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Abstract: The security of programmable logic controllers (PLCs) that control industrial systems
is becoming increasingly critical due to the ubiquity of the Internet of Things technologies and
increasingly nefarious cyber-attack activity. Conventional techniques for safeguarding PLCs are
difficult due to their unique architectures. This work proposes a one-class support vector machine,
one-class neural network interconnected in a feed-forward manner, and isolation forest approaches for
verifying PLC process integrity by monitoring PLC memory addresses. A comprehensive experiment
is conducted using an open-source PLC subjected to multiple attack scenarios. A new histogram-
based approach is introduced to visualize anomaly detection algorithm performance and prediction
confidence. Comparative performance analyses of the proposed algorithms using decision scores and
prediction confidence are presented. Results show that isolation forest outperforms one-class neural
network, one-class support vector machine, and previous work, in terms of accuracy, precision, recall,
and F1-score on seven attack scenarios considered. Statistical hypotheses tests involving analysis of
variance and Tukey’s range test were used to validate the presented results.

Keywords: cyber-physical systems; anomaly detection; programmable logic controllers (PLCs); one-
class support vector machine (OCSVM); one-class neural network (OCNN); isolation forest (IF);
unsupervised machine learning; cybersecurity

1. Introduction

The pervasiveness of Internet of Things technology and networked sensors in many
industrial control systems (ICSs) have exposed critical infrastructure to malicious activities
and cyber threats, leading to an increase in successful cyberattacks on critical infrastruc-
ture [1–4]. Programmable logic controllers (PLCs) are embedded devices that serve as major
components in ICSs and are crucial to ICSs’ network operation. PLCs control industrial
systems by collecting input data from field devices such as sensors and sending commands
to actuating devices for process execution [5,6]. ICSs monitor and control critical infras-
tructure such as nuclear facilities, electricity supply, and water management. PLCs are
vulnerable to attacks, similar to other embedded devices. Because PLCs are widely used
to control the physical processes of critical infrastructure, attacks against PLCs can cause
irreparable damage to enterprises and even loss of human life [7].

In the past, PLCs operated as isolated and proprietary systems with no external con-
nectivity [8,9]. As a result, PLC attacks were limited to insider intrusion, physical damage,
and tampering [10]. PLCs are increasingly connected to the internet and corporate networks
via transmission control protocol/internet protocol (TCP/IP) and wireless IP [11]. It is
difficult to apply traditional techniques for detecting anomalous PLC behavior due to their
unique architecture and proprietary operating systems. Therefore, it is crucial to protect
PLCs against any forms of cyber-attack and anomalies such as hardware malfunction,
accidental actions by insiders, and malicious intruders [12]. Figure 1 shows a typical ICS
with interconnected network configuration. The human–machine interface (HMI) provides
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a visual view and process control commands. The PLCs contain the control logic that
supervises the control process. The control process data logs are stored in the historian.

Figure 1. A typical ICS with interconnected network configuration.

Although both supervised and unsupervised ML techniques have been applied in PLC
anomaly detection [13,14], it is usually difficult to rely on a supervised learning approach
as real-world ICSs contain numerous sensor data that are tedious to label. Moreover,
unsupervised ML techniques for anomaly detection in PLCs and ICSs have not been widely
examined. This work explores one-class support vector machines (OCSVM), one-class
neural network (OCNN) interconnected in a feed-forward manner, and isolation forest
(IF) algorithms to verify PLC process integrity. In order to evaluate this concept, a traffic
light control experiment similar to [13,15] was developed. Recent work has suggested
that one-class support vector machines (OCSVM) are accurate for identifying anomalous
PLC behavior and for identifying anomalies in other areas [16–18]. Research work in [19]
shows that the future of deep neural networks for intelligent decision making in ICS looks
promising. This is because anomaly-detection algorithms based on deep neural networks
serve as a data-driven universal function approximation tool.

This work further extends unsupervised PLC anomaly detection techniques by using
IF and OCNN. After training, the proposed models are intended to run on a dedicated or
separate computer to monitor operations at the PLC memory addresses through real-time
HMI historian logs. Results indicate that isolation forest techniques may reduce anomaly
detection models’ dependence on the specific data set locality. This work shows that IF
outperforms OCNN and OCSVM in detecting PLCs anomalies.

1.1. Contributions

The novel contributions of this work can be summarized as follows:

1. Employ OCNN-based technique for detecting abnormal PLC behavior—the first
known application of OCNN in the ICS domain;

2. Conduct comparative performance analysis between OCSVM, OCNN, and IF based
on their decision scores instead of using traditional binary predictions and employing
analysis of variance (ANOVA) and Tukey’s range test for confirming validity of results;

3. Introduce a new histogram-based approach for visualizing anomaly-detection algo-
rithm performance and prediction confidence.
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1.2. Outline of the Paper

This paper is organized as follows. Section 2 presents a detailed overview of the
related works, followed by Section 3, which discusses the details of the experimental
setup and the approach to collecting data for training and evaluating the ML algorithms.
Section 4 discusses the proposed unsupervised anomaly detection frameworks, and after
that, Section 5 presents the results and analysis. Finally, Section 6 concludes the paper and
provides recommendations for future work.

2. Related Work

Inoue et al. employed unsupervised ML algorithms for anomaly detection in water
treatment systems [20]. They compared two unsupervised methods: a deep neural network
consisting of feed-forward layers with multiple inputs and outputs and a one-class sup-
port vector machine (OCSVM). The authors claimed that the deep neural network model
generated fewer false positives than the OCSVM, although the OCSVM could detect more
anomalies. The authors report recall values less than 0.7 for both deep neural network
and OCSVM.

Tomlin et al. [21] proposed a clustering approach for network intrusion-detection
system implementation in ICS. Their experimental results highlighted the issues associ-
ated with using cluster analysis as a unique tool for anomaly-based intrusion detection.
Although the work of Tomlin et al. seems promising, it focused on mainly simulated
experimental data, which sometimes fail to represent an actual ICS setup.

Xiao et al. [22] proposed a noninvasive power-based anomaly-detection scheme for
detecting attacks on PLCs using long short-term memory. Their work detected malicious
software execution in a PLC by analyzing the PLC power consumption. Xiao et al. achieved
accuracy as high as 99%. However, PLC power consumption is affected by power supply
instability and electronics malfunction, and can produce false-positive values.

In [23], the authors used a fully connected neural network and an autoencoder to
detect anomalies in network traffic. Their results demonstrated a higher detection rate and
lowered false positive rate when compared with eight other modern anomaly detection
techniques. Potluri et al. [24] also employed Artificial Neural Networks (ANN) for identi-
fying false data injection attacks in ICS. The classification report obtained in [24] shows a
promising detection accuracy with ANN.

In [25], Elnor et al. proposed a semisupervised dual isolation forest-based anomaly
detection approach using the normal process operation data of the secure water treatment
(SWaT) testbed and water distribution testbed. They compared their approach to other
anomaly detection techniques for ICS in terms of precision, recall, and F1-score. They
achieved a 7% improvement in the F1-score and detected 19 out of 36 SWaT attacks.

Ahmed et al. [26] proposed an unsupervised learning approach using isolation forest to
detect covert data integrity assault on a smart grid communication network. Although they
achieved an average accuracy of 93%, their approach focused on simulated experimental
data and may not represent ICS accurately. From the aforementioned, it can be realized that
isolation forest is a tremendous unsupervised learning approach with high performance
in anomaly detection. However, there are not enough applications of isolation forest
techniques for anomaly detection in PLCs and ICSs.

Liu et al. [27] proposed an anomaly detector based on subspace technique and quanti-
zation method for amplitude-frequency characteristic deviation of ICSs. Their approach is
practical and may be readily deployed in real ICS. However, the work does not address ICS
confidentiality attack. Reported results show an inability to detect anomalies in ICSs with
aggressive disturbances and instabilities. The work in [27] highlights the general challenges
associated with deploying anomaly detection models in resource-constrained embedded
devices for ICS protection.

PLC protection has some challenges associated with applying anomaly detection
techniques [27–30]. Most legacy PLCs in ICSs have insufficient low-level documentation
making it challenging to perform forensic investigations in cases of cyber-attacks or anoma-
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lous events [31]. Security mechanisms and forensic tools dedicated for PLCs to perform
comprehensive security investigations are lacking [32]. Lastly, PLC availability in an ICS
environment is often paramount. Therefore, shutting down a PLC-based ICS for forensic
investigations is often not feasible [28]. Therefore, robust detection techniques are required
for real-time anomaly detection in PLCs and ICSs.

An unsupervised ML technique called OCSVM was employed to detect anomalies in
PLCs successfully in [13]. Their experiment simulated a traffic light control system using
a PLC. They captured relevant PLC memory addresses into a log file for real-time data
recording from the traffic light operation. The captured data was normalized and used for
training the OCSVM model. Training and test accuracies were 98% and 82%, respectively.
However, OCSVM recall values on some test cases were as low as 75%, and the average
accuracy over their three-test cases was 78%. The low-performance metrics of detection
technique in [13] call for the need to investigate robust detection techniques for anomaly
detection in PLCs.

While OCSVM has been used as an effective unsupervised technique for anomaly detec-
tion, OCSVM performance is unsatisfactory on complex, high-dimensional datasets [33,34]. A
one-class neural network (OCNN) with a one-class objective function was used for anomaly
detection in complex datasets [33]. Despite its great potential on complex datasets, OCNN
has not been applied to ICS or PLC for anomaly detection purposes. This work examines
OCSVM, OCNN, and IF ML techniques for detecting PLC anomalous behavior by tracking
the operations at the PLC input and output memory addresses.

3. Experiment Setup

This section provides the details of the experimental setup used in this work to
implement the traffic light system. The ICS used in this work is patterned after the one
described in [13,15].

3.1. Description of Control Setup

Siemens’s open-source traffic light control program [15] was used to implement a
traffic light system to control vehicles and pedestrian traffic at a pedestrian crossing with
red, yellow, and green signals. In addition to the traffic light signals, each pedestrian
light was equipped with a pushbutton for pedestrians to request green light signals. The
following safety requirements were taken into account in the control logic program in order
to prevent any hazard to pedestrians or drivers:

1. The control system default operation should turn ON the green and red light signals
for the vehicle traffic and pedestrian traffic, respectively, to define a safe starting point;

2. Whenever the program receives a green request from the pedestrian through the
pushbutton, the vehicle traffic light signals must change from green to red via yellow.

Apart from the safety requirements, Figure 2 summarizes the control setup operation.
In [13,15], a system was constructed using Siemens S&-1212C PLC loaded with the TLIGHT
control program. This work implements the TLIGHT control logic using OpenPLC [35] and
ScadaBR [36]. Figure 3 provides a block diagram of the experimental setup for recording
training and test data. The experimental setup’s main components are described below.
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Figure 2. Flow chart of TLIGHT system operations.

Figure 3. Diagram of the cyber-physical system network interconnection and information flow.

3.2. OpenPLC

OpenPLC is an open-source simulation environment for home and industrial automa-
tion systems development [35]. OpenPLC runtime is versatile, and it creates a virtual PLC
architecture on supported hardware to mimic PLC behavior. OpenPLC supports several
firm PLC devices [37–39] and personal computers (PC) running Linux and Windows oper-
ating systems to create flexible soft PLCs installations [35]. The TLIGHT system [15] was
implemented in two parts in OpenPLC. The first part was the control program development
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similar to the description of Figure 2 in ladder logic form in OpenPLC editor. OpenPLC
editor was used to simulate and test the TLIGHT system logic to ensure that the program
was error-free and accurately represented the TLIGHT system description in [13,15]. The
simulated program followed the IEC 61131-3 standard for PLC programs [40]. The ladder
logic implementation is publicly available on [41]. Finally, the ladder logic was converted
to a structured text format that can be run and interpreted by the OpenPLC runtime.

The soft PLC in Figure 3 was implemented with a PC running Linux version of
OpenPLC. The experimental setup in this paper will work on all OpenPLC supported
hardware devices [35,37–39]. The second part of the implementation was the program’s
deployment in structured text format onto the OpenPLC runtime for real-time program
execution. PLC consists of a central processing unit (CPU), memory areas (also referred to
as address space in OpenPLC), and input/output devices. Internally, the program works
by continuously scanning the program for every 100 ms. Each scan cycle consists of three
crucial steps: check inputs, execute program logic, and update outputs. The cyclical PLC
runtime process continues so long as the runtime is set to running mode as described in
Algorithm 1.

Algorithm 1: PLC runtime execution.
Input: Pushbuttons for green request from the pedestrians
Output: Light signals states for vehicles and pedestrians
Initialize Default TLIGHT system state
for each 50 ms do

sample inputs from PLC addresses
execute ladder logic
update PLC registers
process network transactions

end

3.3. Human Machine Interface (HMI)

ScadaBR [36], an open-source supervisory control and data acquisition (SCADA) sys-
tem, was utilized as the HMI to monitor and control the PLC runtime. ScadaBR depicts
the control system’s state in real-time. It allows direct observation and execution of control
commands to PLC. The PLC input and output memory addresses were mapped to corre-
sponding Modbus input and output addresses in the HMI. At the end of every HMI cycle
time (100 ms), ScadaBR records available data at the input and output Modbus addresses
to a log file. Finally, TLIGHT system operations are exported from the HMI as CSV file for
preprocessing and training of the detection models. The HMI application also operates
independently of the PLC, as described in Algorithm 2.

Algorithm 2: HMI application execution.
Input: PLC inputs’ states
Output: PLC outputs’ states
for each 100 ms do

read PLC inputs’ states
read PLC registers’ states
if an update from user then

write change to settable PLC registers
end
process network transactions

end
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4. Proposed Method

The proposed anomaly detection systems described here use the normal process
data from TLIGHT system’s input and output signals. Details about the data collection,
anomalies, and theoretical background of the algorithms used in the proposed methods are
described in this section. Figure 4 is a framework of the anomaly detection approach that
shows how the proposed methods could be implemented in other real-world ICS scenarios.
The process starts with offline training of OCSVM, OCNN, and IF using the dataset from
HMI historian directly recorded from the PLC memory addresses. Training data consists
of relevant features which are normalized to retain the minimum and maximum features
values. The processed data are used to develop the detection models. The trained models
are serialized onto a separate computer for real-time PLC anomaly detection. During
testing or online detection, real-time measurement data is obtained from the HMI historian,
and information about the training data normalization procedure is used to process the
online data - indicated by the red dotted arrows in Figure 4. The final decision is made by
each trained detection model for specified time frames.

Figure 4. General framework of the anomaly detection approach.

4.1. Data Collection and Preprocessing

ML relies heavily on data by using statistical models and algorithms to build models
capable of predicting outcomes for a given input [42]. As a result, data quality is critical to
ML model robustness. Data is collected from the HMI historian. The HMI monitors and
records the memory addresses with timestamps via the Modbus communication protocol.
The data is recorded for about 4 days to ensure enough training and test data to evaluate
the proposed techniques in this work. In order to ensure a fair comparison between this
work and [13], the approach described here follows a similar approach in [13] as closely as
possible. Figure 5 summarizes the approach to the data collection and preprocessing.
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Figure 5. Description of the various steps involved in data collection, preprocessing, training and
evaluation of the anomaly detection algorithms.

4.1.1. Anomalous Scenarios

In order to evaluate and compare the performance of the different anomaly-detection
techniques proposed in this work, five different test sets are generated. Each set contains
normal and anomalous TLIGHT system events. Anomalous system events for the five
test sets are derived from seven scenarios. All seven attack scenarios could generally
represent real-world scenarios resulting from malfunctioning sensors and actuators, such
as broken connectors, damaged cable insulation, physical obstruction, or natural disasters.
It is crucial to quickly identify the anomalies in all scenarios because they could indicate
hardware failure mode or the need for system maintenance. Furthermore, each scenario
can also represent a specific malicious attack on an ICS. The seven attack scenarios are
outlined below.

• Anomalous scenario 1: All the vehicles and pedestrians’ green lights are turned ON at
the same time. The purpose of this anomalous event is to violate the TLIGHT system
safety rules. This attack generally represents a real-world scenario in which an attacker
has compromised the PLC operations through elevation of privileges attack with the
aim of causing traffic collision between vehicles and pedestrians.

• Anomalous scenario 2: All the traffic lights are shut down. This attack aims to
simulate an unnecessary traffic scenario for the vehicles and deny pedestrians’ green
light requests. This attack represents a real-world scenario in which an attacker has
introduced logic bomb attack inside the PLC ladder logic with the aim of terminating
TLIGHT system operations.



J. Cybersecur. Priv. 2022, 2 228

• Anomalous scenario 3: All pedestrians and vehicles’ traffic light signals are turned
ON. This attack scenario aims to violate the TLIGHT system safety requirements. This
attack generally represents a real-world scenario in which an attacker has compro-
mised the wired connection between the PLC and physical components with the aim
of causing a denial-of-service attack. This attack could lead to traffic jams and delays.

• Anomalous scenario 4: Refuse all green light requests from the pedestrians. This
attack scenario violates the TLIGHT system logic and operation cycle. This attack
generally represents a real-world scenario in which an attacker tampered with the
HMI communication protocol due to unencrypted communication with the aim of
causing a denial-of-service attack.

• Anomalous scenario 5: All vehicles and pedestrians’ red light signals are turned ON at
the same time. The motive of this attack is to cause unnecessary traffic for both vehicles
and pedestrians and violate the TLIGHT system’s default setting. This attack generally
represents a real-world scenario in which an attacker has introduced a hardware trojan
inside the physical components causing the red light signals to respond differently
from the PLC logic.

• Anomalous scenario 6: The vehicle’s yellow signals timing bits are manipulated. This
kind of anomaly is stealthy and subtle because all the traffic lights seem to be operating
normally with manipulated timing bits. This attack generally represents a real-world
scenario where an attacker has executed a man-in-the-middle attack by spoofing the
vehicle and pedestrian timing bits signals.

• Anomalous scenario 7: Delay timing bits for subsequent pedestrian green requests,
and pedestrians’ green light phase duration are manipulated. This attack scenario
is similar to attack scenario six in its subtlety and difficulty of detection from a hu-
man perspective. This attack generally represents a real-world scenario in which an
attacker has executed a man-in-the-middle attack by spoofing the delay timing bits for
pedestrian green request signals.

4.1.2. Test Cases

The details of the five test cases considered in this study are:

• Test set 1 contains 5000 normal and anomalous events samples, of which 10% are
anomalous instances. The 10% of anomalous instances consists of 10% anomalous
scenarios 1, 2, 3, 4, and 5;

• Test set 2 contains 7000 test samples, of which 10% are anomalous events. These
anomalous events consist solely of anomalous scenario 3;

• Test set 3 contains 13,130 normal and anomalous samples. About 20% of the data
contains anomalous instances sampled from anomalous scenarios 1 and 3. Anomalous
scenarios 1 and 3 consist of 50% each of the total anomalous events in test set 3;

• Test set 4 contains 15,000 test samples of which anomalous instances in the test sample
are 30%. These anomalous instances are sampled from anomalous scenarios 6 and 7.
Moreover, anomalous scenarios 6 and 7 consist of 20% and 10% anomalies, respectively.
This particular test set comprises only timing bits anomalies;

• Test set 5 is the most diverse and complicated test set. Test set 5 contains 18,270 normal
and anomalous test samples. A total of 50% of the test data is anomalous instances
sampled from anomalous scenarios 1, 2, 3, 5, 6, and 7. This test set is the only set with
a mixture of timing bits anomalies and traffic light signals anomalies. It is also the test
set with the highest number of anomalies. Anomalous scenario 1 comprises 5% of the
test data, scenario 2 is 10%, scenario 3 is 10%, scenario 5 is 5%, scenario 6 is 5%, and
anomalous scenario 7 is 15% of the test data.

The total training dataset samples and test sets 1-3 are consistent with the number
of samples used in [13]. Test set 4 and 5 consist mainly of timing bits anomalies. Table 1
summarizes the number of records and proportion of anomalies in the training and test sets.
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Table 1. Number of records and proportion of anomalies in training and test data sets.

Dataset No. of Records % Anomalies

Training set 41,580 n/a
Test Set 1 5000 10
Test Set 2 7000 10
Test Set 3 13,130 20
Test Set 4 15,000 30
Test Set 5 18,270 50

4.2. OCSVM-Based Detection Approach

Scholkopf et al. [43] proposed OCSVM, a maximum-based classifier established on
support vector machines. The OCSVM is an unsupervised anomaly-detection algorithm
that learns a decision function for separating the normal class from the anomalies [44].
Given a training dataset {Xi|i = 1, 2, 3 · · · , n} where Xi ∈ Rd, the OCSVM separates the
data points from the origin in the feature space by a hyperplane and maximizes the distance
from the hyperplane to the origin. OCSVM finds a decision function fF that separates the
data points into positive and negative scores. The positive scores represent the region in
the feature space where Xi ∈ F, and F is the set that carries a high concentration of the data
points, also known as the minimum-volume set. The negative scores represent all other
data points or anomalies. High dimensional Hilbert space H, can be used to transform
each data point Xi via a feature map Φ : Rd ← H generated by a positive-definite kernel,
k(X, X′). The optimization problem for separating the data from the origin in the OCSVM
is therefore given by

min
w,b

1
2
‖w‖2 − C

N

N

∑
n=1

ξ − b

s.t : 〈w, Φ(Xi)〉 ≥ b− ξi, ∀i,

ξi ≥ 0, ∀i

(1)

where b is the variable that controls the algorithm’s bias. The optimization problem is
formulated such that w · φ(X)− b is positive for as many N training examples as possible.
The C value is a hyperparameter that serves as the differential weight of the normal data
points compared to the anomalous data points. The value, ν = 1/C is regarded as the
prior probability that a data point in the training set is an anomaly, thereby regulating the
trade-off between false positives and false negatives in the model. The slack variable ξ
allows some data points in a nonseparable dataset to be within the margin. As a result, for
the given data X, the decision function fF(Xn:) is

fF(Xn:) = wTΦ(Xn:)− b (2)

The function definition in (2) is responsible for separating the data points from the
origin by determining whether a point is in the positive or negative set. The width of the
margin is controlled by b ∈ [0, 1] and w is the normal vector of the hyperplane. The input
data is projected into a nonlinear high-dimensional space by Φ(Xn:), and the slack variable
ξ models the separation errors in the same way as the feature space of (1). Therefore, the
overall OCSVM objective function is

min
w,b

1
2
‖w‖2 +

1
νN

N

∑
n=1

max(0, b− 〈w, Φ(Xn:)〉)− b (3)

While the literature reports different variations of OCSVM, this work presents an
OCSVM model that is developed by using the same model parameters in [13] to serve
as a baseline upon which our proposed methods could be compared. OCSVM model
learning process is controlled by using hyperparameters. Table 2 shows the hyperpa-
rameters for the OCSVM. According to [13], the modeling parameters in Table 2 were
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selected as optimal hyper-parameters for the OCSVM algorithm after investigating various
hyperparameter ranges.

Table 2. Model hyperparameters for OCSVM.

Parameter Description Choice

kernel Type of kernel used in the algorithm polynomial
degree Degree of polynomial kernel function 3

coef0 Controls how much the model is influenced by
high-degree polynomials versus low-degree polynomials 4

nu(ν) An upper bound on the fraction of training errors and a
lower bound of the fraction of support vectors 0.1

gamma Defines the level of a single training example’s influence 0.1

4.3. OCNN-Based Detection Approach

Neural networks for one-class classification have been proposed in [45–47]. However,
this work presents OCNN algorithm formulated on the foundation of OCSVM optimiza-
tion problem [43], and a proposed alternating minimization algorithm in [33] to form a
feed-forward neural network architecture capable of detecting PLC anomalies. OCNN
combines the ability of feed-forward neural network to extract features from the data along
with a one-class objective to become a universal anomaly detector. Given a feed-forward
neural network with a hidden layer, activation function g, and an output node, the al-
ternate minimization algorithm proposed by [33] is used to obtain the objective function.
Derivation of the OCNN follows the overall OCSVM objective function in (3). The resulting
objective function is used to solve the scalar output obtained from the hidden layer to the
output layer w, and the weight matrix from the input to the hidden node V as

arg min
w,V

1
2
‖w‖2 +

‖V‖2

2
+

1
νN

N

∑
n=1

`(yn, ŷ(w, V))

where
`(y, ŷ) = max(0, y− ŷ), yn = b, and ŷ(w, V) = 〈w, g(VXn)〉

Using the same alternate minimization approach as [33], the optimization problem for
the bias, b is

arg min
b

(
1

νN

N

∑
n=1

max(0, b− ŷ)

)
− b

Finally, the OCNN objective function generalization is

min
w,b,V

1
2
‖w‖2 +

1
2
‖V‖2 1

νN

N

∑
n=1

max(0, b− 〈w, g(VXn:)〉)− b (4)

where ν parameter controls the trade-off between maximizing the distance of the hyper-
plane from the origin and the number of data points allowed to cross the hyperplane. This
approach allows the model to utilize rich features obtained from unsupervised transfer
learning, particularly for anomaly detection in a complex dataset where the decision bound-
ary between the normal data points is highly nonlinear. The solution to optimizing (4) is
summarized in Algorithm 3.
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Algorithm 3: OCNN Algorithm.
Input: Training dataset {Xi|i = 1, 2, 3..., n}
Output: Set of decision scores
Initialize b at t← 0
while (there is no convergence) do

Find (wt+1, Vt+1)
Solve for b
t← t + 1

end
Compute decision scores (Sn) for each (Xi)
if (Sn ≥ 0) then

Xi is normal instance;
else

Xi is anomalous instance
end
return {Sn}

Given a training dataset {Xi|i = 1, 2, 3..., n}, the width b of the hyperplane margin
is first initialized. The model uses backpropagation to learn the neural network param-
eters (w, V). The model then iteratively updates b to achieve convergence. Then, the
scoring function Sn labels the data points as normal and anomalous instances based on the
convergence criterion ε with:

y =

{
1 if Sn(x) > ε

−1 if Sn(x) ≤ ε
(5)

where y represents binary classes of the decision function scores, Sn(x).
The OCNN architecture consisted of 32 hidden layers with rectified linear activation

(ReLU) function. Various hyperparameters are used to configure the OCNN model. Table 3
shows the optimal hyperparameters chosen for the OCNN after hyperparameter tuning.

Table 3. Model hyperparameters for OCNN.

Activation Function ν Learning Rate No. of Hidden Layers

ReLU 0.04 0.0001 32

4.4. Isolation Forest-Based Detection Approach

Isolation forest (IF) is an unsupervised learning technique that builds binary trees
ensemble for a given dataset for anomaly detection [48–50] IF assumes that anomalies make
up the minority of a given dataset. As a result, anomalies have attribute values that are
different from the normal instances. IF uses several isolation trees and trains each tree
on a subset of the training dataset. IF uses the following parameters for constructing the
binary trees:

1. Total number of isolation trees (nt);
2. Sample size of training data subset used to train each isolation tree (nmax);
3. Maximum number of features representing a subset of the data features used to train

each tree ( fmax).

Algorithm 4 summarizes the IF algorithm training process. During training, IF recur-
sively partitions the training data with an axis-parallel cut at randomly chosen partition
points in randomly selected attributes. Next, IF isolates the partitioned instances into
nodes with fewer and fewer instances until the points are isolated into singleton nodes
containing one instance [48]. IF randomly selects attributes splits q and a split subset p
within a specified range, resulting in a left (Xl) and right (Xr) subsets of the data each time
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until all training samples are isolated into singleton nodes. Algorithm 5 summarizes the
recursive binary splitting concept for separating anomalies by IF.

Algorithm 4: Train IF(X, nt, nmax, fmax).
Input: X—input data, nt—number of trees, nmax—sub-sampling size,

fmax—attributes of data subset
Output: a set of nt iTrees
Initialize Forest
for (i = 1 to nt) do

X
′ ← sample(X, fmax, nmax)

Forest← Forest ∪ iTree(X
′
)

end
return Forest

Algorithm 5 shows that after each split, isolation tree (iTree) produces a node which is
either an internal node (inNode) or external node (exNode) depending on whether there
is a further possibility of splitting the former into subsequent split regions. Consequently,
the two internal node subsets (Xl and Xr) are split further until they reach an external
node. External nodes are considered as leaves of branches when the maximum tree depth
is reached or the last nodes in branches when the data subset size of the region is one.

Algorithm 5: Train iTree(X
′
).

Input: X—input data, nt—number of trees, nmax—sub-sampling size,
fmax—attributes of data subset

Output: an iTrees
if X

′
is a singleton node then

return exNode{Size← |X|};
else

let Q be a list of attributes in X
randomly select an attribute q ∈ Q randomly select a split point p from max
and min values of attributes q in X

′

Xl ← f ilter(X
′
, q < p)

Xr ← f ilter(X, q ≥ p)
return inNode{Le f t← iTree(Xl),
Right← iTree(Xr), SplitAttribute← q, SplitValue← p}

end

Anomalous events are considerably different from the normal data points, and so the
smaller paths in the isolation tree construction correspond to the lower dimensionality
of the subspaces in which the anomalies have been isolated. IF works under the implicit
assumption that it is more likely to isolate subspaces of lower dimensionality created by
random splits [48]. The decision score Sn(x) for a given data sample x based on a detection
threshold ε is given by

Sn(x) = 2−
h(x)

H

where H is the average expected path length of trees with anomalies considered as −1
while normal instances are labeled as 1 as follows

H = 2 ln fmax − 1 + 1.2− 2
fmax − 1

f

The average path length on all trees h(x) can be derived as

h(x) =
1
nt

nt

∑
n=1

hi(x)
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where hi(x) is the nth tree path length established by the number of edges in the tree. The
IF algorithm is developed into a model using optimized hyperparameters. Table 4 shows
the IF model’s optimal hyperparameters after tuning a range of hyper-parameters.

Table 4. Model hyperparameters for IF.

Parameter Description Value

nestimators Number of base estimators in the forest ensemble 156
nmax Number of training samples to draw to train each estimator 180
fmax Number of features to draw to train each estimator 10

contamination Proportion of outliers in the data set 0.05

5. Results and Discussions

The evaluation is based on performance metrics, results from predictions on the test
data, and comparison with previous work trained on a similar dataset. The dataset is an
HMI historian log of operations at PLC memory addresses publicly available at [41]. Data
of PLC memory addresses operations are obtained through the Modbus communication
protocol between the PLC and HMI. Google’s Tensorflow [51], an open-source deep neural
network library, is used for training the OCNN model and subsequently serialized onto a
separate computer for online TLIGHT system anomaly detection. Evaluation results and
performance metrics calculations are performed by using the Scikit-learn library [52].

5.1. Performance Metrics

The performance metrics of the detection models in identifying anomalies in the
TLIGHT dataset are derived from the confusion matrix. Totally, four evaluation outcomes
are generated by the confusion matrix: true positive (TN), true negative (TN), false posi-
tive (FP), and false negative (FN). These outcomes are used for calculating the accuracy,
precision, recall, and F1-score of anomaly detection models.

Accuracy measures the proportion of correct predictions on the test data given by

Accuracy =
TP + TN

Real positives + Real negatives

Precision is a measure of the proportion of predicted positives that are true positives.
Precision is defined as

Precision =
TP

TP + FP

Recall measures the proportion of actual positives that are correctly classified. It
represents the ability of the model to detect all positive samples. Recall is

Recall =
TP

TP + FN

The F1-score is the harmonic mean of precision and recall. F1-score has its best value
of 1, indicating perfect precision and recall, and its worst value of 0. It is defined as

F1-score =
2× precision× recall

precision + recall

5.2. Performance Evaluation

This work presents a new way of visualizing anomaly detection algorithm results
using a histogram. Although histograms have been used in previous work to present
detection algorithms results [53–56], the approach presented in this work is new and
provides a better understanding of detection algorithms performance by revealing the
exact proportions of true positives, true negatives, false positives, and false negatives of
detection algorithms.
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Visualization of results is done by first separating the decision scores (real numbers)
into positive and negative scores represented by P1 and N1 respectively. Next, decision
scores are separated into true positives, true negatives, false positives, and false negatives
with associated notations xtp, xtn, x f p, and x f n, respectively, based on the ground truth of
the test sets. Different algorithms provide different decision scores based on their objective
functions, so the resulting xtp and x f p scores are normalized to a range between 0 and
1 using the maximum and minimum values in P1. In contrast, xtn and x f n scores are
normalized to range between 0 and 1 using the maximum and minimum values in N1.
Furthermore, to ensure an objective comparison of the different algorithms, the xtp and x f n
quantities are normalized as a function of the total ground truth positives. Similarly, xtn and
x f p are normalized as a function of the ground truth negatives. Let the normalized scores of
xtp, xtn, x f p, and x f n be Xtp, Xtn, X f p, and X f n respectively. Finally, the normalized scores
are used to plot a histogram of the distribution and proportion of decision scores.

Visualization of anomaly detection results requires methods different from previous
work [33], where only positive P1 and negative N1 scores are presented. The approach in
Figure 6 reveals the fractions of P1, which corresponds to Xtp and X f p, and the fractions
of N1 which are Xtn and X f n. Moreover, the work in [33] only shows the proportions of
P1 and N1 as a function of test data size on the histogram’s y-axis, which makes it chal-
lenging to visualize the N1 scores, primarily because test sets in anomaly detection mainly
have smaller negative class proportions [45]. On the contrary, the proposed approach
normalizes the histogram frequency (y-axis) to a range of 0 to 100% to present a better
relative decision scores visualization. The visualization described here normalizes the x
and y axes for easier comparison of different detection algorithms’ performance. Finally,
the proposed visualization approach may be applied to supervised ML algorithms for
binary classification.

Figure 6. OCSVM results of the normalized TP, TN, FP, and FN values on test sets 1–5.

5.2.1. Performance of OCSVM

OCSVM’s recall values on test sets 1, 2, 3, 4, and 5 are 90%, 87%, 86%, 81%, and
70%, respectively. Figure 6 illustrates the benefits of the proposed visualization as it
reveals OCSVM’s overall behavior on all test sets. A similar distribution of TP scores is
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observed on all test sets, showing how OCSVM learned the TLIGHT system’s normal
behavior during training process. OCSVM found detecting normal traffic transitions
involving vehicles’ green light signals challenging, leading to high TP scores that lie
along the decision boundaries in all test cases. Again, FN scores of test sets 1 and 3
involve the same data records being misclassified as anomalies. Moreover, FN scores of
test sets 4 and 5 represent identical normal data records misclassified as anomalies. The
aforementioned show the importance of the proposed visualization in this work as Figure 6
reveals OCSVM’s true performance on each data record, which would not be possible with
the traditional histogram approach [33].

Although OCSVM’s recall values decrease steadily from test sets 1 to 5, the normalized
true positive scores are low in all test cases. In all test cases, OCSVM misclassifies over 30%
anomalous instances as normal instances leading to high levels of FP in all test cases. In
addition, Figure 6 shows that in all test cases in which OCSVM makes an accurate positive
class (normal) prediction, the score (levels of confidence) of predictions are low and lie
along the decision boundary. Although OCSVM detects several positive classes, it has
a greater chance of misclassifying normal data points as anomalies because of the low
confidence of the positive class prediction. Moreover, about 75% of correct positive class
predictions occur close to the decisions boundary with low prediction confidence. The
low prediction confidence makes OCSVM unstable for TLIGHT system anomaly detection.
Figure 6 shows a histogram of normalized FP, FN, TP, and TN decision scores made by
OCSVM on test sets 1–5.

OCSVM learns the TLIGHT system’s normal behavior during training with a 100%
precision and 98% F1-score. The results substantiate the procedure this work adopts in
conducting the experiment and recording data as it is similar to the training results in [13].
Overall, OCSVM performs best on test set 1. OCSVM performance on test sets 2 and 3 are
similar with an F1-score of 84%. OCSVM has its least performance on test sets 4 and 5,
with F1-scores of 71% and 68% respectively. OCSVM model is unable to detect over 20% of
anomalies in test sets 4 and 5 because of the large proportion of anomalies consisting of
timing bits anomalies. Therefore, OCSVM appears to be ineffective at detecting TLIGHT
system errors consisting of system timing bits manipulation. Table 5 summarizes the
performance of the OCSVM described here and the OCSVM in [13]. Table 5 shows that the
OCSVM reported here and in [13] have similar training performance due to the datasets
and underlying TLIGHT experiment being designed identically. Test sets 1–3 in this work
are created to be the same size as the test sets in [13]; however, the exact nature and
distributions of errors in [13] are unknown and may be the reason for the slight differences
seen in the Table 5.

Table 5. Performance of OCSVM described here and the reported results * of the OCSVM in [13].

Accuracy Precision Recall F1-Score
Dataset OCSVM [13] OCSVM [13] OCSVM [13] OCSVM [13]

Training set 0.96 0.96 * 1.00 1.00 * 0.96 0.96 * 0.98 0.98 *
Test set 1 0.90 0.78 * 0.89 1.00 * 0.90 0.78 * 0.89 0.88 *
Test set 2 0.87 0.75 * 0.81 1.00 * 0.87 0.75 * 0.84 0.86 *
Test set 3 0.86 0.82 * 0.85 1.00 * 0.86 0.82 * 0.84 0.90 *
Test set 4 0.81 - 0.81 - 0.81 - 0.71 -
Test set 5 0.70 - 0.78 - 0.70 - 0.68 -

5.2.2. Performance of OCNN

OCNN’s performance on all metrics is similar to OCSVM. OCNN’s recall value on test
set 1 is high at 91%, whereas the recall values on test sets 2 and 3 are similar at 88%. A closer
observation of Figure 7 reveals that in all test sets, TP prediction scores by OCNN are close
to the decision boundary signifying low confidence of the positive class prediction. Over
all test cases, about 75% of the correctly predicted positive class have scores closer to the
decision boundary, which shows that OCNN has potential instabilities similar to OCSVM.
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In addition, OCNN misclassifies more than 25% of anomalies as normal instances, which is
undesirable, especially in ICS anomaly detection. However, the TN and FP scores in all
test sets are high, showing OCNN’s robustness in detecting outliers. OCNN misclassifies
several anomalies as normal instances, especially in test sets 2–5, leading to high false
positive rates. Figure 7 shows a histogram of normalized FP, FN, TP, and TN decision scores
made by OCNN on test sets 1–5.

Figure 7. OCNN results of the normalized TP, TN, FP, and FN values on test sets 1–5.

OCNN has good performance on all metrics on test sets 1, 2, and 3, similar to OCSVM.
OCNN learns the TLIGHT system’s normal behavior well by having a training recall of
97%. However, OCNN’s performance on test sets 4 and 5 is low with F1-scores of 79%
and 68% respectively. Table 6 shows OCNN’s ability to detect changes in the light signals
behavior of the TLIGHT system and an inability to detect timing bits errors. OCSVM and
OCNN have similar performance because the OCNN objective function is developed as an
improvement upon the OCSVM optimization problem in Equation (3). Table 6 summarizes
OCNN’s performance on the five test sets.

Table 6. Summary of evaluation results for OCNN.

Dataset Accuracy Precision Recall F1-Score

Training set 0.97 1.00 0.97 0.99
Test set 1 0.91 0.90 0.91 0.90
Test set 2 0.88 0.81 0.88 0.84
Test set 3 0.88 0.87 0.88 0.86
Test set 4 0.81 0.82 0.81 0.79
Test set 5 0.70 0.79 0.70 0.68
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5.2.3. Performance of Isolation Forest

Unlike OCSVM and OCNN, IF uses tree ensembles to isolate anomalies from the
dataset instead of learning the system’s normal behavior. IF achieves high recall rates on
test sets 1 and 2 at 91% and 97%, respectively. IF misclassifies about 40% of anomalies
as normal instances in test set 3, which resulted in a reduced recall rate of 88%. In test
set 2, IF classifies normal and anomalous data points almost perfectly with high confidence,
thereby achieving a precision of 98%. Unlike OCSVM and OCNN, IF’s decision scores on
TN and TP are consistently high, which means that whenever IF correctly predicts a normal
instance, it is certain about the detection decision. In addition, Figure 8 shows that for more
than 25% of the time, whenever IF correctly detects anomalous instances, the associated
decision scores are high, signifying high detection confidence. Figure 8 shows that IF’s
decision scores are far away from the decision boundary, which makes IF a stable model
for detecting anomalies in the TLIGHT system. IF decision scores are confident, therefore,
it is an attractive approach for ICS anomaly detection. Figure 8 shows a histogram of
normalized FP, FN, TP, and TN decision scores made by IF on test sets 1–5.

Figure 8. IF results of the normalized TP, TN, FP, and FN values on test sets 1–5.

Similar to OCSVM and OCNN, IF has an outstanding training performance. IF has
an excellent performance on test sets 1 and 2 on all evaluation metrics. IF performance
on test sets 3 and 4 are similar at an average recall value of 87%, whereas it has its lowest
performance on test set 5. Test sets 4 and 5 consist of timing bits anomalies, and IF achieves
recall rates of 86% and 82%, respectively. Results indicate that IF can detect timing bits
errors better than OCSVM and OCNN. Table 7 shows a summary of evaluation results
for IF.
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Table 7. Summary of evaluation results for IF.

Dataset Accuracy Precision Recall F1-Score

Training set 0.95 1.00 0.95 0.98
Test set 1 0.91 0.90 0.91 0.91
Test set 2 0.97 0.98 0.97 0.97
Test set 3 0.88 0.87 0.88 0.87
Test set 4 0.86 0.86 0.86 0.85
Test set 5 0.78 0.82 0.78 0.77

5.3. Statistical Hypothesis Test

Statistical evidence about the best-performing detection model proposed in this work
is conducted using Analysis of Variance Test and Tukey’s range test. F1-score is selected
as the evaluation metric in the hypothesis test because F1-score is a great measure of the
trade-off between precision and recall, especially for imbalanced datasets.

5.3.1. Analysis of Variance Test (ANOVA)

ANOVA is a statistical model used to determine if a significant difference between
the means of two or more data sets exists [57,58]. One-way ANOVA is chosen because of
the interest in examining one independent variable’s influence, which is F1-score. First,
OSCVM, OCNN, and IF performances are evaluated on 20 different test samples of the
exact sizes as test sets 1, 2, 3, 4, and 5. Next, each detection algorithm’s F1-score is computed
on 20 different samples of each test set. The assumptions about the data set are

• data points in each test sample are independent and identically distributed; and
• data points are normally distributed.

In addition, the hypotheses for the statistical test are

• null hypothesis (H0): The mean F1-score of all detection algorithms are equal; and
• alternate hypothesis (Ha): One or more of the mean F1-score are unequal.

Based on the one-way ANOVA test, the F value is 14.972, and a p-value < 0.001
is achieved. One-way ANOVA shows significant evidence to reject the null hypothesis.
Rejecting the null hypothesis indicates a considerable difference between at least two
detection algorithms at a confidence level above 95%. Although one-way ANOVA reveals
a difference in the three algorithms’ performance, statistically, it is not clear which specific
algorithm performs best or worst. Therefore, a post hoc analysis is required to identify the
best-performing algorithm.

5.3.2. Tukey’s Range Test

Tukey’s range test is a statistical test used as post hoc analysis after one-way ANOVA [59].
Tukey’s range test compares all possible mean F1-score pairs for all detection algorithms
and precisely identifies differences between the pairs greater than the expected standard
error. Tukey’s range test is based on the same assumptions as ANOVA. Table 8 depicts
Tukey’s range test results at α = 0.05.

Table 8. Multiple comparison of mean F1-score for OCSVM, OCNN, and IF using Tukey’s range test
at α = 0.05.

Group 1 Group 2 Mean Diff. p-Adjusted Reject

OCNN IF 5.320 0.001 True
OCNN OCSVM −0.587 0.862 False

IF OCSVM −5.907 0.001 True

The mean F1-score for IF significantly differs from OCNN; hence IF outperforms
OCNN. However, the mean F1-score difference between OCNN and OCSVM is insignif-
icant; therefore, OCNN and OCSVM perform at par. Lastly, Tukey’s range test indicates
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sufficient statistical evidence to reject the null hypothesis between the group IF-OCSVM
and conclude that IF outperforms OCSVM. Results in Table 8 indicate that IF is the superior
detection model for the TLIGHT dataset, whereas OCNN and OCSVM have similar overall
performance.

5.4. Summary of Results

The overall performance of the detection algorithms is summarized in this section.
Figure 9 shows box plots of OCSVM, OCNN, and IF results distributions with the outlier
test case labeled where applicable. IF has the highest median accuracy of 88%. Furthermore,
accuracy and recall box plots in Figure 9 show that all methods have outlier performance
more than 1.5 times the interquartile value on test set 5. However, the precision box
plot of Figure 9 indicates that IF’s precision value of 98% on test set 2 is an outlier. The
precision box plot shows no outliers for OCSVM and OCNN. Lastly, the F1-score box plot
in Figure 9 shows that the only F1-score outlier is OCNN’s result on test set 5 and the
F1-scores distribution of IF is right-skewed. Therefore, the overall results indicate that all
the detection models find it challenging to detect anomalies in test set 5. Nevertheless, all
the detection models have similar performance distributions on test sets 1–4.

Figure 9. Box plot of OCSVM, OCNN, and IF performance distribution.

It is insightful to compare the detection models’ average performance with the reported
results in [13] on all evaluation across test sets 1–3: IF performs about 5% better than
OCSVM, OCNN, and [13] in accuracy, precision, and recall. However, in terms of F1-score,
IF averages about 7% over OCSVM, OCNN, and [13]. In all evaluation metrics, OCNN and
OCSVM perform similarly. Figure 10 shows the comparison between the detection models
in this work and the reported results in [13]. Test sets 1–3 in this work are created to be the
same sizes as the test sets in [13]; however, the exact nature of anomalies and their relative
distributions in the three test sets is not provided in [13]. It is surmised that the difference
in validation performance between the OCSVM in this work and the reported results of the
OCSVM in [13] is due to these anomalies variations. Moreover, the reported result in [13]
has a precision of 100% in all test cases, but a low recall performance—below 83% in all
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three test sets—which could potentially indicate overfitting of their model. Overall, IF
achieved the best performance on all three test sets.

Figure 10. Average test sets 1–3 performance of the OCSVM reported results * in [13], and the
OCSVM, OCNN, and IF approaches described in this paper.

Test sets 4 and 5 consist of timing bits anomalies unique to this work, and such errors
were not considered in [13]. Figure 11 shows the average performance comparison between
OCSVM, OCNN, and IF on test sets 4 and 5. IF’s average performance is higher than
that of OCNN and OCSVM on all the evaluation metrics, whereas OCNN and OCSVM
perform similarly.

Figure 11. Average test sets 4–5 performance of OCSVM, OCNN, and IF.

5.5. Practical Considerations

This work focused on TLIGHT system experiments consisting of digital signals from
sensors and actuators with the purpose of monitoring operations at the PLC memory
addresses. The digital nature of the experiment ensures fair comparison with previous
work developed with a similar experiment. However, the work presented here need not be
constrained to digital signals. The algorithms presented in this work can be extended to
PLC process control involving both analog and digital signals. The proposed algorithm’s
objective functions are adaptable to nonlinear scenarios; hence robust performance is
expected in industrial practices involving analog control systems. The multilayer network
of OCNN allows the computation of any nonlinear function [45]. OCSVM and IF have been
employed to successfully detect PLC anomalies involving analog signals in [20,25,60].

The presented techniques are general methods that can be implemented in real-world
ICS infrastructure with minimum effort. The outstanding performance of the proposed
techniques can be realized on legacy and embedded PLCs. An approach may be to compile
the trained models to C code using open-source compilers such as [61–63], which, as an
example, support x86 and ARM64 processor architectures. The generated C code should
be readily portable to dedicated ARM and general-purpose processors [64] for real-time
inference. A similar approach to the experiment conducted in this work may also be
employed. The trained models may be serialized onto a separate PC with a data pipeline
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to the HMI historian and PLC memory addresses to receive data and perform real-time
anomaly detection.

5.6. Limitations

While this work makes significant contributions to the scientific body of ICS anomaly
detection, there are some limitations to the proposed approaches. The proposed histogram-
based visualization approach is limited to anomaly-detection algorithms with signed output
results. A detection algorithm’s output must be positive and negative real numbers repre-
senting normal and anomalous points or vice-versa in order for the proposed visualization
approach to be effective. The histogram-based visualization plots reveal that OCSVM
and OCNN make less-confident predictions. OCSVM and OCNN have similar decision
scores distributions across all five test sets because they are both formulated from a similar
optimization problem. Observing OCSVM and OCNN performance limitations may not
have been possible without the proposed visualization approach. Furthermore, comparing
anomaly-detection algorithms performances based on decision scores instead of traditional
binary predictions requires decision scores normalization. Since different anomaly detec-
tors might produce decision scores on different scales, decision scores normalization is
required for fair comparison.

In addition, there are some limitations associated with the proposed techniques.
OCSVM is sensitive to the choice of kernels, and ν parameters [45], hence OCSVM is not
robust in ICS applications without a deeper understanding of the ICS. OCSVM limitation
can partially be solved by using variable subsampling [65] during model training in
the context of ICS with unpredictable behavior. The feed-forward nature of the neural
network in OCNN makes the algorithm sensitive to noise [45]. Therefore, clean ICS data
should be used for OCNN training to avoid model overfitting. Finally, IF algorithm’s
recursive data partitioning could lead to lower performance in high-dimensional ICS data
due to the masking effect of locally noisy and irrelevant features. As a result, feature-
selection techniques [66,67] should be employed in high-dimensional ICS data before IF
model training.

Although IF has a stellar performance on key evaluation metrics on test sets 1–3,
it achieved lower recall values on test sets 4–5, which contain timing bits error. Some
anomalous data points are detected by either OCSVM or OCNN, but IF fails to detect
them. This shows that the proposed algorithms have strengths and weaknesses on different
subsets of the data, and hence, a single detection algorithm may not be able to generalize
to an arbitrary ICS setup. However, aggregating the predictions from individual anomaly
detection models could potentially result in a robust model capable of detecting anomalies
in an arbitrary ICS setup.

6. Conclusions

This work presents unsupervised ML algorithms for anomaly detection, including
cyber-attacks on PLCs and ICS. A previously studied TLIGHT ICS system was used. The
control system’s normal behavior is recorded through the PLC memory addresses. One-
class support vector machine, one-class neural network, and isolation forest algorithms
were developed using system process data. This work proposes a new histogram-based
visualization technique for demonstrating true positives, true negatives, false positives,
and false negatives proportions in anomaly detection models’ performance. The proposed
visualization technique can also be extended to supervised ML algorithms involving binary
classification. Results indicate that OCSVM and OCNN have similar performance on all
evaluation metrics, which are inferior to IF performance. A hypothesis test is conducted
using one-way ANOVA and Tukey’s range test to provide statistical evidence about the
algorithm with the best performance. The hypothesis test indicates that IF has the best
anomaly-detection rate on the TLIGHT system; however, there is insufficient statistical
evidence to support any difference in performance between OCSVM and OCNN. Finally,
IF achieved superior performance over results reported in prior work. The proposed
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techniques are generalized methods, which can be implemented in real-world ICS with
minimal effort.

Recommendation

Based on the limitations outlined in this work, it is evident that some anomaly-
detection algorithms will perform well on a particular subset of the dataset, whereas
other algorithms will do better on other subsets of the dataset. Therefore, future work
should focus on the following to address the challenge mentioned above and extend
scientific knowledge:

• improving the anomaly-detection rate on the TLIGHT system through ensemble
techniques;

• developing dual anomaly-detection algorithms that will focus on specific subsets of
the dataset; and

• extending the proposed techniques in this work to other publicly available anomaly
detection datasets.
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4. Plėta, T.; Tvaronavičienė, M.; Casa, S.D.; Agafonov, K. Cyber-attacks to critical energy infrastructure and management issues:
Overview of selected cases. Insights Into Reg. Dev. 2020, 2, 703–715. [CrossRef]

5. Wardak, H.; Zhioua, S.; Almulhem, A. PLC access control: A security analysis. In Proceedings of the 2016 World Congress on
Industrial Control Systems Security (WCICSS), London, UK, 12–14 December 2016; pp. 1–6.

6. Abbasi, A.; Holz, T.; Zambon, E.; Etalle, S. ECFI: Asynchronous control flow integrity for programmable logic controllers. In
Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando, FL, USA, 4–8 December 2017; pp. 437–448.

7. Abbasi, A. Ghost in the PLC: stealth on-the-fly manipulation of programmable logic controllers’ I/O. In Proceedings of the Black
Hat EU, London, UK, 1–4 November 2016; pp. 1–4.

8. Yau, K.; Chow, K.P. PLC forensics based on control program logic change detection. J. Digit. Forensics, Secur. Law 2015, 10, 5.
[CrossRef]

9. Langmann, R.; Stiller, M. The PLC as a smart service in industry 4.0 production systems. Appl. Sci. 2019, 9, 3815. [CrossRef]
10. Tsiknas, K.; Taketzis, D.; Demertzis, K.; Skianis, C. Cyber Threats to Industrial IoT: A Survey on Attacks and Countermeasures.

IoT 2021, 2, 163–188. [CrossRef]
11. Spyridopoulos, T.; Tryfonas, T.; May, J. Incident Analysis & Digital Forensics in SCADA and Industrial Control Systems. In

Proceedings of the 8th IET International System Safety Conference Incorporating the Cyber Security Conference, Cardiff, UK,
16–17 October 2013.

12. Boeckl, K.; Boeckl, K.; Fagan, M.; Fisher, W.; Lefkovitz, N.; Megas, K.N.; Nadeau, E.; O’Rourke, D.G.; Piccarreta, B.; Scarfone, K.
Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks; US Department of Commerce, National Institute
of Standards and Technology: Gaithersburg, MD, USA, 2019.

http://doi.org/10.1016/j.micpro.2020.103201
http://www.ncbi.nlm.nih.gov/pubmed/32834204
http://dx.doi.org/10.9770/IRD.2020.2.3(7)
http://dx.doi.org/10.15394/jdfsl.2015.1211
http://dx.doi.org/10.3390/app9183815
http://dx.doi.org/10.3390/iot2010009


J. Cybersecur. Priv. 2022, 2 243

13. Yau, K.; Chow, K.P.; Yiu, S.M.; Chan, C.F. Detecting anomalous behavior of PLC using semi-supervised machine learning. In
Proceedings of the 2017 IEEE Conference on Communications and Network Security (CNS), Las Vegas, NV, USA, 9–11 October
2017; pp. 580–585.

14. Aboah, B.E.; Bruce, J.W. Anomaly Detection for Industrial Control Systems Based on Neural Networks with One-Class Objective
Function. Proc. Stud. Res. Creat. Inq. Day 2021, 5, 86.

15. Siemens, S. S7-300 Programmable Controller Quick Start, Primer, Preface; Technical Report; C79000-G7076-C500-01; Siemens:
Nuremberg, Germany, 1996.

16. Chen, Y.; Wu, W. Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical
exploration data. Geochem. Explor. Environ. Anal. 2017, 17, 231–238. [CrossRef]

17. Welborn, T. One-Class Support Vector Machines Approach for Trust-Aware Recommendation Systems; Shareok: Norman, OK, USA,
2021.

18. Hiranai, K.; Kuramoto, A.; Seo, A. Detection of Anomalies in Working Posture during Obstacle Avoidance Tasks using One-Class
Support Vector Machine. J. Jpn. Ind. Manag. Assoc. 2021, 72, 125–133.

19. Ahmad, I.; Shahabuddin, S.; Malik, H.; Harjula, E.; Leppänen, T.; Loven, L.; Anttonen, A.; Sodhro, A.H.; Alam, M.M.; Juntti,
M.; et al. Machine learning meets communication networks: Current trends and future challenges. IEEE Access 2020, 8,
223418–223460. [CrossRef]

20. Inoue, J.; Yamagata, Y.; Chen, Y.; Poskitt, C.M.; Sun, J. Anomaly detection for a water treatment system using unsupervised
machine learning. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans,
LA, USA, 18–21 November 2017; pp. 1058–1065.

21. Tomlin, L.; Farnam, M.R.; Pan, S. A clustering approach to industrial network intrusion detection. In Proceedings of the 2016
Information Security Research and Education (INSuRE) Conference (INSuRECon-16), Charleston, SC, USA, 30 September 2016.

22. Xiao, Y.j.; Xu, W.y.; Jia, Z.h.; Ma, Z.r.; Qi, D.l. NIPAD: A non-invasive power-based anomaly detection scheme for programmable
logic controllers. Front. Inf. Technol. Electron. Eng. 2017, 18, 519–534. [CrossRef]

23. Muna, A.H.; Moustafa, N.; Sitnikova, E. Identification of malicious activities in industrial internet of things based on deep
learning models. J. Inf. Secur. Appl. 2018, 41, 1–11.

24. Potluri, S.; Diedrich, C.; Sangala, G.K.R. Identifying false data injection attacks in industrial control systems using artificial neural
networks. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8.

25. Elnour, M.; Meskin, N.; Khan, K.; Jain, R. A dual-isolation-forests-based attack detection framework for industrial control systems.
IEEE Access 2020, 8, 36639–36651. [CrossRef]

26. Ahmed, S.; Lee, Y.; Hyun, S.H.; Koo, I. Unsupervised machine learning-based detection of covert data integrity assault in smart
grid networks utilizing isolation forest. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2765–2777. [CrossRef]

27. Liu, B.; Chen, J.; Hu, Y. Mode division-based anomaly detection against integrity and availability attacks in industrial cyber-
physical systems. Comput. Ind. 2022, 137, 103609. [CrossRef]

28. Ahmed, C.M.; MR, G.R.; Mathur, A.P. Challenges in machine learning based approaches for real-time anomaly detection in
industrial control systems. In Proceedings of the 6th ACM on Cyber-Physical System Security Workshop, Taipei, Taiwan, 6
October 2020; pp. 23–29.

29. Priyanga, S.; Gauthama Raman, M.; Jagtap, S.S.; Aswin, N.; Kirthivasan, K.; Shankar Sriram, V. An improved rough set theory
based feature selection approach for intrusion detection in SCADA systems. J. Intell. Fuzzy Syst. 2019, 36, 3993–4003. [CrossRef]

30. Raman, M.G.; Somu, N.; Mathur, A.P. Anomaly detection in critical infrastructure using probabilistic neural network. In
International Conference on Applications and Techniques in Information Security; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 129–141.

31. Benkraouda, H.; Chakkantakath, M.A.; Keliris, A.; Maniatakos, M. Snifu: Secure network interception for firmware updates in
legacy plcs. In Proceedings of the 2020 IEEE 38th VLSI Test Symposium (VTS), San Diego, CA, USA, 5–8 April 2020; pp. 1–6.

32. Wu, T.; Nurse, J.R. Exploring the use of PLC debugging tools for digital forensic investigations on SCADA systems. J. Digit.
Forensics, Secur. Law 2015, 10, 7. [CrossRef]

33. Chalapathy, R.; Menon, A.K.; Chawla, S. Anomaly detection using one-class neural networks. arXiv 2018, arXiv:1802.06360.
34. Bengio, Y.; LeCun, Y.; Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 2007, 34, 1–41.
35. Alves, T.R.; Buratto, M.; De Souza, F.M.; Rodrigues, T.V. OpenPLC: An open source alternative to automation. In Proceedings of

the IEEE Global Humanitarian Technology Conference (GHTC 2014), San Jose, CA, USA, 10–13 October 2014; pp. 585–589.
36. Mazurkiewicz, P. An open source SCADA application in a small automation system. Meas. Autom. Monit. 2016, 62, 199–201.
37. Unipi Neuron Kernel Description. Available online: https://www.unipi.technology/products/unipi-neuron-3 (accessed on

3 March 2022).
38. ZumIQ Edge Computer Kernel Description. Available online: https://www.freewave.com/products/zumiq-edge-computer/

(accessed on 3 March 2022).
39. Automation without Limits Kernel Description. Available online: https://www.unipi.technology/ (accessed on 3 March 2022).
40. Tiegelkamp, M.; John, K.H. IEC 61131-3: Programming Industrial Automation Systems; Springer: Berlin/Heidelberg, Germany, 2010.
41. TLIGHT SYSTEM Source Code to TLIGHT Experiment. Available online: https://github.com/emmanuelaboah/TLIGHT-

SYSTEM (accessed on 17 January 2022).

http://dx.doi.org/10.1144/geochem2016-024
http://dx.doi.org/10.1109/ACCESS.2020.3041765
http://dx.doi.org/10.1631/FITEE.1601540
http://dx.doi.org/10.1109/ACCESS.2020.2975066
http://dx.doi.org/10.1109/TIFS.2019.2902822
http://dx.doi.org/10.1016/j.compind.2022.103609
http://dx.doi.org/10.3233/JIFS-169960
http://dx.doi.org/10.15394/jdfsl.2015.1213
https://www.unipi.technology/products/unipi-neuron-3
https://www.freewave.com/products/zumiq-edge-computer/
https://www.unipi.technology/
https://github.com/emmanuelaboah/TLIGHT-SYSTEM
https://github.com/emmanuelaboah/TLIGHT-SYSTEM


J. Cybersecur. Priv. 2022, 2 244

42. Gollapudi, S. Practical Machine Learning; Packt Publishing Ltd.: Mumbai, India, 2016.
43. Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution.

Neural Comput. 2001, 13, 1443–1471. [CrossRef] [PubMed]
44. Zhu, F.; Yang, J.; Gao, C.; Xu, S.; Ye, N.; Yin, T. A weighted one-class support vector machine. Neurocomputing 2016, 189, 1–10.

[CrossRef]
45. Aggarwal, C.C. An introduction to outlier analysis. In Outlier Analysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–34.
46. Oza, P.; Patel, V.M. One-class convolutional neural network. IEEE Signal Process. Lett. 2018, 26, 277–281. [CrossRef]
47. Boehm, O.; Hardoon, D.R.; Manevitz, L.M. Classifying cognitive states of brain activity via one-class neural networks with

feature selection by genetic algorithms. Int. J. Mach. Learn. Cybern. 2011, 2, 125–134. [CrossRef]
48. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, Washington, DC, USA, 15–19 December 2008; pp. 413–422.
49. Hariri, S.; Kind, M.C.; Brunner, R.J. Extended isolation forest. IEEE Trans. Knowl. Data Eng. 2019, 33, 1479–1489. [CrossRef]
50. Staerman, G.; Mozharovskyi, P.; Clémençon, S.; d’Alché Buc, F. Functional isolation forest. In Proceedings of the Asian Conference

on Machine Learning, PMLR, Nagoya, Japan, 17–19 November 2019; pp. 332–347.
51. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015. Available online: tensorflow.org (accessed on 17 February 2021).
52. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.

Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
53. Goldstein, M.; Dengel, A. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. In KI-2012:

Poster and Demo Track; Citeseer: Princeton, NJ, USA, 2012; pp. 59–63.
54. Kind, A.; Stoecklin, M.P.; Dimitropoulos, X. Histogram-based traffic anomaly detection. IEEE Trans. Netw. Serv. Manag. 2009,

6, 110–121. [CrossRef]
55. Bansod, S.D.; Nandedkar, A.V. Crowd anomaly detection and localization using histogram of magnitude and momentum. Vis.

Comput. 2020, 36, 609–620. [CrossRef]
56. Xie, M.; Hu, J.; Tian, B. Histogram-based online anomaly detection in hierarchical wireless sensor networks. In Proceedings of

the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, Liverpool, UK,
25–27 June 2012; pp. 751–759.

57. Goldberg, D.E.; Scheiner, S.M. ANOVA and ANCOVA: Field competition experiments. Des. Anal. Ecol. Exp. 2001, 2, 69–93.
58. Rutherford, A. ANOVA and ANCOVA: A GLM Approach; John Wiley & Sons: Hoboken, NJ, USA, 2011.
59. Abdi, H.; Williams, L.J. Newman-Keuls test and Tukey test. In Encyclopedia of Research Design; Sage: Thousand Oaks, CA, USA,

2010; pp. 1–11.
60. Alqurashi, S.; Shirazi, H.; Ray, I. On the Performance of Isolation Forest and Multi Layer Perceptron for Anomaly Detection in

Industrial Control Systems Networks. In Proceedings of the 2021 8th International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), Gandia, Spain, 6–9 December 2021; pp. 1–6.

61. Unlu, H. Efficient neural network deployment for microcontroller. arXiv 2020, arXiv:2007.01348.
62. XLA: Optimizing Compiler for Machine Learning. Available online: https://www.tensorflow.org/xla (accessed on 3 March 2022).
63. NNCG: Neural Network Code Generator. Available online: https://github.com/iml130/nncg (accessed on 3 March 2022).
64. Urbann, O.; Camphausen, S.; Moos, A.; Schwarz, I.; Kerner, S.; Otten, M. AC Code Generator for Fast Inference and Simple

Deployment of Convolutional Neural Networks on Resource Constrained Systems. In Proceedings of the 2020 IEEE International
IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 9–12 September 2020; pp. 1–7.

65. Aggarwal, C.C.; Data Mining: The Textbook; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1.
66. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
67. Kumar, V.; Minz, S. Feature selection: A literature review. SmartCR 2014, 4, 211–229. [CrossRef]

http://dx.doi.org/10.1162/089976601750264965
http://www.ncbi.nlm.nih.gov/pubmed/11440593
http://dx.doi.org/10.1016/j.neucom.2015.10.097
http://dx.doi.org/10.1109/LSP.2018.2889273
http://dx.doi.org/10.1007/s13042-011-0030-3
http://dx.doi.org/10.1109/TKDE.2019.2947676
tensorflow.org
http://dx.doi.org/10.1109/TNSM.2009.090604
http://dx.doi.org/10.1007/s00371-019-01647-0
https://www.tensorflow.org/xla
https://github.com/iml130/nncg
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.6029/smartcr.2014.03.007

	Introduction
	Contributions
	Outline of the Paper

	Related Work
	Experiment Setup
	Description of Control Setup
	OpenPLC
	Human Machine Interface (HMI)

	Proposed Method
	Data Collection and Preprocessing
	Anomalous Scenarios
	Test Cases

	OCSVM-Based Detection Approach
	OCNN-Based Detection Approach
	Isolation Forest-Based Detection Approach

	Results and Discussions
	Performance Metrics
	Performance Evaluation
	Performance of OCSVM
	Performance of OCNN
	Performance of Isolation Forest

	Statistical Hypothesis Test
	Analysis of Variance Test (ANOVA)
	Tukey's Range Test

	Summary of Results
	Practical Considerations
	Limitations

	Conclusions
	References

