting SQL injection using the naïve Bayes
machine learning algorithm. The authors applied a tokenization process to break the query
into meaningful elements called tokens. Then, the list of tokens became an input for the
further classification processes. The result of the naïve Bayes approach was analyzed using
precision, recall, and accuracy.

Q2: How are SQL injection attack datasets generated using machine learning techniques?
Many researchers have been developed and generated their SQL injection datasets

instead of using existing datasets [42]. Islam et al. [43] developed a training dataset for
NoSQL injection to manually design important features using various supervised learning
algorithms. In this study, the authors generated a dataset including approximately 75%
benign and 25% injection queries, which was tested on a local server.

Appelt et al. [44] proposed automated testing techniques that generated SQL injection
attacks, bypassing web application firewalls (WAFs). The authors developed SQL injection
grammar based on existing SQL injection attacks, as well as an automated input generation
technique to automatically generate attack payloads. Then, machine learning was used to
efficiently generate additional payloads and new successful attacks with a high probability
of bypassing the firewall.

Ross et al. [42] proposed a system consisting of three phases to generate data: traffic
generation, capture, and preprocessing. In the traffic generation phase, the simulated
normal and malicious traffic was generated from the scripts located on the traffic generation
server. Then, the traffic was captured by the webapp server and at the Datiphy appliance.
Finally, data preprocessing was achieved with bash shell scripts on the webapp server. The
resulting data from preprocessing was imported into Weka, which is a machine learning
framework that includes many ML tools. The data were processed into word vectors using
the weak filter StringToVec. Then correlated feature selection was employed to reduce the
number of features for efficient machine learning.

Liu et al. [45] proposed a tool called DeepSQLi to generate test cases for detection
of SQL injection attacks using a deep learning model and sequence-of-words prediction.
DeepSQLi used the neural language model, which can be trained to learn semantic features
of SQL attacks to translate the test case (or user input) into a new test case. Therefore,
DeepSQLi is able to generate SQL injection attacks that have not been captured by patterns
in the training datasets. Siddiq et al. [46] proposed a learning-based SQL injection fix
tool called SQLIFIX. This tool creates an abstraction of SQL injection code from a training
dataset that consists of 14 projects and then clusters them using hierarchical clustering. The
proposed approach generated correct solutions for 67.52% of cases for Java and 41.33% of
correct solutions for PHP on an independent test set.

Naghmeh [47] proposed a model for the detection of SQLI attacks using artificial
intelligence (AI) techniques. This model consisted of three main components: uniform
resource locator (URL) generator to generate thousands of normal and malicious URLs; a
URL classifier to classify all generated URLs as either normal or malicious; and a neural
network (NN) model to detect whether a given URL was a malicious, or benign URL.
The model was first trained and then evaluated by employing both benign and malicious
URLs. URL classifiers were also used to convert all generated URLs into strings of logic
(1 = malicious; 0 = benign).

Q3:How can machine learning be used to generate adversarial SQL injection attacks?
Adversarial machine learning (AML) is based on the threats posed by an attacker with

the aim of being incorrectly classified by the victim machine learning algorithm. Generating
an adversarial SQL injection dataset starts with a target malicious query that was correctly

J. Cybersecur. Priv. 2022, 2 772

detected. And then, a set of mutation operators was iteratively applied in order to generate
new queries [48].

Demetrio and Valenza [48] developed a tool named WAF-A-MoLE to generate adver-
sarial examples against web application firewalls (WAFs) by applying a set of syntactic
mutations. The authors produced a dataset of SQL injection queries through an automatic
procedure. To evaluate the effectiveness of the proposed tool, it was applied to different
ML-based WAFs and evaluated in terms of their robustness against WAF-A-MoLE.

Appelt et al. [49] proposed a black-box automated technique, named 4SQLi, for generating
test inputs that could bypass security filters, resulting in executable SQL queries. This technique
was based on a set of multiple mutation operators that manipulated inputs to produce new test
inputs to trigger SQLi attacks, making it possible to create inputs that contained new attack
patterns, thus increasing the possibility of generating a successful SQLi attacks.

5. Discussion
5.1. Machine Learning and Deep Learning Techniques for Detection of SQL Injection Attacks
(Related to Q1)

In this section, the results reported in Section 4 are discussed. In related studies, various
algorithms and techniques can be used for detecting SQL injection attacks. Table 1 summarizes
the algorithms under review, in addition to the employed datasets and evaluation methods.

Table 1. Summary of the Machine learning algorithms, Datasets, and Evaluation Methods.

Ref. Algorithm Dataset Dataset Size

Evaluation Methods

Accuracy FPR FNR TP FN FP TN Precision Recall F1
Score AUC

[13]

Naïve Bayesian

Collected
from access logs 58,000 log records

- 10.9% 16.7% 34.5% 18.2% - - - - - - - -

SVM - 4.1% 8.3% 41.4% 18.2% - - - - - - - -

ID3 - 0.0% 0.0% 41.4% 18.2% - - - - - - - -

RF - 0.68% 0.0% 37.9% 9.1% - - - - - - - -

K-means - 0.68% 0.0% 37.9% 9.1% - - - - - - - -

[14] CNN-BiLSTM Collected from
various websites

4200 queries (3072 SQL
injections,1128 normal

data
98% - - - - - - - - - -

[15]

Decision Tree

Collected from
two sources

950 vulnerable PHP
cases, 8800

non-vulnerable files

93.4% - - - - - - 76.6% 56.5% 0.650% -

Random Forest 93.6% - - - - - - 77.4% 57.7% 0.660% -

SVM 95.4% - - - - - - 98.6% 58.3% 0.732% -

Logistic
Regression 95.1% - - - - - - 98.5% 56.0% 0.713% -

Multilayer
Perceptron 95.3% - - - - - - 91.0% 63.7% 0.746% -

RNN 95.3% - - - - - - 92.2% 62.4% 0.742% -

LSTM 95.2% - - - - - - 91.9% 61.4% 0.734% -

CNN 95.3% - - - - - - 95.4% 59.9% 0.734% -

[16]
ADF

Collected from
vulnerability
submission
platforms

10,000 negative samples
and

10,000 positive samples

Not
clear

- - - - - - - - - -

AdaBoost

[17]

Two-Class
Logistic

Regression Dataset of 725,206
attribute
values

96.4% - - - - - - 0.971 0.957 0.964 0.984

Two-Class
Support Vector

Machine
98.6% - - - - - - 0.974 0.998 0.986 0.986

[18] Random Forest +
NLP

Open-source
tools, such as

Libinjection and
Sqlmap

17,266 thousand SQL
injection payloads and

19,303 thousand
normal payloads

98.1515 0.96137 0.03862 4182 168 1 4792 0.9997% - - 0.99

[19]

RF

Collected from
datasets available

in public
repositories

7576 malicious SQL
queries and

100,496 legal inputs

99.8% - - - - - - 0.999 0.999 0.999 -

TensorFlow
Boosted Trees

Classifier
99.6% - - - - - - 0.989 0.961 0.998 -

AdaBoost
Classifier 99.5% - - - - - - 0.997 0.996 0.997 -

Decision Tree 99.5% - - - - - - 0.998 0.997 0.997 -

SGD Classifier 98.6% - - - - - - 0.988 0.997 0.992 -

Deep ANN 98.4% - - - - - - 0.934 0.820 0.873 -

TensorFlow
Linear Classifier 97.8% - - - - - - 0.908 0.759 0.988 -

J. Cybersecur. Priv. 2022, 2 773

Table 1. Cont.

Ref. Algorithm Dataset Dataset Size
Evaluation Methods

Accuracy FPR FNR TP FN FP TN Precision Recall F1
Score AUC

[12]

Ensemble Boosted
Trees

Open-source
datasets

616 SQL statements

93.8% - - - - - - - - - -

Bagged Trees 93.8% - - - - - - - - - -

Linear
Discriminant 93.7% - - - - - - - - - -

Cubic SVM 93.7% - - - - - - - - - -

Gaussian SVM 93.5% - - - - - - - - - -

[20]
TD Machine

Learning
Technique

Not mentioned Not mentioned 95%. - - - - - - - - - -

[21]
SVM, Naïve

Bayes, K-Nearest
Neighbor

Open-source
datasets Not mentioned Not

clear - - - - - - - - - -

[22] SVM classifier

Dataset generated
using a

honeypot-based
technique.

4610 injected and 4884
genuine

token sequences

92.84% 1.33% 86.66% 914 8 8 969 98.40% 86.66% - -

99.16% 0.82% 99.13% 799 123 13 964 99.13% 99.31% - -

99.37% 0.72% 99.46% 917 5 7 970 99.24% 99.46% - -

99.05% 1.02% 99.13% 914 8 10 967 98.92% 99.13% - -

[23] LSTM Open-source
datasets Not mentioned 93.47% - - - - - - 93.56% 92.43% 92.99%

[24]

SVM, Boosted
Decision Tree,

Artificial Neural
Network,

Decision Tree

Open-source
datasets

1100 vulnerable SQL
commands 99.68% - - - - - 1.000 - - - -

[25] AdaBoost
algorithm Not mentioned Not mentioned Not

Clear - - - - - - - - - -

[26]

Naïve Bayesian

Not mentioned Not mentioned

90%
- - - - - - - - - -

SVM 91%

Parse Tree 91%

[27] Decision tree OWASP dataset 332 malicious codes and
52 the clean codes 98% - - - - - 97% 98% 97% 98.2%

[28]
MLP Open-source

datasets
820 SQL injection

samples and
8925 normal samples

99.67% 0.00% - - - - 100% 99.41% - - -

LSTM 97.68% 0.13% - - - - 99.86% 95.49% - - -

[29] Markov Decision
Processes (MDPs) Not mentioned 1000 SQL environments - - - - - - - - - - -

[30] SVM
Open-source

datasets

4610 injected queries
and 4884 genuine

queries

99.37% 0.31% - - - - - 99.35% 99.35% 99.46% -

99.73% 0.31% - - - - - 99.67% 99.78% 99.73% -

99.63% 0.31% - - - - - 99.67% 99.57% 99.62% -

[31] TCSVM

Dataset from
MicrosoftSQL

reserved
keywords website

362,603 attack items and
362,603 non-attack items 98.60% - - - - - - 97.4% 99.7% 98.5% 98.6%

[32] SVM Amnesia testbed
dataset

46 legitimate queries
and 40

malicious SQL injection
attacks

- - - - - - - 65.9% 98.3% 78.9% -

68% 100% 81%

[33]

Support Vector
Machine

Novel datasets 450 malicious and 59
benign queries

84.9% - - - - - - 84.8% 91.1% 87.6% 83.3%

K-Nearest
Neighbor 87.6% - - - - - - 84.8% 96.7% 90.4% 96.6%

Neural Network 97.6% - - - - - - 98.7% 97.4% 98.0% 98.9%

Multilayer
Perceptron 97.6% - - - - - - 98.7% 97.4% 98.0% 98.9%

Decision Tree 89.4% - - - - - - 96.3% 85.6% 90.6% 94.6%

Random Forest 89.6% - - - - - - 87.5% 96.4% 91.7% 97.4%

[34]
Progressive

Neural Network,
Naïve Bayes

Open-source
dataset

A 62.2 KB SQL query
and a 4.86 KB SQL

injection exploitation
97.897% - - 193 0 0 5 - - - -

[35] SVM Open-source
dataset

1000 benign and 1000
malicious

HTTP requests
0.982 0.000 - - - - - - - -

[36] LSTM Open-source
dataset

43,167 injected query
strings and 32,486

genuine query strings
98.60% - - - - - - 99.17% 99.20%, 99.17% 99%

[37]
LSTM, MLP,

CNN, Deep Belief
Network (DBN)

Datasets collected
from HTTP

requests

118,529 normal data
points and 21,810
SQL injection data

points

- - - - - - - - - -

[38] EDADT and SVM

Dataset created
based on the
MovieLens

dataset

Not mentioned 99.87% - - - - - - - - - -

[39] Naïve Bayes Not mentioned 101 normal codes and 77
malicious codes 93.3% - - - - - - 1.0 0.89 - -

J. Cybersecur. Priv. 2022, 2 774

Table 1 shows that most of the studies focused on using supervised machine learning
to detect and classify SQL injection attacks; 89% of the studies used supervised learning,
and 4% used unsupervised learning and mixed learning, whereas 3% used other types of
learning, as shown in Figure 2.

J. Cybersecur. Priv. 2022, 2, x FOR PEER REVIEW 14 of 18

Table 1 shows that most of the studies focused on using supervised machine learning

to detect and classify SQL injection attacks; 89% of the studies used supervised learning,

and 4% used unsupervised learning and mixed learning, whereas 3% used other types of

learning, as shown in Figure 2.

Figure 2. Percentage of the mchine learning and deep learning techniques used idetecting SQL in-

jection attacks.

5.2. Generating SQL Injection Attack Datasets Using Machine Learning Techniques (Related to

Q2)

A high-quality dataset for training is essential for machine learning and deep learn-

ing methods to achieve effective detection performance. It is difficult to identify suitable

datasets with patterns to train classifiers in SQL injection attack research [30]. The results

of the studies reviewed in Section 4 showed that, after automatically generating SQL in-

jection attack payloads from different web applications, machine learning techniques can

learn incrementally learn the payloads that are passed or blocked by the firewalls and can

be used to efficiently generate additional payloads with high probability of bypassing the

firewall. A total of 83% of the reviewed studies used datasets collected from public repos-

itories and HTTP requests. The remaining 17% of the reviewed studies used datasets cre-

ated by the authors using deep learning models that can be trained to learn the semantic

features of SQL attacks to generate new test cases from user inputs.

5.3. Generating Adversarial SQL Injection Attacks Using ML Techniques (Related to Q3)

The result reported in Section 4 showed that adversarial SQL injection attacks can be

generated using mutation operators, which are a set of operators that alter the syntax of

the original payload without affecting its semantics. Such operators can be classified into

three classes based on their purpose: behavior-changing, syntax-repairing, and obfuscat-

ing operators [49,50]. Table 2 provides a summary of the mutation operators.

Figure 2. Percentage of the mchine learning and deep learning techniques used idetecting SQL
injection attacks.

5.2. Generating SQL Injection Attack Datasets Using Machine Learning Techniques (Related to Q2)

A high-quality dataset for training is essential for machine learning and deep learning
methods to achieve effective detection performance. It is difficult to identify suitable
datasets with patterns to train classifiers in SQL injection attack research [30]. The results of
the studies reviewed in Section 4 showed that, after automatically generating SQL injection
attack payloads from different web applications, machine learning techniques can learn
incrementally learn the payloads that are passed or blocked by the firewalls and can be used
to efficiently generate additional payloads with high probability of bypassing the firewall.
A total of 83% of the reviewed studies used datasets collected from public repositories and
HTTP requests. The remaining 17% of the reviewed studies used datasets created by the
authors using deep learning models that can be trained to learn the semantic features of
SQL attacks to generate new test cases from user inputs.

5.3. Generating Adversarial SQL Injection Attacks Using ML Techniques (Related to Q3)

The result reported in Section 4 showed that adversarial SQL injection attacks can be
generated using mutation operators, which are a set of operators that alter the syntax of
the original payload without affecting its semantics. Such operators can be classified into
three classes based on their purpose: behavior-changing, syntax-repairing, and obfuscating
operators [49,50]. Table 2 provides a summary of the mutation operators.

J. Cybersecur. Priv. 2022, 2 775

Table 2. Summary of mutation operators (adopted from [50]).

MO Class MO
Name Description Example

Behavior-Changing Operators

MO or Adds an OR clause to the input Original input: “SELECT * FROM table WHERE id= “
the input will change the logic of the statement and turns

it as follows:
“SELECT * FROM table WHERE id = 1 OR 1 = 1

MO and Adds an AND clause to the input

MO semi Adds a semicolon followed by an additional clause

Syntax-Repairing Operators

MO par Appends a parenthesis to a valid input Original inpt: “SELECT * FROM ta-
ble WHERE character = CHR(“ + input + “)”

The changed SQL statement:
SELECT * FROM table WHERE character = CHR(67) OR

1 = 1 {).

MO cmt Adds a comment command (– or #) to an input

MO qot Adds a single or double quote to an input

Obfuscating Operators

MO wsp Changes the encoding of white spaces

Original input: 1 OR 1 = 1, mutated input:
1+− OR + 1 = 1.

This changes the predefined statement: “SE- LECT *
FROM table WHERE id = “ + input to SELECT * FROM

table WHERE id = 1 + OR + 1 = 1

MO chr Changes the encoding of a character literally
enclosed in quotes

MO html Changes the encoding of an input to HTML entity
encoding

MO per Changes the encoding of an input to percentage
encoding

MO bool Rewrites a Boolean expression while preserving
its truth value

MO keyw Obfuscates SQL keywords by randomizing the
capitalization and inserting comments

6. Conclusions

SQL injection attacks represent a major threat to web applications, and this may have
major implications for privacy and security. Machine learning and deep learning applications
have achieved considerable success in detecting this type of web attack. In this study, we
conducted a systematic literature review of 36 articles related to research on SQL injection
attacks and machine learning techniques. We identified the most commonly used machine
learning techniques to detect all types of SQL injection attacks. The review results showed
that few studies used machine learning tools and methods to generate new SQL injection
attack datasets. Similarly, the results showed that only a few studies focused only on using
mutation operators to generate adversarial SQL injection attack queries. In future work, we
aim to cover the use of other machine learning and deep learning models to generate and
detect SQL injection attacks., In addition to investigating the use of other AI techniques to
generate adversarial SQL injection attacks, such as generative adversarial networks (GANs).

Author Contributions: Conceptualization, M.A. and D.A.; methodology, M.A.; software, M.A.; vali-
dation, M.A., D.A. and S.A.; formal analysis, O.R.; investigation, M.A.; resources, M.A.; data curation,
M.A.; writing—original draft preparation, M.A.; writing—review and editing, S.A.; visualization,
M.A.; supervision, D.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under Grant No. IFPDP-284-22. The authors, therefore, acknowledge with thanks
to DSR technical and financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Han, S.; Xie, M.; Chen, H.-H.; Ling, Y. Intrusion Detection in Cyber-Physical Systems: Techniques and Challenges. IEEE Syst. J.

2014, 8, 1049–1059. [CrossRef]
2. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A Detailed Investigation and Analysis of using Machine Learning Techniques

for Intrusion Detection. IEEE Commun. Surv. Tutor. 2018, 21, 686–728. [CrossRef]
3. Charles, M.J.; Pfleeger, P.; Pfleeger, S.L. Security in Computing, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2004.

http://doi.org/10.1109/jsyst.2013.2257594
http://doi.org/10.1109/COMST.2018.2847722

J. Cybersecur. Priv. 2022, 2 776

4. Son, S.; McKinley, K.S.; Shmatikov, V. Diglossia: Detecting code injection attacks with precision and efficiency. Proc. ACM Conf.
Comput. Commun. Secur. 2013, 2, 1181–1191. [CrossRef]

5. Yan, R.; Xiao, X.; Hu, G.; Peng, S.; Jiang, Y. New deep learning method to detect code injection attacks on hybrid applications. J.
Syst. Softw. 2018, 137, 67–77. [CrossRef]

6. Vähäkainu, P.; Lehto, M. Artificial intelligence in the cyber security environment. In Proceedings of the 14th International
Conference on Cyber Warfare and Security, ICCWS 2019, Stellenbosch, South Africa, 28 February–1 March 2019; pp. 431–440.

7. Satapathy, S.C.; Govardhan, A.; Raju, K.S.; Mandal, J.K. SQL Injection Detection and Correction Using Machine Learning
Techniques. Adv. Intell. Syst. Comput. 2015, 337, 435–442. [CrossRef]

8. Marashdeh, Z.; Suwais, K.; Alia, M. A Survey on SQL Injection Attacks: Detection and Challenges. In Proceedings of the 2021
International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 957–962. [CrossRef]

9. Faker, S.A.; Muslim, M.A.; Dachlan, H.S. A systematic literature review on sql injection attacks techniques and common exploited
vulnerabilities. Int. J. Comput. Eng. Inf. Technol. 2017, 9, 284–291.

10. Qiu, S.; Liu, Q.; Zhou, S.; Wu, C. Review of artificial intelligence adversarial attack and defense technologies. Appl. Sci. 2019, 9,
909. [CrossRef]

11. Martins, N.; Cruz, J.M.; Cruz, T.; Abreu, P.H. Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: A
Systematic Review. IEEE Access 2020, 8, 35403–35419. [CrossRef]

12. Muslihi, M.T.; Alghazzawi, D. Detecting SQL Injection on Web Application Using Deep Learning Techniques: A Systematic
Literature Review. In Proceedings of the 2020 Third International Conference on Vocational Education and Electrical Engineering
(ICVEE), Surabaya, Indonesia, 3–4 October 2020. [CrossRef]

13. Aliero, M.S.; Qureshi, K.N.; Pasha, M.F.; Ghani, I.; Yauri, R.A. Systematic Review Analysis with SQLIA Detection and Prevention
Approaches. Wirel. Pers. Commun. 2020, 112, 2297–2333. [CrossRef]

14. Hasan, M.; Tarique, M. Detection of SQL Injection Attacks: A Machine Learning Approach. In Proceedings of the 2019
International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab
Emirates, 19–21 November 2019.

15. Gao, H.; Zhu, J.; Liu, L.; Xu, J.; Wu, Y.; Liu, A. Detecting SQL Injection Attacks Using Grammar Pattern Recognition and Access Behavior
Mining. In Proceedings of the 2019 IEEE International Conference on Energy Internet (ICEI), Nanjing, China, 27–31 May 2019. [CrossRef]

16. Gandhi, N. A CNN-BiLSTM based Approach for Detection of SQL Injection Attacks. In Proceedings of the 2021 International
Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 17–18 March 2021;
pp. 378–383.

17. Zhang, K.; Dataset, A.T. A Machine Learning based Approach to Identify SQL Injection Vulnerabilities. In Proceedings of the 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE), San Diego, CA, USA, 11–15 November
2019; pp. 2019–2021. [CrossRef]

18. Li, Q.I.; Li, W.; Wang, J. A SQL Injection Detection Method Based on Adaptive Deep Forest. IEEE Access 2019, 7, 145385–145394.
[CrossRef]

19. Uwagbole, S.O.; Buchanan, W.J.; Fan, L. An Applied Pattern-Driven Corpus to Predictive Analytics in Mitigating SQL Injection
Attack. In Proceedings of the 2017 Seventh International Conference on Emerging Security Technologies (EST), Canterbury, UK,
6–8 September 2017; pp. 12–17.

20. Ahmed, M. Cyber Attack Detection Method Based on NLP and Ensemble Learning Approach. In Proceedings of the 2020 23rd
International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 19–21 December 2020; pp. 19–21.

21. Tripathy, D.; Gohil, R.; Halabi, T. Detecting SQL Injection Attacks in Cloud SaaS using Machine Learning. In Proceedings of the
2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA, 25–27 May
2020; pp. 145–150. [CrossRef]

22. Kulkarni, C.C.; Kulkarni, S.A. Human agent knowledge transfer applied to web security. In Proceedings of the 2013 Fourth
International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6
July 2013; pp. 14–17. [CrossRef]

23. Makiou, A.; Begriche, Y.; Serhrouchni, A. Hybrid approach to detect SQLi attacks and evasion techniques. In Proceedings of the
10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, Miami, FL, USA,
22–25 October 2014; pp. 452–456. [CrossRef]

24. Kar, D.; Sahoo, A.K.; Agarwal, K.; Panigrahi, S.; Das, M. Learning to Detect SQLIA Using Node Centrality with Feature Selection.
In Proceedings of the 2016 International Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 19–21
December 2016; pp. 18–23.

25. Li, Q.; Wang, F.; Wang, J.; Li, W. LSTM-Based SQL Injection Detection Method for Intelligent Transportation System. IEEE Trans.
Veh. Technol. 2019, 68, 4182–4191. [CrossRef]

26. Kamtuo, K.; Soomlek, C. Machine Learning for SQL Injection Prevention in Server-Side Scripting. In Proceedings of the 2016
International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 14–17 December 2016; pp. 1–6.

27. Sivasangari, A. SQL Injection Attack Detection using Machine Learning Algorithm. In Proceedings of the 2021 5th International
Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 3–5 June 2021; pp. 1166–1169.

http://doi.org/10.1145/2508859.2516696
http://doi.org/10.1016/j.jss.2017.11.001
http://doi.org/10.1007/978-3-319-13728-5
http://doi.org/10.1109/ICIT52682.2021.9491117
http://doi.org/10.3390/app9050909
http://doi.org/10.1109/ACCESS.2020.2974752
http://doi.org/10.1109/ICVEE50212.2020.9243198
http://doi.org/10.1007/s11277-020-07151-2
http://doi.org/10.1109/ICEI.2019.00093
http://doi.org/10.1109/ASE.2019.00164
http://doi.org/10.1109/ACCESS.2019.2944951
http://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00035
http://doi.org/10.1109/ICCCNT.2013.6726770
http://doi.org/10.4108/icst.collaboratecom.2014.257568
http://doi.org/10.1109/TVT.2019.2893675

J. Cybersecur. Priv. 2022, 2 777

28. Das, D.; Sharma, U.; Bhattacharyya, D.K. Defeating SQL injection attack in authentication security: An experimental study. Int. J.
Inf. Secur. 2019, 18, 1–22. [CrossRef]

29. Kasim, Ö. An ensemble classification-based approach to detect the attack level of SQL injections. J. Inf. Secur. Appl. 2021, 59, 102852.
[CrossRef]

30. Tang, P.; Qiu, W.; Huang, Z.; Lian, H.; Liu, G. Detection of SQL injection based on artificial neural network. Knowl.-Based Syst.
2020, 190, 105528. [CrossRef]

31. Erdődi, L.; Sommervoll, Å.Å.; Zennaro, F.M. SQL injection vulnerability exploitation using Q-learning reinforcement learning
agents. J. Inf. Secur. Appl. Simulating 2021, 61, 102903. [CrossRef]

32. Kar, D.; Panigrahi, S.; Sundararajan, S. SQLiGoT: Detecting SQL injection attacks using the graph of tokens and SVM. Comput.
Secur. 2016, 60, 206–225. [CrossRef]

33. Uwagbole, S.O.; Buchanan, W.J.; Fan, L. Applied Machine Learning Predictive Analytics to SQL Injection Attack Detection and
Prevention. In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon,
Portugal, 8–12 May 2017; pp. 1087–1090. [CrossRef]

34. Mcwhirter, P.R.; Kifayat, K.; Shi, Q.; Askwith, B. SQL Injection Attack classification through the feature extraction of SQL query
strings using a Gap-Weighted String Subsequence Kernel. J. Inf. Secur. Appl. 2018, 40, 199–216. [CrossRef]

35. Mejia-Cabrera, H.I.; Paico-Chileno, D.; Valdera-Contreras, J.H.; Tuesta-Monteza, V.A.; Forero, M.G. Automatic Detection of Injection
Attacks by Machine Learning in NoSQL Databases; Springer: Berlin/Heidelberg, Germany, 2021; pp. 23–32.

36. Pathak, R.K.; Yadav, V. Handling SQL Injection Attack Using Progressive Neural Network; Springer: Singapore, 2020; Volume 1170.
37. Wang, Y.; Li, Z. SQL injection detection via program tracing and machine learning. In Lecture Notes in Computer Science; 7646

LNCS; Springer: Berlin/Heidelberg, Germany, 2012; pp. 264–274. [CrossRef]
38. Fang, Y.; Peng, J.; Liu, L.; Huang, C. WOVSQLI: Detection of SQL injection behaviors using word vector and LSTM. In Proceedings

of the ICCSP 2018: Proceedings of the 2nd International Conference on Cryptography, Security and Privacy, Guiyang, China,
16–19 March 2018; pp. 170–174. [CrossRef]

39. Zhang, H.; Zhao, J.; Zhao, B.; Yan, X.; Yuan, H.; Li, F. SQL injection detection based on deep belief network. In Proceedings of the
CSAE 2019: Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China,
22–24 October 2019. [CrossRef]

40. Priyaa, B.D.; Student, P.G.; Devi, M.I. Hybrid SQL Injection Detection System. In Proceedings of the 2016 3rd International
Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 22–23 January 2016.

41. Joshi, A. SQL Injection Detection using Machine Learning. In Proceedings of the 2014 International Conference on Control,
Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; Volume 2,
pp. 1111–1115.

42. Ross, K.; Moh, M.; Yao, J.; Moh, T.S. Multi-source data analysis and evaluation of machine learning techniques for SQL injection
detection. In Proceedings of the ACMSE 2018 Conference, Richmond, KY, USA, 29–31 March 2018; pp. 1–8. [CrossRef]

43. Islam, M.R.U.; Islam, M.S.; Ahmed, Z.; Iqbal, A.; Shahriyar, R. Automatic detection of NoSQL injection using supervised learning.
In Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI,
USA, 15–19 July 2019; Volume 1, pp. 760–769. [CrossRef]

44. Appelt, D.; Nguyen, C.D.; Briand, L. Behind an application firewall, are we safe from SQL injection attacks? In Proceedings of
2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), Graz, Austria, 13–17 April 2015.
[CrossRef]

45. Liu, M.; Li, K.; Chen, T. DeepSQLi: Deep semantic learning for testing SQL injection. In Proceedings of the ISSTA 2020:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, 18–22 July
2020; pp. 286–297. [CrossRef]

46. Siddiq, M.L.; Jahin, R.R.; Rafid, M.; Islam, U. SQLIFIX: Learning-Based Approach to Fix SQL Injection Vulnerabilities in Source
Code. In Proceedings of the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
Honolulu, HI, USA, 9–12 March 2021; pp. 354–364. [CrossRef]

47. Sheykhkanloo, N.M. Employing Neural Networks for the detection of SQL injection attack. In Proceedings of the SIN ’14:
Proceedings of the 7th International Conference on Security of Information and Networks, Glasgow, UK, 9–11 September 2014;
pp. 318–323. [CrossRef]

48. Demetrio, L.; Valenza, A.; Costa, G.; Lagorio, G. WAF-A-MoLE: Evading web application firewalls through adversarial machine
learning. In Proceedings of the SAC ’20: Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech
Republic, 30 March–3 April 2020; pp. 1745–1752. [CrossRef]

49. Appelt, D.; Nguyen, C.D.; Briand, L.C.; Alshahwan, N. Automated testing for SQL injection vulnerabilities: An input mutation
approach. In Proceedings of the 2014 International Symposium on Software Testing and Analysis, San Jose, CA, USA, 21–25 July
2014; pp. 259–269.

50. Appelt, D. Automated Security Testing of Web-Based Systems against SQL Injection Attacks. Ph.D. Thesis, University of
Luxembourg, Luxembourg, 2016.

http://doi.org/10.1007/s10207-017-0393-x
http://doi.org/10.1016/j.jisa.2021.102852
http://doi.org/10.1016/j.knosys.2020.105528
http://doi.org/10.1016/j.jisa.2021.102903
http://doi.org/10.1016/j.cose.2016.04.005
http://doi.org/10.23919/INM.2017.7987433
http://doi.org/10.1016/j.jisa.2018.04.001
http://doi.org/10.1007/978-3-642-34883-9_21
http://doi.org/10.1145/3199478.3199503
http://doi.org/10.1145/3331453.3361280
http://doi.org/10.1145/3190645.3190670
http://doi.org/10.1109/COMPSAC.2019.00113
http://doi.org/10.1109/ICST.2015.7102581
http://doi.org/10.1145/3395363.3397375
http://doi.org/10.1109/SANER50967.2021.00040
http://doi.org/10.1145/2659651.2659675
http://doi.org/10.1145/3341105.3373962

	Introduction
	Related Studies
	Research Method
	Planning the Systematic Review
	Research Strategy
	Inclusion Criteria
	Exclusion Criteria

	Results
	Discussion
	Machine Learning and Deep Learning Techniques for Detection of SQL Injection Attacks (Related to Q1)
	Generating SQL Injection Attack Datasets Using Machine Learning Techniques (Related to Q2)
	Generating Adversarial SQL Injection Attacks Using ML Techniques (Related to Q3)

	Conclusions
	References

