Journal of .
Cybersecurity
and Privacy

Article

Bingo: A Semi-Centralized Password Storage System

Abdullah E. Al-Aboosi 102, Matan Broner ? and Fadhil Y. Al-Aboosi 3*

check for
updates

Citation: Al-Aboosi, A.F.; Broner, M.;
Al-Aboosi, EY. Bingo: A Semi-
Centralized Password Storage
System. J. Cybersecur. Priv. 2022, 2,
444-465. https://doi.org/10.3390/
jcp2030023

Academic Editor: Carlo Blundo

Received: 16 May 2022
Accepted: 20 June 2022
Published: 21 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX 77843, USA;
abdullah.alaboosi@tamu.edu

Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA;
mbroner@tamu.edu

3 RAPID-AIChE, New York, NY 10005, USA

* Correspondence: fadha@aiche.org

Abstract: A lack of security best practices in modern password storage has led to a dramatic rise in
the number of online data breaches, resulting in financial damages and lowered trust in online service
providers. This work aims to explore the question of how leveraging decentralized storage paired
with a centralized point of authentication may combat such attacks. A solution, “Bingo”, is presented,
which implements browser side clients which store password shares for a centralized proxy server.
Bingo is a fully formed system which allows for modern browsers to store and retrieve a dynamic
number of anonymized password shares, which are used when authenticating users. Thus, Bingo is
the first solution to prove that distributed password storage functions in the context of the modern
web. Furthermore, Bingo is evaluated in both simulation and cloud in order to show that it achieves
high rates of system liveness despite its dependence on its users being active at given intervals. In
addition, a novel simulator is presented which allows future researchers to mock scheduled behavior
of online users. This work concludes that with the rise in online activity, decentralization may play a
role in increasing data security.

Keywords: distributed authentication; passwords; peer to peer; Bingo

1. Introduction

Users of online services define secrets such as passwords and place their trust in these
services to keep their secrets secure from attackers. Passwords, along with some user
identifiers such as an email address, are used to authenticate a user’s identity when logging
into a service [1]. Recent studies show that the number of accounts that a single user may
use on a weekly basis has grown substantially over the past decade [2]. A given user may be
a member of close to a dozen social media platforms, have a number of password-protected
bank accounts, maintain profiles for work related tasks, and so forth. As such, a daunting
level of trust is placed on online services [3]. With that said, countless password breaches
in the past two decades have caused millions of stolen identities and billions of dollars
in damages to both individual users and online companies [4]. Malicious groups have
become more adept at exploiting common mistakes in password storage databases and
web protocols, requiring companies to quickly apply security patches which often only
expose further vulnerabilities in their services [5-7].

Passwords may be stored in plain text, hashed with or without a salt, or reversibly
encrypted [8]. Generally, a password is stored alongside other user identifying information
in a database such as PostgreSQL or MongoDB [9]. The state-of-the-art password hash-
ing algorithms are Berypt, Scrypt, and Argon2. Modern best security practices state that
while hashing a password, a number of salt rounds should be included to add increased
entropy [10]. Salting a password prevents common attacks such as pre-computed “rainbow
tables” for offline attacks [11,12]. In an ideal scenario, an attacker should require a practi-
cally infinite amount of time (i.e., decades) to crack a hashed password [13]. Unfortunately,

J. Cybersecur. Priv. 2022, 2, 444-465. https:/ /doi.org/10.3390/jcp2030023

https://www.mdpi.com/journal /jcp

https://doi.org/10.3390/jcp2030023
https://doi.org/10.3390/jcp2030023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0002-4191-893X
https://doi.org/10.3390/jcp2030023
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp2030023?type=check_update&version=2

J. Cybersecur. Priv. 2022, 2

445

a staggering number of online services still use outdated algorithms for hashing passwords
or even go as far as storing passwords in plain text. If an attacker is able to recover a
password either by cracking its hash or simply reading it in plain text, a user’s account
may become compromised, and the attacker is able to cause damage such as identity theft
and attain private banking information.

Due to a rise in compromised passwords, Google unveiled the earliest commercial
version of 2FA in 2011 [14]. Since then, nearly all secure online services utilize some form
of “out of band” verification of a user’s identity. An out of band verification requires
that the user prove their identity through another means outside of the current session
they are a part of. This includes but is not limited to a one-time code emailed to the
user or a ping notification on a smartphone application. In the common case of a ping
notification, both the user’s device and the 2FA provider’s server use a shared secret to
generate a one-time password (i.e., OTP) [15]. If both parties generate the same password,
the authentication succeeds. By using 2FA, an online service makes stronger guarantees
as to the safety of its users’ information, since even a compromised password requires an
attacker to compromise another authentication mechanism belonging to the user, which is
oftentimes quite difficult [16].

Rather than tackling compromised passwords through another form of authentication,
Password aggregators such as LastPass aim to combat passwords that are easy to guess, as
well as the reuse of passwords [17]. An aggregator requires that a user choose a “master
password”, which is then used to access a collection of all of the user’s passwords for all
online services. An aggregator will oftentimes provide the ability to choose randomly
generated passwords and later pre-fill them for a user upon login [18]. This provides the
benefit that the user only has a single password to remember, as well as removing the
requirement from the user to choose many unique hard to remember passwords. Today,
most leading web browsers provide this service as a built in feature. Google Chrome,
Firefox, and Safari all recognize when a user is registering for a new online service by
parsing a web page’s HTML contents and finding a password form field. The user is then
prompted if they wish to have the browser choose a secure randomly generated password,
which is then stored in the browser and pre-filled on demand. For these browser based
aggregators, the master password is often the user’s system password.

With the rise of fingerprint readers and face recognition sensors in smartphones and
computers, the question has often been raised as to why passwords are used at all. Given
that biometric identifiers such as a user’s face are incredibly difficult to forge, many web
services utilize modern API’s such as the “Web Authentication API”, which allow web
developers to leverage biometric readers on devices to authenticate a user [19]. For example,
an iPhone user visiting a website which has enabled the Web Authentication API will be
prompted to use their thumbprint reader or face recognition sensor to authenticate rather
than enter a password. All leading browsers have support for this functionality, although
the web development community has been slow to adopt it in development. In an attempt
to prevent passwords from ever being stored long enough to allow for a meaningful attack
on a database, authors [20] utilize the password reset functionality on most websites in
their solution, “@pass”. Their solution targets timing attacks in 2FA push notifications
by resetting a user’s password to a random value each time the user logs in. The authors
of [21] present a solution where a collection of authenticating entities are used to prove a
user’s identity. These may include a number of devices belonging to the user as well as a
number of trusted third parties, such as friends or family.

This work aims to tackle what can be seen as the core of all web based password
breaches: a central insecure entity of storage. With companies wary to expose their back-
end codebases to scrutinization by the public, and codebases often becoming unmanageable
just a few years after being written, it comes as no surprise that outdated databases and
lack of best security practices leave countless passwords open for the taking by even an
amateur attacker. Two-factor authentication (i.e., 2FA) has become the de-facto standard
of password security in the past decade. A trusted company handles authenticating a

J. Cybersecur. Priv. 2022, 2

446

given user by requiring an “out of band” communication step to prove identity, such as
responding to a ping notification on a smartphone. 2FA aims to prevent stolen passwords
by introducing a secure indirection layer of authentication which is difficult for an attacker
to compromise. We define this process of authenticating a user on behalf of a third party
service as middle manning. This paper aims to show that while 2FA and other adopted
solutions are an improvement on a standard password authentication scheme, they still
maintain a number of security flaws in addition to not directly addressing the problems
with password storage.

The rest of this paper is structured as follows: The imitations of existing solutions
are discussed in Section 2. Section 3 contains the threat model. Section 4 contains the key
challenges. Section 5 contains the system architecture. Section 6 contains demonstrating the
Bingo workflow. Section 7 contains result and discussion. Section 8 contains the conclusion.

2. Limitations of Existing Solutions
2.1. Two-Factor Authentication

Despite its wide adoption, 2FA presents challenges in both usability and security.
Firstly, requiring a user to perform an out of band authentication increases login time and
serves as an impractical solution to the overall problem of authentication. Most companies
wish for their users to have the easiest interaction with their service as possible. Shifting
the load of security onto users by requiring an intricate password on top of diverting them
away from their session to prove identity avoids the problem at its core: online services are
not storing passwords responsibly. If online services were to safeguard users’ passwords
from the start, there would be no reason for a user to use 2FA. Furthermore, 2FA providers
must still store a long-term secret for each user to be used during each authentication cycle
in order to generate a one-time password. As such, a single source of potential insecurity
is merely shifted to the 2FA provider. An adept attacker may compromise the long-term
secret for a user by attacking a 2FA provider’s database system, leading back to the original
problem of the need for secure storage of a user’s secrets.

2.2. Password Aggregators

Despite their ability to generate passwords with high entropy, password aggregators
shift the single point of failure from the service provider’s end to the user. If a user forgets
their master secret, a lengthy account recovery process is required. This makes aggregators
such as LastPass impractical and, as with 2FA, puts a high assumption on the security of
the service managing the stored password in a central manner.

2.3. Biometric Identifiers

While using a unique bodily feature rather than a password presents a series of
benefits, biometric identification maintains a series of challenges. Firstly, most computers
still do not have biometric readers. Given that most users still log into online services
primarily through a computer, the benefits of biometric identification fall through and the
user must resort to either using a password or utilizing their smartphone with a biometric
reader to authenticate, posing the same impracticalities as 2FA. Furthermore, during the
past decade, a number of academic efforts have shown vulnerabilities in commonly used
biometric readers such as Apple’s FacelD. These efforts pose the same questions as those
regarding insecure password storage but re-framed in a new set of technologies. Lastly,
adoption of biometric authentication has been slow on the web, with most online services
still using passwords for authentication. Given that passwords are likely to be used for at
least another decade, the question of how to securely store them is as relevant as ever.

3. Threat Model

The following aims to explain the most commonly used techniques by attackers in
order to steal and crack users’ passwords [22]. The goal of this section is to enumerate
the aspects of Bingo which makes it largely resistant to such attacks. We base our attacker

J. Cybersecur. Priv. 2022, 2

447

model on the assumption that an attacker A aims to target a single or multiple users
{Ui... Un} of an online service 5. Furthermore, service 5 uses a traditional password
storage process where each user’s password is stored alongside their other profile data,
such as an email address and name. Passwords may be stored in plain text, hashed, or
hashed and salted.

3.1. Brute Force

Arguably the simplest method of attaining a password, brute-forcing involves repeat-
edly testing possible passwords for a user until the correct one is found [23]. Generally,
brute force involves an online service that does not attempt to limit the rate at which an
attacker can guess. In such a scenario, any user with a short, low-entropy password risk
having their credentials guessed in a relatively short amount of time

3.2. Rainbow Tubles

Assuming an attacker has successfully attained a set of passwords from an online
service’s database, the difficulty in using these passwords may vary [24]. Assuming the
passwords are stored in plain text, no further work is required. If a password is hashed
but not salted, a common attack technique is a “Rainbow Table”, a series of precomputed
hash values that allow the hacker to crack a given hash in a reasonable amount of time. As
mentioned in the previous section, salting does indeed thwart most Rainbow Table attacks,
but contrary to most users’ beliefs about their security on the web, many online services
still resort to plaintext password storage or unsalted hashing.

3.3. Man in the Middle

In order to obtain a user’s password in plain text, an attacker may act as a “man in
the middle” by intercepting the connection between the user’s browser and the end server.
While best safety practices indicate that all traffic between clients and servers should be
secured by encryption such as HTTPS, a large number of online sites still use unencrypted
traffic over HTTP [25,26]. If an attacker is able to intercept requests by the user in plain text,
there is no need to brute force the password.

Furthermore, even if HTTPS is used, an attacker can utilize a “phishing attack” where
the user is deceived into believing that communication with the server is secure. This may
be achieved by forging a certificate for a specific domain and proxying traffic or simply by
setting up a decoy website which looks exactly like the legitimate website. Both methods
and others cause the user to input credentials in an unsafe communication session, allowing
the attacker to intercept all inputted credentials. Bingo, in its current form, targets the first
concern by ensuring all traffic between users and its proxy server is encrypted with {TLS}.
Future work in this area aims to tackle phishing attacks as well.

4. Key Challenges

We return to the enabling factor in most attacks aimed at retrieving users’ passwords:
a weak centralized storage entity. Countless inexperienced developers are tasked daily with
implementing scalable web services for the most profitable online services around the globe.
Without an understanding of security best practices, these developers are likely to leave
threat loopholes such as logging plain text passwords to development logs and forgetting
to use salt rounds when hashing a password. There is simply too much variability in
designing a secure user profile system, which is the reason why most companies that value
security turn to a 2FA service to add an indirection layer to their authentication scheme.

e Assuch, Bingo aims to leverage the best qualities of all of the aforementioned solutions
for insecure password storage. We define a series of key design challenges for Bingo to
ensure that it provides seamless usability while also employing best security practices:

e Bingo should never store a user’s password in a centralized manner. This means that
the original plain text password should never be held in persistent storage, nor should

J. Cybersecur. Priv. 2022, 2

448

Bingo independently store enough shares of a user’s password such that an attacker
can recover all shares without attacking peers in the network.

e Bingo should never expose the user’s password to the online service for which it is
middle manning. The online service is tasked with maintaining a profile for the user,
as is the norm today. With that said, Bingo takes full ownership of a user’s password
and acts as the single source of truth for confirming a user’s identity, thus offloading
this responsibility from the online service.

e Aretrieved password from a collection of peers in the network should be verifiable by
Bingo, meaning that an attacker cannot inject fake information into the system.

e The user profiles stored in Bingo’s database should not provide a meaningful advan-
tage to an attacker seeking to crack a user’s password.

e Bingo should provide strong security guarantees but not be an overly opinionated
system. Online services which register with Bingo should be granted the ability to
prioritize availability or security.

e Bingo should maintain the highest availability possible given a set of configurations,
meaning that there should be as few instances as possible where a user cannot register
or log in to an online service.

We summarize these overarching challenges as a series of basic principles: decentral-
ization, anonymity, verifiability, configurability, and availability. The following section
describes the system architecture for Bingo which allows it to uphold these principles.

5. System Architecture

Bingo’s system design stems from a simple core idea: a password should be distributed
safely in a series of shares across peers in a network, with a central entity dictating all
communication. As such, we define Bingo as being “semi-centralized” in that it leverages
the benefits of secure distributed storage while still benefiting from a single source of truth
for all transactions in the network. Figure 1 shows an overview of Bingo Proxy.

WebSocket Interface

Job Handler API Handler

Secret Sharing

TR e Profile Storage

Figure 1. Bingo Proxy.

J. Cybersecur. Priv. 2022, 2

449

(a)

(b)

(©)

5.1. Cryptography

Bingo utilizes a number of state-of-the-art cryptographic functions to ensure that

passwords are safely stored and that users cannot be tracked by examining individual
password shares.

@

@)

Murmurhash: Murmurhash (and its variant Murmurhash3) is a non-cryptographic
hash function which can be seeded with a unique value to prevent offline rainbow
table attacks so long as the seed remains a secret. We use a seeded Murmurhash3
implementation in Bingo to securely hash identifiers for data objects such that an
attacker is unable to easily crack the hash. Furthermore, using Murmurhash3 provides
the benefit of a consistent output for a given input (i.e., the basic property of hash
functions), which aids in the repeated lookups of a plain text identifier. We define the
Murmurhash3 function used in Bingo as M.

Berypt: Berypt is a secure password-hashing function with no proven attacks to date.
The algorithm uses a defined number of salt rounds to increase entropy and prevent
rainbow table attacks. A large number of websites which follow best security practices
for hashing users’ passwords prior to storage utilize Berypt as their hash function. We
define the Berypt function used in Bingo as B.

5.2. Data Objects

@

@)

®)

Domains: When an online service wishes to use Bingo for authentication of its users,
the service is required to register itself with Bingo through a series of configuration
details. We refer to a service registered with Bingo as a “Domain”. Domains are
assigned a unique ID which is the Domain’s URL domain hashed with M. A unique
hash ID prevents an attacker from being able to discern the site origin of a secret share
on a stolen device. Figure 2a displays the attributes of a Domain object.

Users: Bingo associates users with the Domains for which they register and login.
When a new user wishes to register with a given Domain, Bingo generates a “User”
object containing a unique key, which is a tuple of the Domain’s unique ID and a
hashed identifier for the user (e.g., an email) within the Domain. Figure 2b displays
the attributes of a user object.

Secret Shares: A Secret Share is a fractional piece of a larger piece of secret information,
such as a hashed password. Bingo distributes these shares among peers in the network
alongside a tuple identifier consisting of a Domain ID and a user ID. Peers are tasked
with storing these shares in a manner that allows them to later retrieve them given
the same tuple identifier. Figure 2c displays the attributes of the Secret Share object.

D ID Key Secret
MMH3 (URL) Login API Register API Secret Key Shar:.'ng
Config
ID
. Secret
3 - - -
MMH3 (email) 1 Domain ID Vv
RomsZn: ID Share ID Sch_et Share Data
User ID Version

Figure 2. Bingo’s data model utilizes a set of three basic objects.

J. Cybersecur. Priv. 2022, 2

450

5.3. Peers

A user owned device performs the role of a Bingo “Peer” by communicating with a
central Bingo proxy server. We liken the interactions of Bingo’s peers to those in a classic
peer-to-peer network in the fact that they contribute towards a collaborative task. With
that said, Bingo’s peers do not maintain direct contact with one another, rather they rely
on a centralized proxy server to broker all communication, resulting in a largely different
system than a classic peer-to-peer network.

5.4. Bingo Proxy

The core logic for Bingo resides in its proxy server, named accordingly as “Bingo
Proxy”. Bingo Proxy acts as the single source of truth for validation of a user’s identity.
Unlike a 2FA providers’ authentication servers, Bingo Proxy requires zero out of band
interaction by the user, thus simplifying the authentication workflow back down to its bare
bones. This allows Bingo to provide a seamless user experience while maintaining strong
security guarantees. The following is an explanation of the various components that make
up Bingo Proxy.

(1) Communication: Bingo Proxy maintains all communications with peers through a
dedicated Secure WebSocket Server (i.e., SWSS). Secure WebSockets communicate
over TLS much like an HTTPS connection between clients and a given web browser.
Secure communication over TLS guarantees that a man-in-the-middle a tempting to
eavesdrop on the authentication workflow is unable to read more than encrypted
traffic. When a peer becomes live in the network, Bingo adds said peer to a collection
of “active” peers which may be tasked to store and retrieve password shares. Likewise,
when a peer disconnects from the network, its state is set to inactive and is promptly
removed from the collection of peers. Peers are never associated with a specific user
at the server-side. As such, if an attacker is able to attain a list of active peers in
the network, this list does not allow any backtracking to a specific device belonging
to a given user, ensuring the desired principle of anonymity. Bingo Proxy requires
that all peers listen to two main events, “distribute” and “retrieve”. Peers should
acknowledge these events and include retrieved data as required. Furthermore, peers
can inform Bingo Proxy of new registration or login workflows with the “action” event,
to which Bingo Proxy responds with an “action-update” event once the workflow
has been completed (i.e., a callback). Further details regarding action workflows and
responses will be provided in upcoming sections. A full listing of the API events sent
by Bingo Proxy can be seen in Table 1.

Table 1. BINGO API EVENTS.

Bingo Proxy Event Description Bingo Peer Response
D Assign a unique identifier to a None
connected Peer
Retrieve any password
retrieve shares stored for a tuple retrieved
of a Domain ID and User ID
Store a share associated
distribute with a tuple of a Domain ID distributed

and User ID

A callback function indicating
action-update an action (login or register) has None
succeeded or failed

J. Cybersecur. Priv. 2022, 2

451

@)

®)

API Handler: Registered Domains are required to expose specific API methods
to Bingo in order to facilitate registrations and logins. Domain objects should in-
clude a base API URL, a login route, and a registration route. For example, a Do-
main might provide a base API URL of https://my-service.com/api (accessed on
23 February 2022), a login route of user/login and a registration route of user/register.
Furthermore, Domains must list which attribute in a user profile identifies the user,
an ID Key, as well as which attribute serves as the password, a Secret Key. When
registering a new user, Bingo makes an API call to a Domain’s registration route
alongside the original request body from the user with the value of the Secret Key
redacted. If the API call returns a success status, Bingo stores a new profile for the
user with the Domain’s ID alongside the user’s ID Key hashed with M. While the
tuple identifier allows Bingo to verify that a user is registered with a domain, an
attacker that manages to steal this information is not aided in verifying that the user
is registered with the Domain, nor in the cracking of the user’s password. Note that
by only storing a profile for the user within Bingo if the API call is successful, the
online service associated with the Domain is still given full authority to validate all
remaining attributes of the request body, such as the email address or name. A similar
workflow takes place during a login, except that naturally a different API route is
used. Furthermore, the order of which secret sharing and retrieval takes place in
regard to making API requests is dependent on the workflow. During registration,
a secret is shared with the network after a successful API call to make sure that the
secret should be shared at all. During login, the opposite ordering takes place, with
the secret first being retrieved from the network in order to validate the user’s identity
before sending a login API request. Note that Bingo does not take any responsibility
for managing third-party API tokens for a user. It is the responsibility of an online
service to assign credentials at login time such that any subsequent requests which
are not handled by Bingo can be traced back to the user.

Secret Sharing: Bingo Proxy’s main functionality set is to distribute and retrieve
shares of passwords. Bingo uses the tried and tested Shamir Secret Sharing algorithm,
dubbed SSS, which divides a given password into a series of N shares such that the
original password can be reconstructed given a set threshold T of these shares. For
example, if N =5 and T = 3, then a share is distributed one per set of five peers, while
only three peers must return their shares to be able to reconstruct the password. A
threshold allows one to control the desire for availability versus security. If a threshold
is set too low, an attacker must only retrieve a small number of shares to crack the
password, lowering security. If the threshold is too high, we require a larger amount
of active peers to be present in the network for registration and login procedures,
lowering availability. Figure 3 displays Shamir Secret Sharing for the given values of
Nand T

https://my-service.com/api

J. Cybersecur. Priv. 2022, 2

452

password

Figure 3. Shamir Secret Sharing for N=5and T = 3.

To harden the security of Bingo’s secret sharing, we aim to prevent the original
password from ever being observable. As such, rather than apply SSS on the original
plain text password, Bingo Proxy first generates a hashed version of the password with
B. With the password hash, Bingo then applies SSS and collects N shares. Note that each
registered Domain may set custom values for N and T, allowing a preservice trade off
between availability and security, and upholding our desired principle of configurability.
While using SSS aids in securely distributing a user’s password across the network, we
still require a mechanism to fulfill our desired design principle of verifiability, meaning
that shares retrieved from peers should be able to be validated for their legitimacy by
Bingo proxy. As such, Bingo Proxy employs Verifiable Secret Sharing through the usage
of Public Key Infrastructure (i.e., PKI). Public—private key pairs are commonly used in
client-server architectures to validate the identity of each party. Since the Bingo Proxy only
needs to verify the shares it generates, a nonce is generated for each share, consisting of
the Domain ID and User ID tuple. The nonce is then signed with Bingo Proxy’s public key
and appended to the share. When a share is retrieved and returned to Bingo proxy during
a login workflow, an attempt is made to decrypt the nonce with Bingo Proxy’s private
Key. If the nonce has been tampered with, Bingo Proxy rejects the share, thus providing
integrity protection for all exchanged shares and satisfying our requirement for verifiability.
A visualization of the cryptographic methods employed for each share can be found in
Figure 4.

J. Cybersecur. Priv. 2022, 2 453

Distributed Share
Bcrypt PKI Nonce

MMH3
SSS Domain ID

Password Share

MMH3

User ID

Figure 4. Cryptography used for distributed secret shares.

In order to distribute shares during a registration workflow, Bingo Proxy chooses a set
random number of active peers P, which is calculated by multiplying N by a configured
replication factor R. Each domain configures R in order to further balance availability
and security. Each share is distributed R times among the network, thus increasing the
likelihood of the share being available for retrieval during a login workflow. As with setting
the SSS threshold T, if R is set too high, then an attacker can more easily accumulate a user’s
password shares by attacking fewer devices. Note that Bingo Proxy does not distribute
shares solely among other users associated with the same domain. Rather, any active peer
in the entire Bingo network may store a share, regardless of which Domain the user behind
said peer is associated with. This is done for two main reasons. First, a lack of selectivity in
choosing peers for share distribution and retrieval generates higher availability, allowing
all online services to essentially collaborate with one another through their shared usage of
Bingo. Second, anonymizing peers in regard to which domain they are used to authenticate
with simplifies the Bingo Proxy architecture as well as the user’s workflow. Much like
2FA providers, Bingo users only require one tool to authenticate with all online services
which use it for authentication. With that said, a private deployment of Bingo may allow
selectivity in choosing peers for distribution and retrieval of shares, but this is beyond the
scope of this work.

In Bingo Proxy’s basic form, peers are chosen randomly for distribution. We leave
the task of improving this distribution method for future work. We propose a distribution
scheme which selects peers based on the amount of time they have been active. By choosing
more active peers, Bingo Proxy makes a gamble that the user being managed by this peer
is likely to be active for longer periods of time throughout the day, and thus, the user is
more likely to be able to retrieve shares on demand. In any case, a peer is sent a WebSocket
distribute event along with the share assigned to it. When the peer has successfully stored
the share, it acknowledges the distribution with a distributed event back to Bingo Proxy.
When N X R peers have acknowledged the distribution, the registering user receives a
success status. If not enough acknowledgements are received, the user fails to register.
During a login workflow, Bingo proxy queries all active peers in the network for a share
assigned to the Domain ID and User ID by broadcasting a retrieve event. Any active

J. Cybersecur. Priv. 2022, 2

454

peer storing a share which matches both identifiers respond with a retrieved event along
with the corresponding share. When T unique shares are retrieved by the network, the
aforementioned login API route for the Domain is called, and the user is successfully logged
in along with the contents of the API call’s response, which should include a third-party
API key. The following elaborates on Bingo Proxy’s job system, which aims to provide an
elegant programming interface for registrations and logins which are asynchronous in their
nature, and may require numerous attempts to succeed.

(4) Job Service: In order to limit the negative effects on system availability caused by a
fluctuating number of active peers at any given time, Bingo Proxy implements user
workflows as “jobs” which run asynchronously and deliver results upon completion.
The current implementation of Bingo Proxy provides two job interfaces: Distribution
Job for registrations and Retrieval Job for logins. During a workflow, a corresponding
job is initialized with all necessary information to be provided to peers, along with
a callback function which is used once the job either succeeds or fails. A job is
instantiated with three retry attempts, with exponential backoff timing used to space
out retries. Each attempt is assigned a timer, with the timer being stopped if the job
succeeds. Each job also maintains the state of its required data, and uses retries to
attempt to fill gaps in its success requirements. Both distribute and retrieve events
contain a unique Job ID which peers include in their responses in order to map
acknowledgements to their corresponding job.

A Distribution Job stores all acknowledgements received from peers as a unique set.
When a peer responds to Bingo Proxy with a distributed event, the Job is sourced by its ID
and the peer’s ID is stored if it was included in the distribution set. If an attacker attempts
to acknowledge a distribute event it did not receive, the Distribution Job will ignore the
attacker’s response. If the Job does not contain N x R acknowledgements when the timer
goes off, an exponentially growing amount of time is waited before the next retry begins in
order to allow for more peers to join the network. During the next retry, assuming that D
peers have acknowledged the job, (N x R) — D new peers are chosen based on whether they
have already been sent a distribute message for the Job. As such, each attempt requires less
peers than the last to acknowledge the event. Once all N x R peers have acknowledged the
event, the Job’s callback function is called with a success message, indicating the workflow
may continue.

A Retrieval Job behaves in a similar fashion to a Distribution Job in regard to using
exponential backoff between retries. Unlike a Distribution Job, a Retrieval Job broadcasts
a retrieve event to all peers in the network during each attempt in an effort to receive as
many retrieved shares as possible. A Retrieval Job maintains a unique set of all retrieved
shares. Once T unique shares have been saved to the Job, the assigned callback function
returns a success message, indicating that the workflow may continue. Note that shares
sent by peers which are already contained in the set will not count towards the completion
of the Job, since SSS demands that T unique shares be collected in order to reconstruct the
original secret.

In the case of both Job types, if all attempts expire and a given Job fails to collect
enough data to succeed, the Job’s assigned callback function will return an error message,
indicating that the workflow may not continue and that the user should make another
attempt to either register or login.

(5) Password Versioning: Bingo cannot be considered a practical medium of distributed
secret storage if the shares stored for a given user cannot be replaced, such as during
a password change. In order to achieve this goal, Bingo Proxy assigns a numerical
version to each password share it distributes among peers. The most recent version
count, denoted V, is stored alongside the hashed identifiers for a stored User in Bingo
Proxy’s database. As such, during the retrieval of a user’s shares for reconstruction, V
is included within the request body. Since all peers receive the distribution request
in a broadcast, each peer may use the value of V to prune any stale data it may store

J. Cybersecur. Priv. 2022, 2

455

for the user, thus preventing shares of any version {1...V — 1} from continuing to
be stored or broadcasted. Furthermore, any peer which mistakenly or maliciously
retrieves and returns a share older than V will be ignored, and the given share will
not be counted towards the completion of a Retrieval Job. Note that the use of a
primitive numerical counting system for share versioning is not without its flaws.
Without mandatory integrity support, a malicious actor may tamper with the version
of a share they store, as well as tamper with the version of an in-flight share either
during distribution or retrieval. We leave the improvement of Bingo’s share versioning
system to future work, and propose the use of unique hashes or encrypted version
numbers to improve integrity.

5.5. Bingo Relays

In order to facilitate higher availability for users registering or logging in, Bingo allows
an online service to utilize Bingo Relays, a series of static peers which remain active at all
times. These peers behave exactly the same as all other peers in the network, excluding
the fact that they are deployed by Bingo Proxy and have nearly zero downtime. Each
Bingo Relay may store at most one share per user, like all other peers. Furthermore, Bingo
Proxy permits an online service to configure how many of the N shares associated with
a user’s password be sent to Bingo Relays, with the maximum allowed being N — 1 in
order to never allow a scenario where an attacker can compromise a user’s password by
solely attacking Bingo servers. Configuring this metric is once again a balancing act of
availability and security. While storing as many of a user’s password shares as possible
on Bingo Relays generates high availability, it also shrinks the necessary attack surface
in order to compromise a user’s password. By default, a single share from each user’s
password is assigned to a Bingo Relay, with the chosen relay being the one with the least
stored shares at the time of registration. Figure 5 provides an example of how Bingo Proxy
may distribute shares to both peers and Bingo Relay server.

Bingo
Proxy

Peers

Relay

a. Servers

Figure 5. Bingo Proxy distributing shares to both peers and Bingo Relay servers.

5.6. Bingo Extension

Bingo Extension is a proof-of-concept browser extension framework that serves as
a peer for communication with Bingo Proxy. Given its advanced functionality and well
documented API, this work demonstrates a Bingo Extension on Google Chrome. We use
the term “Bingo Chrome” to refer to the Bingo Extension created as a proof of concept for
this work, while we reserve the term Bingo Extension to refer to the general framework
used to create a peer for Bingo on a given device.

J. Cybersecur. Priv. 2022, 2

456

A Bingo Extension must have access to a persistent storage medium for the storage
and retrieval of password shares delivered by Bingo Proxy. Shares must persist across
sessions and as such may not be stored in a volatile storage such as an in memory database.
In the case of Bingo Chrome, Indexed DB is used due to the simplistic queries that can be
written to store and retrieve data for a created table, as well as the ubiquitous support for
Indexed DB across modern browsers. Browsers do not support direct writes to a user’s
hard disk, requiring the usage of in-browser storage. While this mechanism is not ideal,
due to a user’s ability to wipe all stored shares by clearing their browser’s cookies and site
data, we leave the improvement of this storage scheme to future work.

A Bingo Extension must also be able to accept messages from the browser window
which indicates the beginning of a registration or login workflow, as well as be able to
forward these requests to Bingo Proxy. This inter-process messaging system is generally
device and browser specific from a software development point of view. In the case of
Bingo Chrome, a set of two scripts are used: background.js and content.js. These are both
standard scripts included in any Google Chrome extension. Bingo Chrome’s background
script is run persistently at all times, keeping an active peer available at hand. While
background scripts default in behavior to terminating when no longer in use, we found
that the latency introduced by using a non-persistent background script and peer created
a slower user experience. As such, we leave the task of initiating and terminating peers
more efficiently to future work. The content script is activated once per web page, allowing
the background script to send tab-specific API messages as needed. When a content script
receives a Bingo action request from a web page, it forwards the request to the background
script for processing, which in turn uses an active peer to relay the message to Bingo Proxy.
Once the workflow has either completed successfully or failed, the background script
returns the status of the workflow to the content script, which forwards the message back
to the web page. The intra-extension communication scheme within Bingo Chrome can
be observed in Figure 6, while the higher level communication between Bingo Chrome
and Bingo Proxy through the previously discussed WebSocket API is shown in Figure 7.
Note that while the Google Chrome runtime library is used in Bingo Chrome to facilitate
tab-specific messaging, all modern browsers expose a variant of the standardized browser
runtime object. This ensures that Bingo Chrome serves as a model for Bingo Extensions on
most modern browsers such as Firefox and Edge.

|webpage

“Login start”

V

“Login success”

\

Content Script Background Script

“Login start”

— —> ws.send(“LOGIN")

vV

€ “Login success” D

\

Peer

“LOGIN SUCCESS”

Figure 6. Intra-extension communication within Bingo Chrome.

J. Cybersecur. Priv. 2022, 2

457

Bingo Proxy

User Profiles DB

SWSS SWS Peer Q;*
“retrieve” —

“retrieved”
Shares DB

Figure 7. Bingo Chrome communicating with Bingo Proxy.

Lastly, while browser extensions were chosen as the testbed for this work due to
desktop browsers being one of the most ubiquitous tools used for authentication, any
WebSocket client which correctly accepts and responds to Bingo Proxy’s API events may
serve as a Bingo Extension. Developers may reference Bingo’s documentation if they wish
to develop a custom Bingo Extension for any device of their choosing that is able to make a
WebSocket connection, such as smartphones and tablets.

5.7. Bingo Ul

While Bingo Proxy handles the back-end logic of registering and logging in users,
a front-end interface (i.e., Ul) is required for triggering these workflows. Bingo Ul is a
framework for designing components that can be included in a web page to facilitate
communication with a Bingo Extension. A Bingo UI component should serve the purpose
of accepting credentials from a user and communicate them safely for processing. A web
developer should be able to include a Bingo UI component on their web page and configure
the component with attributes such as the address of a Bingo Proxy instance. Most 2FA
providers use an iframe that displays a third party web page within the active window and
redirects the user according to the success or failure of the operation taking place, such as
logging in. Given that iframe tags are considered to be largely unsafe due to the possibility
of cross-site scripting attacks, we demonstrate a proof of concept Bingo UI component built
with React]S, a modern JavaScript component library. We dub our component as “Bingo
React”, following the same naming convention as Bingo Chrome. Figure 8 displays Bingo
React with its “login” flag set.

A web developer places Bingo React within their web page along with a flag indicating
whether the component is in login or registration mode. Bingo React first verifies that a
form of Bingo Extension is installed. In our case, Bingo Chrome injects a hidden HTML
tag which Bingo React attempts to locate. If the tag is present, Bingo React knows that
an extension is installed and running correctly. When a user attempts to register or log
in, Bingo React sends an appropriate window message to be intercepted by the active
extension. A Bingo UI component must be sure to indicate the loading status of a workflow
until the extension returns a status for the sake of the user’s experience. Bingo React sets a
visual loading icon while a response has not yet been received. Throughout the various
system components of Bingo described in this work, Bingo Ul is purposely least elaborated
upon. Designing the ideal user interface for authentication is secondary to exposing a
robust and simple API which web developers may use in their own programs. Countless
companies have exposed robust public API’s for which the open source community has
included in custom web components and posted to forums such as Node]S’s NPM. We
believe that as Bingo generates popularity and develops a more robust feature set, UI
components will be developed naturally by those who need them.

J. Cybersecur. Priv. 2022, 2 458

Login

Powered by Bingo

user@social.com

* %k % % %k % %k

Figure 8. Bingo React in “login” mode.

6. Demonstrating the Bingo Workflow

With an understanding of the system components making up Bingo, we now aim
to provide a demonstrative view of the interactions between an online service, its users,
and Bingo. We demonstrate our user workflows in the context of a simple website which
is called “Social Home”. This website incorporates Bingo React and runs within Google
Chrome with Bingo Chrome installed. While the Evaluation portion of this work dives
into the intricacies of the number of active peers in the Bingo network, we assume that
100 active persistent peers exist within the network at the time of registration and login
by a user accessing Social Home. A simple web server for Social Home is run as well
and exposes two APl routes: /login and /register. Furthermore, our running instance of
Bingo Proxy is set to split passwords into five shares with a recovery threshold of three, a
replication factor of two, and the number of shares being stored within Bingo Relay servers
being one. Note that we assume a “perfect” system where all workflows complete either
successfully or with an error. Any errors during the subsequently described workflows are
propagated back to Bingo React where they are displayed on the web page.

6.1. Peer Registration

A user U accesses Social Home for the first time, having never registered with the
service before. Given that Bingo Chrome is installed on the browser used by U, Bingo
React shows no error message and displays a tabbed window allowing for registration and
login. U accesses the registration tab and inputs a set of credentials. Once the registration
is finalized, Bingo React emits a window message REGISTER, which is intercepted by
Bingo Chrome. The active content script within Bingo Chrome assigned to Social Home
accepts the registration credentials passed through the window message and forwards

J. Cybersecur. Priv. 2022, 2

459

them to the background script. With its active peer, the background script initiates an
action of type “register” with the peer, and is provided a unique action ID. Bingo React
transitions to the loading state, indicating that the registration workflow is in progress.
Bingo Proxy receives the registration action request which includes the credentials from U
as well as the action ID provided by the peer. Bingo Proxy extracts the email and password
fields from the credentials, which Social Home has configured as its ID Key and Secret Key,
respectively. After sending an API registration request to Social Home’s back-end server
with U’s password withheld, Bingo Proxy awaits a successful status code, namely a 201 in
the case of registration. Following the successful registration at the Social Home’s server,
U’s email is hashed with M, and the withheld password is hashed with B and split into
5 shares, each of which is replicated once for a total of 10 shares. Note that each share is
assigned a version attribute set to 1 in order to allow U to change their password in the
future. Bingo Proxy creates a Distribution Job, instantiating it with the 10 generated shares
for U. As described in a previous section, this Job makes at most three attempts to distribute
the shares across the network. Since this demonstration uses a set of 100 constantly online
peers, the Job succeeds with 10 received acknowledgements and the callback function
assigned to the Job is called with a success message. Bingo proxy then randomly chooses
1 of the 10 shares it generated and delivers it to one of its Bingo Relay servers with the
least stored shares. Finally, a user profile containing U’s hashed email and Social Home’s
Domain ID is written into Bingo Proxy’s database for reference during subsequent logins.
With the workflow completed, Bingo Proxy sends the initiating peer within Bingo Chrome
an action-update event with a success message. Bingo Chrome forwards the message from
the background script through to the content script, which then sends a window message
REGISTER_SUCCESS, triggering Bingo React to terminate the loading state and inform the
user of the successful registration.

6.2. Peer Login

After U has successfully registered with Social Home, they proceed to log in. After
shifting to the login tab of Bingo React, U inputs the credentials chosen at registration
time and finalizes the login request. The communication between Bingo React and Bingo
Chrome is largely the same as the previous workflow, other than the obvious messaging
changes from registration indicators to login indicators. Bingo Proxy accepts the login
request from Bingo Chrome’s peer and hashes the provided email field with M. A database
query for a profile containing U’s hashed ID and Social Home’s Domain ID is initiated in
order to verify that U is indeed registered with the website. The database returns a single
entry, and Bingo proxy instantiates a Retrieval Job with the threshold T of 3 configured
by Social Home. The Job makes three attempts to retrieve three unique shares for U by
broadcasting to the network. Once enough shares have been returned, the job calls its
assigned callback function with a success message and the retrieved shares. Bingo Proxy
uses an inverse SSS function to reconstruct the original password hashed with B from the
returned shares, and B is used to compare U’s inputted password and the reconstructed
password. If they match, Social Home's login APl is called, which should return a credential
such as an API key for U to use in further requests. The response with the credential is
forwarded to the originating peer through an action-update message, which is propagated
from Bingo Chrome to Bingo React. The API key assigned by Social Home is stored as a
browser cookie to be used in subsequent requests, and U is redirected to the site’s main
content as an authorized user. The following section describes our evaluation of Bingo
using the aforementioned workflows as base cases for its expected behavior.

J. Cybersecur. Priv. 2022, 2

460

7. Result and Discussion

This section aims to explain how Bingo was evaluated within our test-bed. First, we
provide a simple base evaluation proving that the previous section’s workflows do in fact
work correctly. Next, we describe our simulation of browser usage by users following daily
schedules in order to better profile how well Bingo provides availability when peers are
not always active.

7.1. Base Evaluation

With the Bingo system explained, our initial testing is a basic sanity test, which aims
to show that in a perfectly live system, a user of Bingo can expect to successfully register
and log in with a web service. Using Social Home as our web service, we have successfully
tested the workflows mentioned in the previous section. With Bingo Chrome installed and
an instance of Bingo Proxy deployed, our testing showed that a user U’s credentials were
successfully distributed among a group of test peers and said peers successfully retrieved
U’s secret shares on demand. Note that this sanity test is not a complete evaluation of
Bingo’s ability to perform under real-world conditions; rather, it serves to show the baseline
we set as “perfect” behavior of Bingo which we strive to reach under the realistic conditions
of fluctuating peer availability within the network. The following section details our
simulation of real world conditions with the goal to prove Bingo’s capabilities as a usable
authentication system.

7.2. Peer Uptime Simulator

We now transition to our evaluation strategy of Bingo, specifically targeting the desired
liveness expected from any authentication system. We define “liveness” as the metric that
quantifies a user’s ability to make use of a service without failure due to a lack of available
resources. Since we are not able to deploy Bingo Extensions among enough real-world
devices for the sake of an accurate evaluation of Bingo’s liveness abilities, we resorted to
designing a “Peer Uptime Simulator”. The simulator is tasked with generating unique
schedules for peers to activate and deactivate which mimic the way real people use their
browsers. Most people tend to use their browsers primarily towards the middle of the
day, when at work or school. Likewise, a minority of people tend to be active primarily
throughout the night. We dub these people as “night owls”. Since the average amount of
time spent on browsers daily by most people is between 4 and 7 h, our schedule generator
chooses a random number of total hours of active time within this range. Furthermore,
each user has a 25% chance of being designated a night owl. Schedules are designed to
concentrate most of their user’s activity (i.e., being live) towards the middle of the day or
night, depending on if the user is a night owl. For example, assuming the user is not a
night owl, their activity will tend to be concentrated between 12 PM and 4 PM, much like a
person working a day job. Our concentration of live activity tends to follow a bell curve
with random outliers in activity to prevent all users from being active at the exact same
time intervals. Lastly, in order to save time in evaluating Bingo, our simulator is able to
translate each second of real-world time to T minutes in simulated time. For the purpose
of our evaluations, we used T = 1, meaning each real-world second corresponded to one
simulated minute. Figure 9 shows the workflow of generating schedules and assigning
them to peers which are generated.

J. Cybersecur. Priv. 2022, 2

461

Schedule
Generator

setAlarm(01:43)

00:00 - ON
00:06 - OFF
createSchedule (isNightOwl) 01:43 - ON Static Peer
02:21 - OFF Generator
. etc.

Schedule [::]

ON (WS Connect)

t:j
Peer

OFF (WS Disconnect) (:j setAlarm(00:06)

Figure 9. Peer Uptime Simulator generating schedules for peer.

Using our simulator, we generated 300 peers which are each assigned a schedule.
Bingo Proxy uses the same metrics of N =5 and T = 3 for secret sharing, and no relay
servers a replication factor of one are used to prevent a heightened illusion of availability.
Furthermore, we use a pre-registered user of Social Home in order to which attempts to
log in every second (i.e., one simulated minute) for 1440 s (i.e., 24 simulated hours). The
peers which store our user’s password shares are randomly chosen for each iteration of our
evaluation, and so we can conclude that about 30% of peers chosen to store these shares
are night owls. Our user is using Google Chrome with Bingo Chrome installed on the
same web page for Social Home as in our base evaluation, which used Bingo React. The
Selenium browser control software is used to automate the process of logging in. Each time
our user attempts to log in, the success or failure of this login is stored by a “Stats Profiler”
which generates data reports in a manner fit for graphing. Our entire test-bed is displayed
in Figure 10. Peers generated by the Static Peers Generator are colored blue or yellow if
there are inactive or active, respectively.

We ran our complete simulation for a total of 20 iterations, culminating in a total of
28,800 login attempts. We display our results in Figure 11, which shows the percentage
of liveness (i.e., successful logins over total logins in a time window) for each simulated
hour, averaged over our 20 iterations. As indicated by Figure 11, Bingo’s liveness averages
between 80% and 95%. While this indicates that at certain points in a 24 h window that
users may experience downtime, we still show that despite a low number of shares being
distributed and no relay servers being used. As such, we conclude that our preliminary
implementation of Bingo shows strong liveness and displays the necessary characteristics
to be used as a real-world authentication system.

J. Cybersecur. Priv. 2022, 2

462

Selenium

@ Schedule Static Peers
Generator Generator
~—_

Bingo

Chrome

Stats
Profiler
Bingo Proxy

Web Server (tamu.fake)

Liveness

94

92

90

88

86

84

82

80

78

76

74

Figure 10. Test-bed used for running 24 simulated hours of logins.

Percentage Liveness for Each Simulated Hour

Figure 11. Percentage of liveness for each simulated hour, averaged over 20 iterations.

Bingo’s current password share distribution scheme of randomly choosing active
peers causes unnecessary overhead in the retrieval of said shares. While the goal is to
never centrally store where shares are held, we aim to improve our distribution scheme
to use the average activity levels of peers over time. As noted in previous sections, peers
which display longer consecutive uptime are likely to continue to do so. Furthermore, it is
possible that using machine-learning may aid Bingo in determining which peers are likely
the best candidate to store shares.

J. Cybersecur. Priv. 2022, 2

463

7.3. Peer Uptime Simulator

To show that the results of the Peer Uptime Simulator are representative of real
world distributed environments, the final evaluation phase places peers in a global setting,
showing that even when peers are placed in far apart regions of the world, logging in is
not affected by a great deal of increased latency.

The base case of the evaluation places 10, 50, and 100 peers in a single environment, as
with our Peer Uptime Simulator. Latency for logging in is measured over 100 attempts of a
user attempting to log in. Table 2 shows these results along with the remaining results of
this evaluation.

Table 2. Evaluation result of places 10, 50, and 100 peers in a single environment.

Peers Local Only (s) Remote (s)
10 243 3.21
50 1.96 2.86
100 1.78 2.31

Next, a script is used to randomly select five regions where an AWS EC2 instance
can be deployed, and a fifth of the number of peers (i.e., 10, 50, or 100) is placed in each
region. The user is then re-registered to distribute their password shares among the peers,
and the simulation is run again. This attempts to show that even with password shares
being retrieved simultaneously from regions such as the USA, Asia, and Europe, logging
in is not affected in terms of latency. The results of these simulations over 20 averaged
runs show that in the very worst case where only 10 peers are used, meaning that the
least amount of password shares are stored in the pool of peers, the increased latency of a
global deployment is nearly 1 s, which is complexity negligible in the context of modern
web requests.

Given that the Peer Uptime Simulator along with a global deployment both show that
Bingo is able to scale in the modern web, the conclusion of this evaluation can be made
that given correct configurations, Bingo is able to perform quite well as a login system
overall, despite suboptimal conditions (i.e., highly distributed peers). Future iterations of
this work will include tests showing optimized share distribution algorithms which will
largely prevent the need for a massively global share distribution, as was shown here for
demonstrative purposes.

8. Conclusions

This paper presented Bingo, a semi-centralized password storage system which aims
to tackle the widespread insecure storage of passwords. The solution uses secret sharing
and a series of cryptographic functions to ensure that a user’s password is never attainable
by an attacker from a single source. The various components which make up Bingo
were discussed, and a real-world implementation of these components was provided. It
appears that Bingo is able to provide strong security guarantees while also maintaining
excellent liveness properties. This research aims to improve the distribution and retrieval
mechanisms used by Bingo for password shares, as well as provide an improved evaluation
in our future work.

Author Contributions: Conceptualization, A.F.A.-A. and M.B.; methodology, A.FA.-A. and M.B,;
software, A.F.A.-A. and M.B,; validation, A.F.A.-A. and M.B.; formal analysis, A.F.A.-A. and M.B,;
investigation A.F.A.-A. and M.B.; writing—original draft preparation, A.F.A.-A. and M.B.; writing—
review and editing, A.FA.-A., M.B. and EY.A.-A ; visualization, A.F.A.-A. and M.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

J. Cybersecur. Priv. 2022, 2 464

Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gaw, S,; Felten, E.W. Password Management Strategies for Online Accounts. In Proceedings of the Second Symposium on Usable
Privacy and Security, Pittsburgh, PA, USA, 12-14 July 2006; pp. 44-55.

2. Sivertsen, B.; Knapstad, M.; Petrie, K.; O’Connor, R.; Lenning, K.J.; Hysing, M. Changes in mental health problems and suicidal
behaviour in students and their associations with COVID-19-related restrictions in Norway: A national repeated cross-sectional
analysis. BMJ Open 2022, 12, e057492. [CrossRef] [PubMed]

3. Sushama, C.; Kumar, M.S.; Neelima, P. Privacy and security issues in the future: A social media. Mater. Today Proc. 2021, 11, 105.
[CrossRef]

4. Dubey, R.; Martin, M.V. Fool Me Once: A Study of Password Selection Evolution over the Past Decade. In Proceedings of the 18th
International Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, 13-15 December 2021; pp. 1-7.

5. Venkatachalam, K; Prabu, P.; Almutairi, A.; Abouhawwash, M. Secure biometric authentication with de-duplication on distributed
cloud storage. Peer] Comput. Sci. 2021, 7, €569.

6. Luo, W; Hu, Y, Jiang, H.; Wang, J. Authentication by encrypted negative password. IEEE Trans. Inf. Forensics Secur. 2018, 14,
114-128. [CrossRef]

7. Oesch, S.; Ruoti, S. That was then, this is now: A security evaluation of password generation, storage, and autofill in browser-
based password managers. In Proceedings of the 29th USENIX Conference on Security Symposium, Boston, MA, USA, 12-14
August 2020; pp. 2165-2182.

8. Morris, R.; Thompson, K. Password security: A case history. Commun. ACM 1979, 22, 594-597. [CrossRef]

9. Gasti, P; Rasmussen, K.B. On the security of password manager database formats. In Proceedings of the European Symposium
on Research in Computer Security, Pisa, Italy, 10-12 September 2012; pp. 770-787.

10. Provos, N.; Mazieres, D. A Future-Adaptable Password Scheme. In Proceedings of the USENIX Annual Technical Conference,
FREENIX Track, Monterey, CA, USA, 6-11 June 1999; pp. 81-91.

11. Gauravaram, P. Security Analysis of Salt| | Password Hashes. In Proceedings of the International Conference on Advanced
Computer Science Applications and Technologies (ACSAT), Kuala Lumpur, Malaysia, 26-28 November 2012; pp. 25-30.

12. Han, A.L.-E; Wong, D.E; Chao, L.S. Password cracking and countermeasures in computer security: A survey. arXiv 2014,
arXiv:1411.7803.

13. Belenko, A.; Sklyarov, D. “Secure Password Managers” and “Military-Grade Encryption” on Smartphones: Oh, Really? In
Proceedings of the Blackhat Europe, Amsterdam, The Netherlands, 14-16 March 2012. 56p.

14. Petsas, T.; Tsirantonakis, G.; Athanasopoulos, E.; Ioannidis, S. Two-factor authentication: Is the world ready? In Quantifying 2FA
adoption. In Proceedings of the Eighth European Workshop on System Security, Bordeaux, France, 21 April 2015; pp. 1-7.

15. Apriansyah, Y. Implementation of One Time Password (OTP) for Login Security on Web-Based Systems. Ph.D. Dissertation,
University of Technology Yogyakarta, Daerah Istimewa Yogyakarta, Indonesia, 2022.

16. Da Silva Torres, R.J. Identity Management: Analysis of Secure Authentication Propositions. Master’s Thesis, Universidade Do
Porto, Porto, Portugal, 2020.

17. Merdenyan, B.; Petrie, H. Perceptions of risk, benefits and likelihood of undertaking password management behaviours: Four
components. In Proceedings of the IFIP Conference on Human-Computer Interaction, Paphos, Cyprus, 2-6 September 2019; pp.
549-563.

18. Aziz, I.T,; Abdulqadder, I.H.; Alturfi, S.M.; Imran, R.M.; Flaih, EM. A Secured and Authenticated State Estimation Approach
to Protect Measurements in Smart Grids. In Proceedings of the International Conference on Innovation and Intelligence for
Informatics, Computing and Technologies (3ICT), Sakheer, Bahrain, 20-21 December 2020; pp. 1-5.

19. Tomaszewska-Michalak, M. Biometric Technology 20 Years After 9/11-Opportunities and Threats. Studia Politol. 2022, 63,
123-134. [CrossRef]

20. Tzagarakis, G.; Papadopoulos, P.; Chariton, A.A.; Athanasopoulos, E.; Markatos, E.P. Opass: Zero-storage password management
based on password reminders. In Proceedings of the 11th European Workshop on Systems Security, Porto, Portugal, 23-26 April
2018; pp. 1-6.

21. Youssou, N.; Barais, O.; Blouin, A.; Bouabdallah, A.; Aillery, N. Requirements for preventing logic flaws in the authentication
procedure of web applications. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol Cyprus,
8-12 April 2019; pp. 1620-1628.

22. Rodriguez-Barroso, N.; Lépez, D.J.; Luzon, M.; Herrera, F.; Martinez-Camara, E. Survey on Federated Learning Threats: Concepts,
taxonomy on attacks and defences, experimental study and challenges. arXiv 2022, arXiv:2201.08135.

23. Aron, G. Improving attacks on round-reduced speck32/64 using deep learning. In Proceedings of the Annual International

Cryptology Conference, Santa Barbara, CA, USA, 18-22 August 2019; Springer: Cham, Switzerland; pp. 150-179.

http://doi.org/10.1136/bmjopen-2021-057492
http://www.ncbi.nlm.nih.gov/pubmed/35140162
http://doi.org/10.1016/j.matpr.2020.11.105
http://doi.org/10.1109/TIFS.2018.2844854
http://doi.org/10.1145/359168.359172
http://doi.org/10.33896/SPolit.2022.63.7

J. Cybersecur. Priv. 2022, 2 465

24. Singh, A.; Tiwari, V,; Naidu, A.S.; Tentu, A.N.; Raju, K.S.; Saxena, A. Analysis of Password Protected Documents Using Statistical
Approaches on High Performance Computing. In Advances in Micro-Electronics, Embedded Systems and IoT; Springer: Singapore,
2022; pp. 533-545.

25. Kampourakis, V.; Kambourakis, G.; Chatzoglou, E.; Zaroliagis, C. Revisiting man-in-the-middle attacks against HTTPS. Netw.
Secur. 2022, 2022. [CrossRef]

26. Goulart, A.; Chennamaneni, A ; Torre, D.; Hur, B.; Al-Aboosi, EY. On Wide-Area IoT Networks, Lightweight Security and Their
Applications—A Practical Review. Electronics 2022, 11, 1762. [CrossRef]

http://doi.org/10.12968/S1353-4858(22)70028-1
http://doi.org/10.3390/electronics11111762

	Introduction
	Limitations of Existing Solutions
	Two-Factor Authentication
	Password Aggregators
	Biometric Identifiers

	Threat Model
	Brute Force
	Rainbow Tables
	Man in the Middle

	Key Challenges
	System Architecture
	Cryptography
	Data Objects
	Peers
	Bingo Proxy
	Bingo Relays
	Bingo Extension
	Bingo UI

	Demonstrating the Bingo Workflow
	Peer Registration
	Peer Login

	Result and Discussion
	Base Evaluation
	Peer Uptime Simulator
	Peer Uptime Simulator

	Conclusions
	References

