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Abstract: Decisional processes are at the basis of most businesses in several application domains.
However, they are often not fully transparent and can be affected by human or algorithmic biases
that may lead to systematically incorrect or unfair outcomes. In this work, we propose an approach
for unveiling biases in decisional processes, which leverages association rule mining for systematic
hypothesis generation and regression analysis for model selection and recommendation extraction.
In particular, we use rule mining to elicit candidate hypotheses of bias from the observational data of
the process. From these hypotheses, we build regression models to determine the impact of variables
on the process outcome. We show how the coefficient of the (selected) model can be used to extract
recommendation, upon which the decision maker can operate. We evaluated our approach using
both synthetic and real-life datasets in the context of discrimination discovery. The results show that
our approach provides more reliable evidence compared to the one obtained using rule mining alone,
and how the obtained recommendations can be used to guide analysts in the investigation of biases
affecting the decisional process at hand.
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1. Introduction

Decisional processes undertaken by humans are at the core of most organizations, from
policy setting to IT and IT-security operations. These processes rely on cognitive resources
(information, conceptual models, etc.) to help decision-makers in making appropriate
decisions leading to meaningful courses of action. A prime example in the security domain
is the operation of a security operation center, where technology (e.g., an SIEM—Security
Information and Event Management system) supplies information to human operators who
have to decide whether a specific event must be investigated [1]. The high complexity and
repetitiveness of the information in input to these processes is known to lead to systematic
biases in the analyst’s decision-making process [2]. How to manage these shortcomings
is still an open organizational issue [3], however, the identification of the sources of these
biases is a first crucial step in that direction [1]. These issues are not unique to security
decisions, and extend to other application domains, such as decisions for hiring or on
loans requests, which have been shown to suffer from systematic, oftentimes implicit or
unknown biases [4,5].

The common underlying thread is that any process relying on human judgment
must be monitored to uncover unknown and implicit biases and that can only happen by
systematically reviewing decisions through objective analyses that ‘let the data speak’.

Uncovering biases from observational data is a broad and still open problem that
requires a thorough exploratory analysis and understanding of the data, as well as rigorous
estimations of effect sizes. The literature generally considers association rule mining for the
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former [6], while regression models are often used to evaluate effect sizes and rigorously
evaluate evidence in the data [7]. However, when taken individually, these techniques are
affected by intrinsic drawbacks. The outcome of association rule mining typically consists
of several thousands of rules that cannot be easily operationalized. While a number of
approaches have been proposed to prune the rule set, for instance by removing redundant
rules [8] or assessing rule statistical significance [9], there is little or no support for analysts
in delving deeper into the obtained outcome. Furthermore, different approaches typically
lead to different outcomes, and there are no clear guidelines on how to determine the
method and related parameters that best suit the data at hand, which require a deep under-
standing of the underlying statistical principles by the user. On the other hand, regression
models are of little use without clearly defined hypotheses and a clear understanding of
the data generation process.

In this work, we propose a novel methodology for uncovering systematic biases
in data generating processes that combines the benefits of both worlds by leveraging
principles from both association rule mining and regression analysis. We use association
rule mining to extract the candidate hypotheses of biases from an exploration of data.
These hypotheses are used to build regression models which provide us with statistical
evidence for the presence/absence of biases in the decisional process, and effectively act as
a cream-skimming mechanism to filter out hypotheses that are equivalent or that do not
add significant information to uncover the data generation mechanism. This evidence can
then be used by an analyst to take action and tackle the decision bias at the source.

We demonstrate our methodology in the context of discrimination detection to uncover
the systematic use of sensitive data. In particular, we study the ability of the methodology to
determine whether decisional processes are affected by biases that lead to unfair treatment
because of personal characteristics or membership to certain (protected) societal groups.
Nonetheless, our methodology is general and can be applied to the analysis of other
decisional processes, e.g., for the security analysis of network traffic to uncover patterns
of compromise. To evaluate the proposed methodology, we perform a set of experiments
with both synthetic and real-world datasets to, respectively, validate our approach and
showcase the methodology against real decision process outcomes.

This work extends our previous work [10], which only provides a high-level overview
of the approach along with a proof-of-concept on a synthetic dataset. In particular, we
refined the approach and extended the experimental evaluation to real-world datasets. The
main contributions of this work can be summarized as follows:

• We identify general desiderata for a bias detection technique targeted at addressing
sub-groups analysis;

• We propose a data-agnostic, evidence-based approach to identify well-grounded hy-
potheses of bias in any decisional process which aids policy makers identify potentially
biased and systematic decisions affecting a group or sub-group(s) of entities of interest
(e.g., sensitive subjects);

• We perform a set of experiments on synthetic data and showcase the application of
our method in the domain of discrimination detection by employing two real-world
datasets used in previous research on discrimination detection;

• We show that the descriptive statistics (mean, 95% confidence intervals) of the effects
of interest returned by our approach can be used to further guide the policy maker
in pertaining follow-up regulatory actions.

This paper is organized as follows. The next section provides background on asso-
ciation rule mining and regression analysis. Section 3 introduces our methodology and
Section 4 presents its experimental evaluation. Section 5 provides a discussion of our
method and results. Finally, Section 6 discusses related work and Section 7 provides
conclusive remarks.
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2. Background

We model a decision-making process as a set of records comprising a number of
attributes (hereafter called variables or features) describing a given subject (e.g., a person
applying for a loan) and the outcome of the process, i.e., the decision made for the subject.
Intuitively, each record represents one observation of the process along with the data upon
which it operated (i.e., the variables) and its outcome.

Table 1 provides a fictional example of a decision-making process of a financial institute
aiming to determine whether a given applicant should be classified as a high-risk individual,
i.e., they are likely unable to refund a loan. Each record corresponds to a single loan request
where SubjID provides the ID of the applicant and Employed, Income, Gender, Ethnic
Group are variables characterizing the applicant. HighRisk is the binary variable describing
the outcome of the process (1 encoding a ‘high-risk’ evaluation for that subject).

Table 1. Example decisional process of a financial institute.

Outcome Variables

SubjIDSubjIDSubjID High RiskHigh RiskHigh Risk EmployedEmployedEmployed IncomeIncomeIncome GenderGenderGender Ethnic GroupEthnic GroupEthnic Group

1 1 N 2000 M Black
2 0 Y 10,000 F White
...

...
...

...
...

...
100 1 N 5000 M Asian

Decisional processes are often affected by human or algorithmic bias. In the example
above, the data could reveal to an observer whether being currently employed is a relevant
criterion for the bank’s decision-making process. Similarly, it could reveal how the odds
of being assigned to a risk category change for every additional dollar of income. Whereas
these are relations that one could reasonably expect to find in any decision process of this
type, other complex dynamics can have a ‘hidden’ impact on the decision. For example,
Ethnic Group may have an impact, albeit perhaps more so below certain Income levels. A
recent example of such potentially systematic biases can be found in the Netherlands;
in January 2021, the national Dutch government resigned following a scandal involving
unfair accusations against Dutch residents related to child benefit support. These accu-
sations turned out to disproportionately target residents with dual nationalities and of
specific ethnic origins requesting financial support for childcare from the Dutch govern-
ment (https://www.theguardian.com/world/2021/jan/15/dutch-government-resigns-
over-child-benefits-scandal, Last accessed 16 March 2022). Similarly, Gender or belief-
related biases can interact with other variables, such as Ethnic Group or social status, to
affect a decision.

To detect biases in decisional processes, one has to quantify to what extent the use
of variables (e.g., Gender, Ethnic Group) has influenced the process outcome. A main
challenge lies in the fact that the decisional process is often unknown. We only observe the
output of a black-box process. Therefore, detecting biases in decisional processes requires
reconstructing the decisional process from observational data and determining which
variables were most likely used for decision making. Operationally, the problem can be
formulated as deriving possible correlations between variables and the process outcome (i.e.,
to indicate the fact that individuals with certain attributes have higher chances of obtaining
a certain outcome than individuals without those attributes).

We argue that any approach designed to tackle this challenge should meet a number
of desiderata, as reported in Table 2.

The last three desiderata concern the capability of the approach to enable the under-
standing of how features and their values impact the outcome of the decisional process.

Two classes of techniques are widely used for the exploration of observational data:
(i) approaches that use statistical tools, in particular regression analysis, to determine which
variables are more likely able to explain the process outcome and (ii) approaches based

https://www.theguardian.com/world/2021/jan/15/dutch-government-resigns-over-child-benefits-scandal
https://www.theguardian.com/world/2021/jan/15/dutch-government-resigns-over-child-benefits-scandal
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on knowledge discovery, such as association rule mining, to measure possible differences
in the proportions of positive/negative decisions on different groups of observations. We
then introduce the basic concepts underlying these two lines of research and discuss their
shortcomings with respect to the desiderata in Table 2.

Table 2. Desiderata for bias detection and investigation.

Desideratum Description and Motivations

Data agnostic The hypothesis generation should be agnostic of the data-generation process, i.e., the (often un-
known) composition of decisional processes leading to a potentially biased outcome. Ideally, an
approach to uncover these latent biases should be able to determine a set of hypotheses without
requiring a priori knowledge of the composition of the underlying data-generation processes; in-
deed, in most contexts, little or no knowledge on how the decisions are taken is available, or the
decisional environment is so complex that it is impossible to know, a priori, whether the decisions
in outcome will be affected by biases (latent or explicitly manifest) in the process.

No parameter tuning The solution should not require the tuning of parameters to avoid guess-work during the setup
phase, and improve the stability and interpretability of the evaluation it generates, and operate.

Feature level and
Feature value level

Biases can be analyzed at different levels of granularity. Capturing biases at a feature level would
allow determining which (set of) variable(s) has an impact on the outcome, i.e., whether there
is a significant correlation between the type of characteristics of an individual and the outcome
variable. In certain domains such as in discrimination discovery, an analyst might require a more
fine-grained analysis able to identify whether individuals with certain characteristics have been
treated differently. To this end, it is desirable that the outcome of the analysis highlights possible
correlations between feature values and the outcome variable.

Change impact The solution should enable the analysis of the impact of changing the value of one (or more)
feature(s) on the value of the outcome, allowing the user to assess both the direction (i.e., positive
or negative) and the magnitude of this impact.

2.1. Association Rule Mining

The goal of association rule mining is to find correlations between variables [6]. When
applied to decisional processes, association rule mining aims to derive rules describing the
process from observational data.

A decisional process D can be represented as a set of observations, each describing a
process instance for a given subject. Given a set of variables V = {Var1, . . . , Varn}, each repre-
senting a characteristic of the subject, an observation t is a tuple (Var1 = v1, . . . , Varn = vn),
where vi ∈ dom(Vari) is the value of variable Vari in t. Every pair Vari = vi is called item,
and a set of items itemset.

An association rule r is an implication of the form r : X → Y, where X and Y are two
itemsets, respectively, called antecedent and consequent of the rule. Intuitively, an association
rule indicates that if X occurs in a record, then Y will also likely occur in that record. In
this work, we consider class association rules [11], i.e., association rules whose consequent
consists of a single class item. For the sake of simplicity, hereafter we use the term ‘rule’ to
refer to a class association rule.

To assess the relevance of the mined rules, in this work, we consider two well-known
and largely adopted metrics [12]: support, which represents the percentage of records in
the dataset covered by a rule, and confidence, which represents the percentage of records
covered by the rule among those covered by its antecedent. Formally, the support and
confidence of an association rule r : X → Y with respect to a dataset D are defined as

supp(r) =
|{t ∈ D | X ∪Y ⊆ t}|

|D| (1)
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conf (r) =
supp(r)
supp(X)

(2)

It is worth noting that our approach is not constrained to the use of these metrics and
other metrics could be employed to assess the relevance of the mined rules.

2.2. Regression Analysis

Regression analysis is a tool to evaluate the statistical association between at least
one ‘explanatory variable’ and an ‘outcome variable’. A regression model linking the
explanatory variables to the outcome variable is generally formulated on the basis of
hypotheses that the analyst makes about the underlying relation. A typical regression
model assumes the following general form:

g(E(Y)) = c + β1Var1 + β2Var2 + · · ·+ βnVarn + ε (3)

where g(·) is the link function, Y is the outcome variable with mean E(Y), c is the intercept,
and β1, . . . , βn are the regression coefficients of the n explanatory variables Var1, . . . , Varn,
and ε is the error term. If the analyst believes that there are interactions between explana-
tory variables (i.e., they have a joint effect on the dependent variable), she can capture
these interactions by considering the product of the explanatory variables, denoted by
Vari ·Varj, as an additional explanatory variable. Equation (3) is called a regression equation;
the estimation of the coefficients is the key aspect, and which link function one adopts
depends on the nature of the data (e.g., a logit or a probit function for a binary outcome).

A model formulation (also called parametrization) is generally directly derived from
the formulated hypotheses; however, in exploratory settings (where those hypotheses do
not yet exist [7]) the model definition can generally be automated by employing techniques
based on the analysis of variance (ANOVA). Again, the choice of the test to compare models
depends on the type of model considered; logit models, for example, may be compared
using likelihood ratio tests. to select the explanatory variables that have the highest power
in ‘explaining’ the data. Given two models of the same power, the model with the fewer
explanatory variables is preferred (principle of ‘minimality’). Regardless of the adopted
approach to parameterize a model, it is important to verify that the chosen explanatory
variables are not highly correlated, to avoid model multicollinearity that may bias the
coefficient estimation. This check can be performed by calculating a correlation matrix
across the variables, or a variance inflation factor (VIF) for a given model.

2.3. Limitations of Association Rule Mining and Regression Analysis

Uncovering biases from observational data requires a thorough exploratory analysis
of the data, as well as rigorous estimations of effect sizes. Whereas the literature generally
considers association rule mining for the former, regression models are often used to evalu-
ate effect sizes and rigorously evaluate evidence in the data. However, both methods have
intrinsic shortcomings in our application. We then discuss these shortcomings, which are
summarized in Table 3.

Table 3. Comparison of association rule mining and regression analysis with respect to the identified
desiderata for bias detection in Table 2, where  means “support” and # “no support”.

Data-
Agnostic

No Param.
Tuning

Feature
Level

Feature
Value Level

Change
Impact

Assoc. Rule Mining  # #  #
Regression Analysis #     

Association Rule Mining. First, rule mining requires an analyst to carefully tune the
threshold parameters for the used relevance metrics without providing a rigorous way to
‘prioritize’ rules for a certain outcome. While selecting low threshold values can lead to
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a large number of rules, most of which are not interesting and/or not reliable, excessively
high values can easily lead to missing relevant correlations. Rule mining also lacks support
for the statistical validation of the associations detected among the variables. The use of
metrics such as support and confidence does not guarantee preventing the generation of
false discoveries, such as rules showing dependencies likely due by chance, or rules where the
antecedent contains items that are actually independent of the consequent [13]. Moreover,
association rule mining only allows analysts to explore relations among single feature values
and class values (feature value level analysis), while feature level analysis is not supported.

Regression analysis. Compared to association rule mining, regression analysis pro-
vides a more robust approach to statistical validation. The output provided by regression
techniques supports both feature level and feature value level analysis. Moreover, they do
not require the tuning of parameters. However, regression (parametric) approaches require
some type of hypothesis formulation to build a model to regress on. This is desirable
in general as it attaches semantic meaning to the statistical evidence found in the data.
However, for data exploration tasks such as the one at hand, regression approaches are
very limited in nature. Forward or backward model selection procedures [7] can be applied
to identify the ‘best’ model explaining the data, but the number of models to be compared
explodes exponentially as the number of allowed variable interactions increases. More
importantly, there is no ‘guarantee’ that the resulting selected ‘best’ model has any useful
interpretation that can be used to take action and tackle the decision bias at the source.

3. A New Approach for Bias Detection Combining Rule Mining and
Regression Analysis

To detect and investigate systematic biases in decisional processes, we propose to
combine principles of rule mining with regression analysis. We note that a data sanitization
process should start before the application of our methodology; for example, to identify
highly correlated variables in a dataset that may create multicollinearity problems biasing
estimated model coefficients. When two or more highly correlated variables are present,
only one should be selected for inclusion in the analysis.

Our methodology is summarized in Figure 1. First, association rule mining is em-
ployed to generate the set of relevant rules (1). For our purpose, we treat each mined
rule as a candidate hypothesis for bias. In step (2), we generate regression models by
considering the variables included in each selected rule and regress over them to generate
the model estimates of the considered outcome variable. In step (3), a model comparison is
performed to eliminate ‘redundant’ models that do not add relatively more information to
the prediction than a simpler model does. This leaves us with only ‘winning’ models that,
among all evaluated candidates, provide the more convincing evidence for some effect,
if any. Finally, in step (4), we extract the coefficients of these selected models to identify
(sub)populations of interest for which there is statistical evidence of bias in the decision
making. Then, we provide a detailed breakdown of each step of the methodology.

Systematic
Hypothesis
Generation

 
Compute the set of
relevant rules

Model 
Derivation

 
 
Derive econometrics
models from rules 

Model 
Comparison &

Selection 
 
Select the most
explanatory models 

Recommendation
extraction 

 
Extract significative
regressors and their
coefficients from models 

Dataset

Figure 1. Depiction of the phases of the proposed methodology.

3.1. Systematic Hypothesis Generation

Given a decisional process D, we apply class association rule mining to derive the set
of relevant rules Rrel . To measure the relevance of rules, we use support and confidence, as
defined in Equations (1) and (2). Specifically, we say that a rule is relevant if its support and
confidence levels are above some given thresholds ρsupp and ρcon f , respectively. Formally,
Rrel = {ri | supp(ri) ≥ ρsupp ∧ conf (ri) ≥ ρcon f }. Each rule in Rrel is considered a candidate
hypothesis of biases in the decisional process.



J. Cybersecur. Priv. 2022, 2 197

Example 1. Below, we show some example (relevant) rules that can be extracted by the application
of association rule mining to the decisional process of Table 1:

r1 : Income = 5000, EthnicGroup = White→ HighRisk = 0
r2 : Gender = M→ HighRisk = 1
r3 : Gender = M, Employed = N → HighRisk = 1
r4 : Income = 2000, EthnicGroup = White→ HighRisk = 0

An analyst should investigate all the rules in Rrel to check whether they correspond
to actual biases. However, as discussed earlier, association rule mining provides very little
support for this. For instance, Rrel might contain rules that are not ‘independent’ from each
other. In particular, many rules can be “subrules” of others, i.e., they extend other rules
with additional itemsets as in the case of r2 and r3 above. Formally, a rule ri : Xi → Y is
a subrule of a rule rj : Xj → Y if Xi ⊂ Xj. Thus, the analyst might not know whether the
(possible) bias concerns the population characterized by a given rule (e.g., employed males)
or whether it affects a larger population as characterized by a subrule (e.g., all males).

To find more reliable evidence of biases, in this work, we employ regression analysis
to determine the statistical validity of the evidence found.

3.2. Model Derivation

To determine whether the candidate hypotheses extracted using rule mining corre-
sponds to biases in the decisional process, we derive regression models from the set of
relevant rules Rrel . Specifically, for each rule r : Var1 = v1, . . . , VarN = vN → Class = Y in
Rrel , we consider the set of explanatory variables occurring in the antecedent of the rule
Vi = {Var1, . . . , VarN} ⊆ V and build a corresponding regression model Mi of the form of:

Mi : Class = c +
N

∑
i=1

βi Vari + ∑
1≤i<j≤N

βij Vari ·Varj

+ ∑
1≤i<j<k≤N

βijk Vari ·Varj ·Vark + . . . + β1...N Var1 · . . . ·VarN (4)

Example 2. From the set of rules in Example 1, we can extract three models:

M1 : HighRisk = c1 + β1,1 Income+ β1,2 EthnicGroup+ β1,3 Income · EthnicGroup
M2 : HighRisk = c2 + β2,1 Gender

M3 : HighRisk = c3 + β3,1 Gender+ β3,2 Employed+ β3,3 Gender · Employed

Note that some rules collapse in a single model as they contain exactly the same set of variables.
In our example, this is the case for rules r1 and r4, which are both represented by model M1.

To efficiently compare the ‘credibility’ of the obtained models (next step), we organize
the derived models in a hierarchical structure. To this end, we introduce a partial order
relation over regression models which resembles the subrule relation. Given two regression
models Mi and Mj defined over the sets of explanatory variables Vi and Vj, respectively,
we say that Mj is nested in Mi, denoted as Mj ⊂ Mi, if and only if Vi ⊂ Vj. Whereas in the
econometrics literature the term nested usually refers to the more general model (i.e., Mj is
nested in Mi if Vj ⊂ Vi,), here we adopt the opposite definition to remain consistent with
the definition of subrule provided in Section 3.1. Moreover, we say that Mj is directly nested
in Mi, denoted as Mj < Mi, if and only if Mj ⊂ Mi and there does not exist a model Mk
such that Mk ⊂ Mi and Mj ⊂ Mk. Based on the direct nesting relation, we construct a
forest of models whereby the model at the root of each tree is the simplest model (i.e., with
the smallest number of variables on the right hand side), and each child is a direct nested
model of its parent(s).
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Example 3. The three models in Example 2 along with other hypothetical regression models can
be represented in a hierarchy, as shown Figure 2. The hierarchy has two root nodes, i.e., M5 and M2,
each with two children (M1 and M4 for M5, M3 and M4 for M2) among which one is in common
(i.e., M4). M4 is further extended by M6, which is also a child of M3.

Version March 15, 2022 submitted to Journal Not Specified 7 of 26

M5: Income

M4: Gender, IncomeM1: Income, Ethnic Group

M6: Gender, Income, Employed

M2: Gender

M3: Gender, Employed

Figure 2. Example of a hierarchy of models
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3.3. Model Comparison and Selection

Once the hierarchical structure is in place, we apply a model selection procedure
by comparing each parent with all its child models. Our pruning strategy consists of
checking whether the addition of variables to a child model adds information that leads
to a better description of the data, or whether the simpler model is preferable (in that it
describes the data indistinguishably well with respect to the more complex model). This is
operationalized through the ANOVA test. Alternatives to ANOVA for model comparison
exist, such as AIC, BIC, or maximum likelihood; in this work, we adopt ANOVA for model
comparison, but any other method could be used. The ANOVA test is a widely used
statistical test that allows one to compare the fits of two regression models, one nested
in the other, by comparing the (sum of squares of the) residuals (i.e., the errors) of the
respective model predictions [14].

If the output of the ANOVA test indicates that the more complex model provides a
significantly better explanation of the variance in the prediction, the child model is marked
as preferable compared to the more general, simpler parent model. Otherwise, the parent
model is marked as preferable. Formally, given a setM of regression models to test, we
aim to derive the setMsel = {Mi ∈ M | @Mj ∈ M s.t. Mj < Mi ∧ANOVA(Mi, Mj) ≤ ρ},
where ρ represents a threshold to determine whether ANOVA(Mi, Mj) shows a statistically
significant difference in the sum of the squared residuals between the two models.

Operationally speaking, the setMsel was derived using the procedure shown in Algorithm 1.

Algorithm 1: Model Selection.
Input: Model hierarchy (M,<) and significance threshold ρ
Output:Msel

1 Msel ←− ∅ ;
2 Mp ←− {Mi ∈ M | @ Mj s.t. Mj ⊂ Mi } ;
3 whileMp 6= ∅ do
4 Mi ←−Mp.pop();
5 Mwc ←− {Mj | Mj < Mi ∧ ANOVA(Mi, Mj) ≤ ρ} ;
6 ifMwc = ∅ then
7 Msel ←−Msel ∪ {Mi};
8 else
9 Mp ←−Mp ∪Mwc;

10 returnMsel

This procedure takes as input (i) a model hierarchy (M,<), whereM is the set of
regression models and < is the directly nested relation onM, and (ii) a threshold ρ deter-
mining whether the result of the ANOVA test is significant, and iteratively checks whether
nested models provide more significant explanation of biases. At the beginning, the output
setMsel is initialized to the empty set, while the set of regression models to be analyzed
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is stored in a stack,Mp, which is initialized to the root models (i.e., the models that are
not nested in any other model) (lines 1–2).

The models in Mp are iteratively extracted from Mp and compared against their
direct nested models using the ANOVA test (lines 4–5). Every child that is preferable com-
pared to its parent(s) based on the ANOVA test is added to the set of winner childrenMwc
(line 5). If the setMwc for a given parent Mi is empty, i.e., there are no better performing
children models than Mi according to the ANOVA test, then Mi is added to the output set
Msel (lines 6–7). Otherwise, the models inMwc are added toMp in order to be analyzed
in the next iterations of the algorithm, i.e., they are compared against their children (line 9).
The procedure terminates whenMp is empty.

Example 4. Consider the model hierarchy in Figure 2. By applying our model selection algorithm,
at the beginning, we retrieve the two parent nodes, i.e., M5 and M2. Supposing that the ANOVA
test indicates that M1, M3 are the only children scoring better than M5, M2, respectively, M1 and
M3 are added to the stackMp. Since M1 does not have any other child, it is added toMsel . Instead,
M3 has to be compared against M6. If the ANOVA test determines that M6 is better than M3, M6
is added toMp and, since it has no children, in the next iteration, it is added toMsel . At this point
the procedure terminates, since there are no more models to compare, returningMsel = {M1, M6}.

It is worth noting that the proposed pruning procedure can theoretically lead to miss
some interesting models. As the comparison only accounts for directly nested models, it is
possible that models that score better than their ancestors but not than their direct parents
are discarded. For example, since M4 does not score better than M5, it is not selected for
the next iterations and, therefore, M6 would have not been considered for the ANOVA
test. However, it is reasonable to expect such loss to be limited. If a child model includes a
variable providing a strong explanation of the observed effects, one can reasonably expect
such variable(s) to have been picked up by other rules (step 1) and therefore to occur in
other regression models. This leads to the otherwise discarded model being tested against
different parents. This is the case, in our example, for M6. While the procedure would have
discarded M6 if it had only M4 as a parent, this model is still considered in the comparison
against M3 and, hence, it gets a chance to be selected.

3.4. Recommendation Extraction

The selected regression models Msel obtained from step 3 provide the best ‘ex-
planation’ of the decisional process. Each model comprises a set of coefficients
Ci = {βi,1, βi,2, . . . , βi,k} together with an output of a statistical test determining whether
each element of Ci is significantly different from zero (i.e., whether the associated variable
in Vi is likely to have a significant effect on the outcome variable). The minimum level of
statistical significance generally considered is 5% (p ≤ 0.05).

By inspecting each model Mi ∈ Msel , in this phase, we extract regressors and asso-
ciated coefficients 〈βi,j, Vari,j = vi,j〉 with pi,j ≤ 0.05 for which there is enough evidence
to consider possible effects on the outcome variable. Each extracted pair 〈βi,j, Vari,j = vi,j〉
conveys information on the direction and size of the identified bias towards the group
Vari,j = vi,j, represented, respectively, by the sign and magnitude of the coefficient βi,j. The
interpretation of this coefficient, in the case of discrete (as opposed to continuous) variables,
is to be interpreted as the change in the outcome variable for observations that belong to
the relevant category relative to observations in the baseline category (cf. Appendix A for
a more detailed discussion).

We stress that ‘hand-picking’ variables with significant p-values is not a meaningful
approach for model selection and interpretation. Differently, the goal of the proposed
approach is to identify variables (possibly appearing across several selected models) for
which there exists some evidence of correlation with the process outcome, and that may
require additional, more rigorous investigation by an analyst or policy maker. To evaluate
the strength of the emerging evidence, an analyst can, for example, compare how the
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associated coefficients for a variable vary across models (see analysis reported in Section 4.2
for an example), or evaluate cross-correlation effects with other variables in subsequent
analyses. The output of the proposed approach serves, therefore, as an indication to guide
further investigations of the data and the respective generative processes, and should not
be considered as a means to automatically generate robust explanations for the data.

4. Experiments

This section discusses an application of our methodology to the problem of dis-
crimination detection in decisional processes the Python implementation used for these
experiments can be found at https://gitlab.tue.nl/lgenga/association-rule-mining-meets-
regression-analysis (Last access 16 March 2022). We performed experiments with both
synthetic datasets, to demonstrate the ability of our approach to detect situations in which
discrimination occurred, and with real-life datasets, to evaluate the applicability of our
approach to real-life scenarios. In the experiments, we assume that the policy maker knows
the groups of protected subjects for which possible biases should be tested. Therefore, we
only consider rules regarding these groups as initial input. This assumption is reasonable
in the context of discrimination detection, where the protected groups are known a priori.
Nonetheless, our approach is general and does not require a priori domain knowledge.

4.1. Approach Validation
4.1.1. Dataset and Settings

For the validation of our approach, we generated synthetic datasets to contain a
known ‘amount’ of evidence of discrimination. To this end, we defined a simple decisional
process regarding the hiring of candidates on the basis of their personal characteristics.
Table 4 shows the variables characterizing the hiring process along with their domain. We
consider the variable Age as a ‘discriminatory variable’, whereas the others are considered
‘context variables’. We generate the synthetic data in two steps. First, we created the
discriminated groups as groups of subjects sharing the same value of Age as well as a
(randomly chosen) subset of context values; the values of the other context variables were
randomly assigned from the respective domains. Discriminated subjects have a probability
of 80% of being assigned to class “N”. Second, we generated all ‘non-discriminated’ subjects
simply by randomly selecting a value for each context variable and for the Age variable.
Non-discriminated subjects have a 50% probability of being assigned to either the “N” or
“Y” class.

Table 4. Variables used for the generation of the synthetic dataset along with their domain.

Variables Variable Domain

Education Doctorate, Master, Bachelor, HighSchool
Speak Language Y, N
Previous Role Employee, Manager, Self-Employed, Unemployed
Country USA, Europe, SA, China, India
Age 25–50, 50+
Class Y, N

In total, we generated 12 datasets by varying the number of discriminated groups (i.e.,
1, 2 and 3) and the complexity of the dataset to test our methodology in different situations.
The complexity of a dataset is defined over two dimensions: (1) presence/absence of noise,
intended as subjects that do not belong to any of the generated context groups but in which
one or more context variables assume a value used in one of the discriminated groups; and
(2) the presence/absence of overlapping, meaning that subjects in two or more discriminated
groups share at least a context variable and its value. Combining these two dimensions,
we obtain four types of datasets: (i) without noise and overlapping, which represents the
simplest situation; (ii) without noise but with overlapping; (iii) with noise but without over-
lapping; (iv) with noise and overlapping, which represents the most difficult situation to

https://gitlab.tue.nl/lgenga/association-rule-mining-meets-regression-analysis
https://gitlab.tue.nl/lgenga/association-rule-mining-meets-regression-analysis
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deal with, since spurious correlations can easily arise (note that the presence of overlapping
only has an impact when more than one discriminated group exists). For every dataset,
we generated a total of 10,000 subjects; among them, every discriminated group covered
25% of the dataset. We chose 25% to strike a balance between absolute minority (<50%)
and small groups. For every dataset, we tested several configurations of support, which
varied between 1% and 10% with a step of 1%, and confidence, which varied between 50%
and 95% with a step of 5%. Note that when generating the regression models, we did not
consider potential interactions among the variables in the experiments; namely, we used
only factors of the first order when computing the regression models. While this choice
can lead to lose some interesting correlation, it provides us with a good approximation of
the relations characterizing the decisional process, and prevents the generation of noisy
recommendations. Directionality is given by the sign of the corresponding coefficients.

4.1.2. Evaluation Metrics

To validate the approach, we compare the recommendations returned by our method-
ology and those returned by rule mining alone against the ‘ground truth’ used to generate
the synthetic datasets. More precisely, we compute the fraction of correct models returned
by our methodology as the ratio of the number of models involving significant regressors
that indicate (at least some) true discriminatory factors among the variables over the total
number of models returned by the approach. To compare this outcome with the one ob-
tained using rule mining, we compute the ratio of the number of rules indicating (at least
some) true discriminatory factors over the total number of mined rules.

To this end, we first derive for each model the set of significant regressors along with
their coefficients. Then, we compare each regressor with the set of variables describing the
discriminated groups. This comparison can return five different outcomes: (a) Exact, in-
dicating that the set of significant regressors of the model involve all and only the variables
characterizing one of the discriminated groups; (b) Too general, indicating that the set of
explanatory variables in the regressors is a strict subset of the set of variables characteriz-
ing one of the discriminated groups; (c) Too specific, indicating that the set of explanatory
variables in a regressor is a strict superset of the set of variables characterizing one of the
discriminated groups; (d) Partial, indicating that the set of explanatory variables in the
regressor overlaps with the set of variables characterizing one of the discriminated groups
(but it is not a superset); (e) Off target, indicating that there are no significant regressors
involving any variable characterizing a discriminated group. The output of rule mining
is classified in the same way, by comparing the set of variables reported in a rule against
the set of variables describing the discriminated groups. For a fair comparison, we only
considered the variables involved in the antecedent of the rules; indeed, we are interested
in determining whether a group shows signs of discrimination, rather than specifying
whether it is a positive or negative discrimination.

We only consider exact and too general recommendations to be useful recommendations,
since they include the true discriminated group, and therefore provide the analyst with
a first, non-misleading indication of possible discriminatory relations. In contrast, the other
categories of output are undesirable since, even if some do return part of the actual dis-
criminatory group, the whole discriminated group cannot be identified as it is not included
in the recommendation. Therefore, we compute the fraction of useful recommendations
as the number of Exact and Too general models (rules) over all returned models (rules).

In addition to comparing the returned models against the ground truth, we also
compare rule mining and regression analysis in terms of the number of output rules and
regressors, respectively. The goal is to assess the capability of our approach to reduce the
outcome complexity, thus making the analysis more accessible for a human analyst.

4.1.3. Results

Models vs. rules. Table 5 reports descriptive statistics of the results over all experi-
ment runs.
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Table 5. Min, max, mean, median, first and third quantile of the number of rules (first group of rows)
and models (second group of rows) obtained in each experiment.

Metric Min 1st Q Mean Median 3rd Q Max sd

R
ul

e
m

in
in

g

N_rules 0 0 12.87 4 13.25 139 23.74

Exact 0 0 1.01 1 2 3 1.15
Too general 0 0 1.77 0 3 7 2.38
Too specific 0 0 3.52 0 2 64 9.99
Partial 0 0 6.58 0 5 121 14.24
Off target 0 0 0.00 0 0 0 0.00

O
ur

ap
pr

oa
ch

N_models_tot 0 0 4.98 4 8 16 4.72
N_models_sel 0 0 1.05 1 2 6 1.11

Exact 0 0 0.35 0 1 5 0.65
Too general 0 0 0.53 0 1 6 1.03
Too specific 0 0 0.18 0 0 2 0.39
Partial 0 0 0.00 0 0 0 0.00
Off target 0 0 0.00 0 0 0 0.00

The first set of rows reports the statistics for association rule mining, whereas the
second set reports the statistics for our approach. We first observe that the number of
rules is significantly larger than both the number of total models (i.e., the models derived
from the set of rules) and that of selected models (i.e., the models returned in output
by our approach). Furthermore, the number of the selected models is, on average, four
times smaller than the overall number of models. The average experimental run produces
approximately 12.87 rules, with a maximum of 139. The relatively high standard deviation
(with respect to the mean) indicates that the number of rules in output can vary by large
amounts across experimental setups. In contrast, the number of total (selected) models per
experimental setup is, on average, more than two (twelve) times smaller, similarly to what
can be observed for the maximum. The low standard deviation indicates a relatively stable
output across experiments, especially for the selected models. Overall, this indicates that
the model selection procedure appears to be removing a large number of rules but says
little about the correctness of this process.

A first indication of the correctness of this process can be derived by evaluating of the
number of exact, too general, too specific, partial, and off target rules/models in output of our
method. Considering the obtained rules, we observed that association rule mining never
returns off target recommendations. Moreover, it is able to identify, on average, at least one
correct recommendation, either in terms of exact or too general recommendations. However,
comparing these numbers with the overall average number of rules returned, these recom-
mendations are likely to be hidden in a multitude of misleading recommendations. In fact,
the results show that rule mining tends to return a much higher number of undesirable
recommendations; on average, we obtain 3.52 too specific and 6.58 partial recommendations.

On the other hand, we observe that our approach returns a higher number of max exact
recommendations. This is because a regressor (matching the ground truth) can be significant
in multiple models. In general, we observe a similar distribution in the first and second quar-
tile, even though the mean and median values show in general a lower overall capability of
our approach to identify relevant groups under most circumstances (the median of Exact is
0). However, this minimal loss in detection is compensated by a large reduction in false posi-
tives to investigate. Moving to higher quartiles, we observe that our approach never returns
partial or off target results, and generates much less too specific and too general recommenda-
tions. Overall, the results suggest that our approach is able to generate a more accurate out-
put. However, this clearly depends on the number of discriminated groups, and results may
vary significantly depending on the noise and overlap introduced in the synthetic datasets.

Figure 3 shows the density of ‘useful’ recommendations provided by rules mining
and our approach, respectively, across our experimental conditions.
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(a) (b)

Figure 3. Density results for the synthetic dataset. (a) density results for models in the synthetic
dataset; and (b) density results for rules in the synthetic datasets.

Results are arranged in a matrix, where each box represents a set of experiments
with varying confidence and support levels (on the y and x axis, respectively, values are
reported as percentages); the four columns correspond to the four combinations of noise
and overlap, whereas the three rows correspond to the number of discriminated groups
in the dataset. Recall that overlap does not impact the results when a single discriminated
group is considered. The difference in the recommendations obtained for this dataset are
mostly due to randomness in the data generation process. We reported them anyway for
the sake of completeness. Within each box, each square corresponds to a combination
of support and confidence thresholds. Squares are colored on the basis of the density of
useful recommendations for the given combination of support and confidence. A darker
color indicates a higher density (and vice versa). Blue cells represent support–confidence
combinations from which no significant rules/regressors were obtained (resulting in a
denominator of zero), and white cells represent support–confidence combinations for which
no exact or too general recommendations were obtained.

We observe that, across almost all experimental setups, our approach produces a much
higher density of relevant recommendations compared to rule mining alone. This confirms
the observations made from Table 5; namely, rule mining tends to return a high number
of recommendations, in which useful recommendations are hidden among the others. Our
approach, instead, provides almost only useful recommendations in almost all performed
experiments, with the exception of the experiments involving two and three discriminated
groups with no noise and no overlap (first column of the second and third sets of experi-
ments). While this might seem counter intuitive, delving into the corresponding dataset, we
find that the over-imposed constraints for data generation turned out to produce unrealistic
relations that significantly reduce the discriminating effects of the chosen variables. For
more than one discriminated group, and in the absence of noise and overlap, the variable
values used for the discriminated groups only occur for subjects fitting the related context.
For example, in the experiments with two discriminated groups, we have discriminat-
ing context groups, “SpeakLanguage =Y” and “PreviousRole =Employee”. Because of the
generation constraints, there are no subjects assuming both these values. This creates the
rather unrealistic situation whereby the value of one variable precludes another variable to
assume some values. Our approach (correctly) detects a strong correlation among context
variables SpeakLanguage and PreviousRole. This leads to the generation of too specific
recommendations for most of the support–confidence thresholds, with some exceptions
mostly due to the randomness of data. We observe a similar though not as strong effect on
the experiments with overlap and no noise. The constraint on the noise led to obtain some
correlations between some context group values which in turn led to generate some mis-
leading recommendations. Nevertheless, the overall density values remain high. We point
out that the presence of such correlations is a by-product of the data generation constraints
and is unlikely to represent a realistic situation under real-life conditions. Therefore, we
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do not expect this behavior to affect the reliability of the recommendations provided by
the approach in real-life contexts.

It is worth noting that, while we observe performance to significantly vary for rule
mining depending on the support/confidence thresholds, our approach proved to be more
stable, keeping a constant level of density in almost all cases. This is in line with previous
observations that rule mining is sensitive to parameterization, and that choosing the correct
parameter configuration largely depends on unknown structures in the data. By contrast,
our approach performs well across the board. This effectively removes the need for fine-
tuning the support and confidence thresholds for rule selection, with regression model
selection doing the larger part of the heavy lifting required to cherry-pick relevant rules
and discarding imprecise ones.

Regressors vs. rules. The previous paragraph discussed the results obtained at the re-
gression models level. Here we focus on the obtained regressors. Table 6 shows descriptive
statistics about rules and regressors obtained for the tested datasets.

Table 6. Descriptive statistics for rules and regressors in the experiment runs with synthetic data.

Metric Min 1st Q Mean Median 3rd Q Max sd

N_rules 0 0 12.87 4 13.25 139 23.74
N_regr 0 0 2.11 2 4 6 1.93

The table shows some interesting trends. First, we observe much more variation in
the number of rules than in the number of regressors (sd = 23.74 and 1.93, respectively),
and that extreme values far away from the median are more likely to appear in the former
than in the latter distribution. This confirms that the outcome of our approach is much
more stable than the rule mining outcome. Furthermore, it is straightforward to see that,
on average, the number of regressors is significantly lower than the number of rules. This
is particularly evident from the mean value, equal to 12.87 for the rules, while the mean
number of regressors is 2.11, with a six-fold reduction. An even stronger reduction can be
observed considering the maximum values (139 for the rules, 6 for the regressors).

Figure 4 reports the relation between regressors and rules across the experiments for
each dataset. Each grid corresponds to a single experimental setting (i.e., to one combination
of support and confidence threshold); the x axis shows the number of extracted rules, while
the y axis shows the number of extracted regressors. Different symbols and colors are used
to represent the complexity of the dataset. A common trend for all datasets is that the
number of rules exceeds the number of regressors for at least one order of magnitude at low
support/confidence thresholds. Even when increasing the support/confidence thresholds,
for most of the tested configurations, the number of rules was at least twice the number
of regressors.

To visualize the order of magnitude in the difference between regressors and rules,
Figure 5 reports (on a log scale) the ratio between regressors and rules for each experimental
setting (without considering configurations where no rules were found). We observe that
the datasets involving noise are also the ones in which we observe a stronger difference
between the number of rules/regressors. In both datasets, we obtained at most the same
numbers of regressors and rules, while in most of the configurations, the number of
regressors is significantly lower (up to a three-fold reduction compared to the number of
rules). For the datasets without noise, instead, while we still obtain overall less regressors
than rules, this reduction is quite strong only for low support/confidence thresholds,
and becomes less and less evident while increasing the thresholds. For the first dataset,
the number of regressors exceeds, even though just slightly, the number of rules in few
configurations. This is consistent with the characteristics of the used datasets; indeed, the
datasets with no noise are also the ones more favorable to rule mining which, with high
support/confidence thresholds, is able to return a limited number of rules. Nevertheless,
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overall these results show that the use of regression analysis reduces up to three times the
number of generated bias candidates.
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Figure 4. Rules and regressors for each experimental setting on all datasets. Results for confidence
levels above 0.85 are removed as no rule is detected irrespective of the level of support.
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Figure 5. Fraction of obtained models per rules for all datasets: (a) no noise, no overlap; (b) no noise,
overlap; (c) noise, no overlap; (d) noise, overlap.

Summarizing, the results show that our approach is able to significantly reduce the
number of recommendations provided by rule mining without losing knowledge on the
potential bias in the data. The approach also returned consistent results across varying sup-
port and confidence thresholds, thus showing to be robust with respect to parametrization.
Interestingly, the cases where the approach showed more difficulties are the ones where the
data generation procedure created very strong and undesired correlations among variables
between which no correlation was intended. We discuss the limitations of the proposed
method, such as spurious correlations, in Section 5.
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4.2. Approach Application to Two Real-Life Use Cases

In this section, we discuss the results obtained by applying our approach to two real-
life datasets which were used in previous work on discrimination detection: the German
credit dataset [15], used, e.g., in [4,16,17], and the Crime and Communities dataset [18],
used, e.g., in [16,19]. In the following, we present results related to configurations in which
support varies between 3% and 10% with a step of 1% and confidence varies between
50% and 95% with a step of 5%. Exploring very low support values turned out to be not
feasible with the current implementation of our approach, in terms of hardware and time
constraints. Therefore, we did not test our approach for values of support equal to 1% and
2%. We argue that this choice does not significantly impact the validity of the performed
results, since it is not unreasonable to discard very infrequent associations when addressing
real-life cases. In addition, the validation of our approach on synthetic datasets has shown
that it is robust with respect to the parameterization of support.

4.2.1. Use Case on Credit Risk

Dataset and Settings. The German dataset consists of 1000 records representing the as-
sessment of credit risk (good or bad) of bank account holders [15]. The dataset encompasses
21 variables, grouped according to the following categories: personal properties (checking
account status, duration, savings status, property magnitude, type of housing), properties
related to past/current credits and requested credit (credit history, credit request purpose,
credit request amount, installment commitment, existing credits, other parties, other pay-
ment plan), properties related to the employment status (job type, employment since,
number of dependents, own telephone), and personal attributes (personal status and gen-
der, age, resident since, foreign worker). We discretized the numeric attributes as suggested
in [4]. Following [17], we considered the decisional process to be affected by discrimination
if the final decision was influenced by the fact that the holder belongs to one or more of
the following subgroups: non-single female, older than 52 years and foreign worker.

Results. Table 7 reports the descriptive statistics for the 80 experiment runs for vary-
ing levels of support ([0.03, 0.10] with steps of 0.01) and confidence ([0.5, 0.95] with steps
of 0.5). We observe that the number of rules in the output is higher but resembles the
same distribution as the number of derived regression models. Absolute values are, as
one would expect, much higher for real datasets than for the experiment with synthetic
data. The median experimental setting produces 5971.5 rules and 231.5 models. The stable
ratio of models to rules between the two settings (synthetic and real) suggests that the
pre-conditions for the two experiments are comparable. If we focus on the significant,
unique regressors, we observe a stronger reduction; indeed, thanks to model selection,
we obtain a median and a maximum of 26.5 and 32 regressors to consider (as opposed to,
respectively, 5971.5 and 77,219 rules).

Table 7. Descriptive statistics of the experiment runs for the credit dataset.

Metric Min 1st Q Mean Med. 3rd Q Max sd

#rul 54.0 2894.0 14,668.1 5971.5 19,166.5 77,219.0 20,004.6
#mod 12.0 117.25 373.1 231.5 491.25 1560.0 386.3
#regr 12.0 23.8 25.3 26.5 28.2 32 4.7

Figure 6 reports the relation between regressors and rules across experiments. We can
observe that while the results obtained using rule mining vary significantly for different
support and confidence settings, regressors turn out to be quite stable, with variations
of the order of a few dozens across all experiments. Furthermore, the number of rules
exceeds the numbers of regressors of a factor ranges from 10 to 1000, depending on the
support level.
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Figure 6. Rules and regressors for each experimental setting.

Figure 7 reports the (log) ratio between models and rules for each experimental setting.
At every level of support and confidence, the number of regressors is, on average, notably
smaller than the number of rules. The stability of the results given by our approach is
consistent with what we observed in Section 4.1. Nevertheless, the reduction is especially
strong at a low level of confidence and support. These results point out that the number of
regressors remains manageable for being analyzed by a human policy maker, whereas the
number of rules explodes. This suggests that our approach can be very effective in practice
to obtain usable and statistically significant indications of biases in the data without the
need to fine-tune the support/confidence levels in input to rule mining. The overhead
in terms of output from low support and confidence levels is limited, whereas one is not
incurred in the risk of removing potentially relevant rules.
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Figure 7. Fraction of obtained models per rule.

The results discussed to date show the capability of the approach to significantly
reduce the space of candidate hypotheses, with respect to classic association rule mining.
Exploring these hypotheses to detect the presence of actual biased relations is, at this point,
up to the human policy makers. A detailed analysis of the detected regressors would not
be possible here, for the sake of space. Nevertheless, in the following, we briefly discuss
how regressor coefficients, together with their confidence intervals, can be used to further
aid the policy maker in her analysis.

To this end, let us consider the configuration with support equal to 0.09 and confidence
equal to 0.9. Figure 8 shows the confidence intervals of the corresponding regressors related
to the three variables under investigation in our experiments, i.e., Age, Personal status
and Foreign worker. The y axis shows the coefficient values; the blue cross represents the
estimated value of the coefficient of one regressor and the blue line corresponds to its 95%
confidence interval. The light-blue without crosses lines group regressors belonging to the
same models. The number of lines per model depends on the domain of the corresponding
variable. Both Age and Personal status have four different values; therefore, here we
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have three lines for every model corresponding to the values not used for the baseline in
the regression. Foreign worker, instead, is a binary value; hence, each single line belongs
to a different model.
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Figure 8. Coefficients confidence intervals for the three features under investigation in the experiment
(support 0.09 and confidence 0.9). Variable Age can take four values: [0, 30], (30, 41], (41, 52] and
(52, 100]. The baseline value used in the regression model is (30, 41]. Variable Personal status can
take four values: male_single, f emale_div_or_dep_or_mar, male_div_or_sep and male_mar_or_wid.
The baseline value used in the regression model is f emale_div_or_dep_or_mar. Variable Foreign
worker can take two values: Y, N. The baseline value used in the regression model is N.

First, we observe that the three variables occur in the result set with different frequen-
cies: we found 10 models containing Age, 79 containing Personal status and 528 con-
taining Foreign worker. By observing the trend of confidence intervals for each variable,
one can already spot which candidate hypotheses look more interesting and which ones,
instead, could likely be discarded. For instance, all confidence intervals for Age span across
both negative and positive values, indicating no clear effect of Age on the outcome variable.
This indicates that Age is not a discriminatory factor on its own. It is worth noting that the
variable Age occurs in several rules. Therefore, by applying rule mining alone, one might
deem this variable to be influential for the decision, although it has actually no statistically
significant impact on the output.

The situation is different for the other two variables. For the sake of clarity, Figure 9
zooms in on some models for both the variables.

For Personal status, we focus on the first three models since we observe a stable
trend from the overall figure, which suggests that similar insights can be derived from any
group of models. For Foreign worker, instead, while we still observe a similar trend across
the models, there seems to be more variability for the first few models; therefore, we decided
to focus on the first ten. Figure 9a shows the third line of every model, corresponding to
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the value male_single which is always above 0. This suggests that this value of Personal
status has a significant and positive impact on the decision, even though not a very strong
one. This suggests that male, single candidates are significantly more likely to receive a
positive risk class than the baseline group, i.e., non-single females. Similarly, for Foreign
worker, we can see that the confidence interval is always below 0; namely, this regressor
shows a significant and negative impact of being a foreign worker on the decision, with
respect to the baseline group of non-foreign workers. Such an impact is relatively strong: in
many cases, the likelihood of a positive decision was reduced up to 80%. These observations
suggest that both these variables should be further investigated.
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Figure 9. Zoom on the first models containing Personal status (a) and Foreign worker (b) in the
experiment with support 0.09 and confidence 0.9.

Figure 8 also shows that the regressors exhibit the same trend for every model in the
result set. This suggests that the behavior of these variables may somehow be considered as
a global behavior or, at least, as a behavior valid for all identified groups of features. Further
investigation may still be conducted to explain visible differences in terms of the coefficient
values, for example, in the first set of models involving Foreign worker. We argue that
such a representation would also provide the analyst with a valid means to detect groups
in which regressors behave differently. In contrast, none of these considerations could have
been drawn using rule mining alone. Using rule mining, the analyst can only derive the
itemsets that are frequently related to a given value of the outcome variable, but no support
was provided to analyze their statistical impact.

4.2.2. Use Case on Crime in Communities

Dataset and Settings. The Crime and Communities dataset contains 1994 records of
communities described by socio-economic and demographic factors, including their crime
rates [18]. In particular, the dataset involves 128 numerical variables, related to, e.g., aver-
age income, average household size, percentages of different ethnic groups, percentages of
people at different degree of education and percentage of people using public transport. We
preprocessed the dataset by performing common data cleaning tasks; namely, we removed
variables involving missing values, as well as variables involving a single value, since they
would have only led to noise in the analysis. The cleaned dataset involved 91 attributes.
We applied supervised discretization to convert numerical variables into categorical; more
precisely, we used the default settings of the supervised discretization technique imple-
mented in Weka (https://www.cs.waikato.ac.nz/ml/weka/, Last access 16 March 2022),
which strives to determine the most discriminative intervals with respect to the class.

https://www.cs.waikato.ac.nz/ml/weka/
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As in [19], we selected variable ViolentCrimePerPop as the class attribute, where
values lower than 20 represent the positive decision and values equal to or greater than
20 represent the negative decision. Among the four values of the variable racePctBlack,
the sensitive item is: racePctBlack = [0.375, 1]. Accordingly, the decisional process is
considered to be affected by discrimination if the fact that black people are the majority
in the community has influenced the final decision.

Results. Table 8 reports the descriptive statistics for the 80 experiment runs for varying
levels of support ([0.03, 0.10] with steps of 0.01) and confidence ([0.5, 0.95] with steps of 0.5).
The number of models, while being consistently lower than the number of rules, is signifi-
cantly higher those we obtained in the German dataset, approximately in the same order of
magnitude as the number of rules. The number of regressors, on the other hand, shows a
reduction in more than ten times with respect to the number of rules (models), along with a
smaller standard deviation (and, therefore, a more stable output). The median obtained for
rules and models in this experiment setting produces 1693 and 1565, respectively, while the
median value for the regressors is 167. Moreover, we observe a maximum of 210 regressors
to consider (as opposed to, respectively, 6355 rules and 3593 models).

Table 8. Descriptive statistics of the experiment runs for the Crime and Communities dataset.

Metric Min 1st Q Mean Median 3rd Q Max sd

#rul 1.0 722.0 2245.0 1693.0 3153.0 6355.0 1879.7
#regr 9.0 108.0 157.4 167.0 205.0 210 52.1
#mod 1.0 658.0 1721.3 1565.0 2696.0 3570.0 1170.3

Figure 10 reports the relation between regressors and rules across experiments. We
observe a trend similar to the one we observed for the German dataset, i.e., a strong
variability in the rule mining results for different support and confidence settings, despite
relatively stable regressor outputs. Furthermore, in this case, the number of rules exceeds
the number of regressors of a factor ranging from 10 to 1000, depending on the support
level. A notable exception, however, can be seen in the experiments with support higher
than 0.8 and maximum confidence. This is due to the fact that, in these cases, only a few
rules were mined, with the result that the output of rule mining is in this case comparable
with that obtained using our approach. In one case, for the configuration with the highest
threshold, only one rule was mined, from which nine significant regressors were extracted.
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Figure 10. Rules and regressors for each experimental setting in the Crime and Communities dataset.

Figure 11 reports the (log) ratio between regressors and rules for each experiment
setting. These results are consistent with what we observed for both the synthetic and
German datasets: especially for low levels of these settings, there is a strong reduction in
the candidates in the result set. Across all support levels, high confidence levels generate a
higher number of regressors (with respect to generated rules) than at low confidence levels.
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At a high confidence level, the number of regressors exceeds that of rules by a factor of 2–3
for support levels higher or equal to 0.8, and reduces well below zero at lower confidence
levels. This is in line with the observation made for Figure 10 where we pointed out that in
some settings, a few rules were obtained, which generated a comparable or higher number
of regressors.
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Figure 11. Fraction of obtained regressors per rule.

Figure 12 shows the confidence intervals for the regressors obtained for a support
equal to 0.09 and confidence equal to 0.9. Among the 535 models containing the variable
racePctBlack, the figure only reports the first 50 models for the sake of readability. These
models show common trends among all models, but they also show some notable outliers.
First, regressors in the first 42 models show a significant positive impact on the decision
variable. Delving into greater detail, we observe that the third line of each model which
corresponds to the highest percentage of black people in the community is the one with
the largest impact on the class. Therefore, overall these models seem to suggest that if the
percentage of black people increases, the possibility of being classified as a dangerous area
also increases. However, the magnitude of the impact does seem to change in some models,
moving from a strong impact (more than three-fold) to a marginal and even negative impact.
For example, a model in Figure 12 shows that the first two values are close to zero; and the
third line actually goes below 0, thus pointing out that this value is not significant at all for
this model. It is worth noting that in the remaining set of models we analyzed (not reported
here for the sake of space), the racePctBlack regressor always has a strong impact with
the same dynamics we described above. Starting from these observations, the policy maker
can actually recover the corresponding model to investigate the reasons underlying the
observed differences.
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Figure 12. Coefficient confidence intervals for the racePctBlack regressors (first 50 models) in the
experiment with support 0.09 and confidence 0.9. Variable racePctBlack can assume four values,
namely [0, 0.035], [0.035, 0.165), [0.165, 0.375]), [0.375, 1]. The baseline value used in the regression
model is [0, 0.035].

5. Discussion

In this section, we elaborate upon some key observations obtained from our experi-
ments and discuss the limitations of our approach.

Effective candidates generation. The results show how the combination of rules
mining and regression analysis allow one to overcome the disadvantages of each method
applied individually. First, we stress that, without the rule mining contribution to the
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methodology, the model testing using regression analysis would have failed to identify
interesting relations. To double-check this, during the first stages of this work, we at-
tempted to generate ‘optimal’ models through backward and forward model generation
(ref. Section 2.2), leading to uninterpretable results, and oftentimes failing to target ‘sensible’
variables of interest. The systematic hypothesis generation process effectively implemented
using rule mining allows focusing on models describing the phenomenon of interest (e.g.,
potential discrimination in a group or population). At the same time, the rigorous statistical
evaluation employed for model selection allows our method to discard a large amount of
‘false positives’ returned by rule mining whose output, indeed, turned out to be very noisy
(cf. Figure 3). Overall, we observe some improvements when increasing the support and
confidence thresholds. However, being constrained to the use of high values of support and
confidence is in general not desirable, since it can lead to some interesting dependencies be-
ing missed, especially when investigating possible discrimination cases. These limitations
appear to be overcome or significantly reduced with the use of regression models for model
derivation and selection. This approach scored relatively well in all experiment settings.
Even though there are few configurations in which the approach could not detect any
interesting bias, this was due to perfect correlations among unrelated variables, obtained
by the data generation procedure and not so likely to occur in real scenarios.

Robustness with respect to parameter tuning. Another notable positive aspect of
the approach is that performances are much less dependent on parameterization. In this
respect, the forest structure used for model comparison requires pairwise comparisons
between models, which rapidly increases as more models are generated by the rules.
Nevertheless, our approach proved to be able to detect biased relations even with low
values of confidence and support; this suggests that it is suitable also to explore bias-
affecting minorities. Different data structures and heuristics for model comparison (e.g.,
eliminating models with irrelevant variables from different branches) could be employed to
decrease the computational overhead. Nonetheless, the advantage of limiting the impact of
blind fine-tuning from the procedural setup provides the desirable advantage of assuring
that precise (as defined above) results can be expected as long as support is small. This
gives the analyst some leeway on the concern about setting the thresholds for support
and confidence.

Understandability of the extracted recommendation. Our experiments show that
the number of regressors remains manageable for being analyzed by a human policy maker,
whereas the number of rules explodes. This suggests that our approach can be very effective
in practice to obtain usable and statistically significant indications of bias. We also show
how plotting the obtained regression models represents a useful aid to the policy maker
to grasp additional information on which variables/models can be shown to the class to
have interesting correlations. In particular, we discussed how confidence intervals can be
exploited to obtain an informative overview on relations existing within models of a single
configuration, providing the base for further exploration.

Assumptions and limitations. The proposed approach can only detect the statistical
evidence of bias in cases where the data generation process is sufficiently biased to generate
that evidence. This is unavoidable in any empirical approach. In cases where little data
exist for the investigation, the statistical detection of small bias effects may fail, as evidence
may be attributed to chance alone. In those cases, other approaches such as qualitative
methods may be more appropriate. Similarly, while our approach proved to be less sensible
to parameter tuning than rule mining, the impact of tuning can still be relevant when
addressing datasets with severely underrepresented groups. In the absence of a ground-
truth on discrimination levels and groups, our approach to generate a synthetic dataset
aims to striking a balance between extreme cases, and considering general guidelines for
discriminative actions (e.g., the four-fifths rule [20]) as guiding principles. Whereas a more
thorough sensitive analysis for tuning parameters may provide additional estimates of
method performance in more extreme cases, those estimates are likely to be misleading
because of unknown confounding factors affecting the data. To showcase the applicability
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of our method, we therefore decided to not make any strong assumptions about the nature
of our synthetic dataset.

Another important observation concerns the presence of so-called “proxy” rules and
“redundant” rules. The first ones are rules which, while not directly classifiable as biased
decisions, actually lead to biased and unfair decisions [4,21]. Redundant rules, instead,
are rules that cover the same (or a similar) set of samples of one or more other rules in the
dataset. The presence of these rules is typically due to the presence of some correlations
within the features and can lead to misleading and/or unreliable outcomes. In our exper-
iments, we assume that all the features relevant for the decisions are present in the dataset,
and there is no strong spurious correlation among the features set. We plan to investigate
these aspects in future work. Nevertheless, we would like to point out that some mitigation
strategies can be applied. For example, proxy rules could be detected by interviewing,
when possible, domain experts to understand the relevance and possible hidden use of the
features of the dataset. On the other hand, to prevent the generation of redundant rules,
one can apply, for example, feature selection approaches, or pruning the redundant rules
using approaches such as [22].

6. Related Work

This section provides an overview of the research related to model transparency, in
particular features selection, association rule mining, and discusses approaches based on com-
bining association rule mining and regression analysis. A summary of these approaches
with respect to the desiderata in Section 2 is given in Table 9.

Table 9. Comparison of the related work with respect to the desiderata for bias detection presented
in Section 2, where  means “support”, G# “partially support”, # “no support”. The asterisk (‘*’)
indicates that the requirement is only supported by some approaches.

Data Agnostic No Param. Tuning Feature Level Feature Value Level Change Impact

Association Rule Mining  # #  #*
Features selection

Filter Methods  #  # * #
Wrapping Methods G# #  # #
Embedded Methods G# # G# # #

Combined approaches G# #  G#  

Our work  G#    

The increasing adoption of classifiers to support human decision-making processes
has led to an increasing importance of the transparency of the models generated by ma-
chine learning techniques. A recent survey on this topic [23] identifies two categories
of problems related to model interpretability, i.e., a black-box explanation problem, where
decisions returned by a black-box classifier are analyzed to construct an explanation, and
a transparent box design problem, where the goal is to develop interpretable, white-box clas-
sifiers. Our work is related to approaches in the first category, which can be further refined
in three subgroups: model explanation aims to provide human-interpretable models capable
of mimicking the behavior of the original classifiers [24–26]; outcome explanation aims to
build local models explaining predictions made on single instances [27,28]; model inspection
aims to provide a human understandable representation of some specific properties of the
model and/or its predictions [29,30].

Our work is mainly related to model explanation, particularly so-called agnostic ap-
proaches (i.e., approaches that are not tailored to a specific classifier), which usually provide
explanations in terms of features ranking. This problem overlaps with the feature selection
problem, whose goal is to identify and remove those features that either do not have
an impact on the classification or are “redundant”, i.e., they are correlated to other fea-
tures [31–34]. These methods can be grouped into three main categories. Filter methods
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evaluate the discriminative power of features exploiting exclusively intrinsic proprieties
(e.g., the statistical properties) of the data [35,36]. The outcome of a filter method can
consist of either the set of features showing a correlation with the class above a user-defined
threshold (so-called “univariate” methods), or groups of features showing the best trade-off
in terms of correlations with the class and minimum correlations among each other (named
“multi-variate” methods) [31,37,38]. Another class of feature selection methods consists
of wrapping methods. Given a classifier, they look for the subset of features that provide
the best results in terms of a classification quality metric, e.g., accuracy [39,40]. The search
is performed either by adding or removing one feature at each iteration, then evaluating
the obtained improvements. Wrapper methods usually perform significantly better than
filter approaches; however, they are computationally intensive and thus, unsuitable for
real-world applications characterized by a large feature space. Finally, embedded methods
are feature selection approaches embedded in the classification process itself; namely, these
approaches exploit an intrinsic model building metric to assess the importance of features
during the construction of decision trees [41].

All three classes of feature selection techniques do not completely meet the desiderata
identified in Section 2. Change impact analysis is only addressed by some embedding and
filtering approaches, e.g., [42], while wrapping approaches mainly rely on classification
accuracy. Only multi-variate filter approaches are data-agnostic. Wrapping and embedding
methods only partially meet this desideratum: to obtain the best results, one should know
the classifier used for the decisions being analyzed. All feature selection methods require
parameter tuning. Analysis at the feature level is fully supported only by wrapping meth-
ods. Indeed, many filter and embedded methods only return the correlation values for a
single feature; only few methods in these groups allow one to assess correlations between
the class and groups of features. It is worth noting that none of the methods support the
analysis at the feature value level.

A recent model transparency approach alternative to feature selection is presented
in [43]. This approach aims to provide explanations related to some subspace of interest,
i.e., groups of samples of the population presenting some characteristics of interest, usually
represented in terms of itemsets. A set of classification rules is then derived for samples
in those groups by means of a multi-objective optimization function taking into account
factors such as rules overlapping, fidelity to the original classifiers behaviors, precision,
etc. This work, however, has the same advantages and disadvantages of association rule
mining (see Section 2.3).

Association rule mining has been largely applied to analyze decisional processes, es-
pecially for discrimination discovery [4,22]. Several metrics tailored to measure the impact
of sensitive itemsets on the class have been proposed. In a seminal work on discrimination
discovery [4], Ruggeri and colleagues introduced the notion of extended lift. This metric
measures how the rule confidence varies with/without the discriminatory itemset, thus
providing an evaluation of the relevance of this itemset. This approach, however, does
not support any statistical validation of the discovered associations. To address this issue,
several approaches have been proposed. Some focus on mining non-redundant rules by
comparing each rule with its generalizations and discarding those rules, not showing any
improvement in terms of support [44] or confidence [8]. Other approaches, instead, fall
within the field of statistical association rule mining, i.e., they focus on mining statistically
significant positive associations, ensuring that these associations are unlikely to be due
to chance. Some approaches apply statistical tests to rule assessment metrics, e.g., the
confidence intervals [45]. Statistical tests have also been used to validate feature-class
correlations, filtering rules involving features with an insufficient/not significant level of
correlations [9], or assessing possible correlations between itemsets and the class by means
of hypothesis testing (e.g., [46–48]).

While these approaches do improve the statistical robustness of the discovered set of
rules, they come with some drawbacks. Approaches exploiting relevance metrics only indi-
rectly assess the statistical significance of the impact of the feature values on the class values.
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Moreover, the use of different metrics can lead to different results, and some commonly-
used metrics also come with some drawbacks. For example, it is well known that rules
whose consequent has a high support tend to have a high value of confidence, without this
implying a real dependency among the antecedent and the consequent [46]. Furthermore,
confidence allows measuring only one direction of the impact of feature values, i.e., positive
correlations. In addition, all these approaches are mainly intended as filtering mechanisms.
Overall, the support provided to the statistical validation of discovered association rules
is still limited and not as mature as in other techniques, such as regression analysis. Indeed,
the scope of the performed evaluation is only limited to the values of the explanatory
variables that occur in the rule under analysis. Little or no support is provided to explore
how the impact changes with respect to the different values of the variables.

The combination of associations rules and regression analysis is mostly unexplored;
to date, only a few approaches have investigated potential advantages and applications.
For instance, Changpetch and Lin [49] investigated the use of association rule mining
to detect the set of the most interesting interactions to take into account when building
a regression model. However, rule mining is only used to identify interactions among
features. Moreover, only a single model is returned, which does not allow differentiating
among different possible contexts in which discrimination could have occurred. It is
also worth noting that a very aggressive rule filtering mechanism is adopted, so that
only correlations with a strong support are considered, which is not always desirable
when dealing with biases that involve small portions of the overall population. Other
approaches exploit rule mining in the iterative building of the (best) regression model.
For example, Jaroszewicz [50] defines so-called polynomial association rules to determine
non-linear correlations among a set of (continuous) features and the class, and use an
iterative regression model-building procedure that picks the best polynomial rule at each
step to determine the factor to include in the regression model. Furthermore, in this case,
the output consists of a single, ‘optimal’ model; moreover, polynomial rules are targeted
to numerical domains. Other approaches combine their predictive capabilities in a single
hybrid system to enhance classification performance. For example, Kamei et al. [51] showed
an application to determine faulty modules, where samples described by a (set of) rules
are classified accordingly, while samples for which no rules are available are classified
according to a regression model. In this respect, the two classification models are built
independently from each other. Combined approaches behave similarly to regression
analysis, supporting statistical validation and analysis at both feature and feature values
level. However, they require parameter tuning for the application of rule mining. They
also bring some improvements in terms of data-agnostic requirement, since the use of rule
mining enhances classic model selection techniques. However, as their goal is to detect the
“best” model, it does not support the generation of multiple hypotheses, so that they cannot
identify multiple contexts involving biases.

7. Conclusions

In this work, we proposed a methodology that leverages both association rule mining
and regression analysis to uncover systematic biases in decisional processes. Specifically,
our methodology uses association rule mining to systematically generate hypotheses of
bias sources from an exploration of data. These hypotheses are then used to build regres-
sion models that provide statistically significant evidence about the impact of variables
on the process outcome. The experiments show that our methodology overcomes the
limitations of standard association rule mining and regression analysis. However, while
being able to detect the population that is discriminated against, it tends to provide only
an indication of the targeted set of observations, as opposed to giving a precise picture of
targeted sub-groups. This is to be expected from any statistical analysis, as noisy data and
sample sizes affect clearly have an impact on the prediction. Nonetheless, the ability of
filtering out a large number of overly specific rules and focusing only on a few that are
highly likely to cover the population of interest (or otherwise point towards it), enables
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policy makers and analysts to focus on groups of observations where future investigations
and data collection are likely to uncover the specific effect. Furthermore, we showed how
confidence intervals can be effectively exploited to grasp an overview of the most important
detected relations, thus providing valuable guidance for the human analyst. In future work,
we plan to address some of the limitations discussed in Section 5. In particular, we plan
to investigate the combination of different rules’ redundancy reduction techniques with
our approach in order to improve its robustness with respect to undesired correlations
among features. In addition, we plan to apply our method in other contexts, for example
to uncover indicative patterns of compromise in network traffic based on a security event
generated by network security sensors as recorded by a security operation center.
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Appendix A. Regression Output Interpretation

The output of a regression is the estimation of which values of c, β1, . . . , βn provide
the best prediction of Y. For example, consider the following regression on HighRisk:

HighRisk = c + β1 Employed+ β2 Gender+ β3 Employed · Gender

This model will generate an output of the type reported in Table A1 (also fictitious for
the purpose of this explanation).

Table A1. Example of regression output

Regressor Coeff. p-Value

c 3 <0.05
Employed = N 1.4 <0.01
Gender = F −1.2 0.10
Employed = N ∧ Gender = F 1.1 <0.01

This output indicates that unemployed (and male) subjects have a 22% (exp(0.2) = 1.22)
(as the outcome variable of this example is binary, a logistic regression should be used. For
a logit regression, the outcome is the log odd ratio of the observation (log(p(HighRisk)/
(1− p(HighRisk)); therefore, regression coefficients should be exponentiated to reveal the
change in the odds ratio caused by a unit variation, or change in category in that variable.)
higher probability of being assigned to the category HighRisk than to the category LowRisk.
Being female ( and employed) decreases chances by 70% (exp(−1.2) = 0.3). The coefficient
for Employed = N ∧ Gender = F tells us that, however, being female and unemployed
increases the baseline risk three times (exp(1.1) = 3.0). The statistical significance of each
coefficient serves as an indication to the analyst that an estimation of at least that magnitude
is unlikely to be generated if no real effect exists: the smaller the probability of observing an
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estimation at least that large (i.e., the infamous p-value [52]), the highest the confidence one
can have that, given the data, the effect exists in reality and is unlikely to be explainable by
chance alone. Generally, the threshold for significance is set at p ≤ 0.05, but this may vary
considerably depending on the domain of application. In the example above, the p-values
suggest that all coefficients are statistically significant, with the exception of the variable
Gender for which no strong evidence of significance emerges (p = 0.1). If one would set the
significance level at 0.05, one would not reject the null hypothesis that the variable Gender

has no effect on the outcome variable.
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