
Article

Modeling Correlation between Android Permissions Based on
Threat and Protection Level Using Exploratory Factor
Plane Analysis

Moses Ashawa * and Sarah Morris

����������
�������

Citation: Ashawa, M.; Morris, S.

Modeling Correlation between

Android Permissions Based on Threat

and Protection Level Using

Exploratory Factor Plane Analysis. J.

Cybersecur. Priv. 2021, 1, 704–742.

https://doi.org/10.3390/jcp1040035

Academic Editor: Nour Moustafa

Received: 20 August 2021

Accepted: 22 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Digital Investigation Unit/Centre for Electronic Warfare, Information, and Cyber/Defence and Security, Defence
Academy of the UK, Cranfield University, Shrivenham SN6 8LA, UK; s.i.morris@cranfield.ac.uk
* Correspondence: m.ashawa@cranfield.ac.uk; Tel.: +44-73-9489-1101

Abstract: The evolution of mobile technology has increased correspondingly with the number of
attacks on mobile devices. Malware attack on mobile devices is one of the top security challenges
the mobile community faces daily. While malware classification and detection tools are being
developed to fight malware infection, hackers keep deploying different infection strategies, including
permissions usage. Among mobile platforms, Android is the most targeted by malware because of
its open OS and popularity. Permissions is one of the major security techniques used by Android
and other mobile platforms to control device resources and enhance access control. In this study, we
used the t-Distribution stochastic neighbor embedding (t-SNE) and Self-Organizing Map techniques
to produce a visualization method using exploratory factor plane analysis to visualize permissions
correlation in Android applications. Two categories of datasets were used for this study: the benign
and malicious datasets. Dataset was obtained from Contagio, VirusShare, VirusTotal, and Androzoo
repositories. A total of 12,267 malicious and 10,837 benign applications with different categories
were used. We demonstrate that our method can identify the correlation between permissions and
classify Android applications based on their protection and threat level. Our results show that every
permission has a threat level. This signifies those permissions with the same protection level have
the same threat level.

Keywords: cybersecurity; mobile malware; factor analysis; dangerous permission variables;
protection level; Bayesian correlation; threat level

1. Introduction

Among the smartphone platforms, Android is the most popular. A previous study [1]
showed that Android owns 74.5% of the mobile device marketplace. The popularity of
Android has caused an increase in third-party application development to respond to the
shift. Factors such as open-source [2,3], ease of use [4,5], and low cost [6,7] contribute
significantly to its popularity and fast spread. The open-source nature of the Android OS
architecture enables the unrestricted distribution of third-part applications on different
distribution markets. Consequently, a wide-ranging API is provided to third-party devel-
opers. The large-scale permits Android applications to have access to the device resources
and users’ privacy when certain permissions are accepted by the user.

While some of the permissions are normal, Google classified certain permission
variables as dangerous. Permissions variables that are classified as dangerous would likely
have a higher threat level than normal permissions. To ensure that users’ data are protected,
Android imposes applications to request and obtain permissions before accessing sensitive
data from the device. During application installation, if the user denies granting access,
installation is aborted. Any permission request to access device resources and users’
private information can potentially be dangerous due to the advent of millions of malicious
applications using different infection and evasion techniques. Anytime an application

J. Cybersecur. Priv. 2021, 1, 704–742. https://doi.org/10.3390/jcp1040035 https://www.mdpi.com/journal/jcp

https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0002-1016-0791
https://doi.org/10.3390/jcp1040035
https://doi.org/10.3390/jcp1040035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcp1040035
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp1040035?type=check_update&version=2

J. Cybersecur. Priv. 2021, 1 705

requests access to an Android device, the request forces the user to decide whether to accept
the decision or decline the permission. While some permissions have malicious intent,
most mobile users do not think of the implication of granting the permissions. Still, they
are more concerned with getting the application downloaded and installed, as outlined in
the research of [8]. The results obtained in the study of [9] affirm that the majority of mobile
users are careless about accepting permissions than the resultant havoc such permission
could cause.

While few users pay attention to the kind of permission access request by applications,
malware writers deploy different ways to drip them by setting some malicious applications
with default handlers to avoid multiple permission requests during runtime [10]. It then
implies that once certain permission is accepted to access the device resources, others
with similar features are likely to be installed in the background without presenting a
further request for access [11]. The study of [12] identified that in a random sample of a
given population, features of some variables have control or influence the characteristics
of one or more variables at given levels of independent measurement. This signifies that
acceptance of specific permissions influence the installations of the others with a certain
level of correlation. It then means there is a correlation that exists between permission
variables. The open issue then is how to control the behavior of permissions that malicious
applications request. To achieve this, understanding the relationship between permission
variables is key. Therefore, since the security of Android depends on the performance of
the permission mechanism of the OS platform, it is pertinent to determine how correlated
permissions are. Understanding how permissions are related will provide insights into
how Android applications handle sensitive and high-risk data. Additionally, this will help
in human decision making when installing applications whose source is not legitimate.
The key contributions of our research are the following:

1. We present a model for visualizing the correlation between Android permissions
using the t-Distribution stochastic neighbor embedding (t-SNE) and Self-Organizing
Map (SOM) techniques.

2. We demonstrate results that show the relationship between a threat and protection
level in Android permissions using exploratory factor plane analysis. The results
show that every permission, whether normal or dangerous, has a threat level.

3. We identify that Android permissions with the same protection level have the same
threat level. However, the threat level in the individual applications differ.

4. To examine Android permissions commonly requested and disseminated to clas-
sify Android applications as malicious or benign. Our results demonstrate that the
proposed model can determine families of malware based on the similarities by un-
derstanding their clusters. This demonstrates that Android permissions in the same
cluster have similar attributes.

5. We build on the existing work to expand Android permission request state-of-the-art
by providing a comprehensive study on the current state of permissions systems.

The remainder of this paper is structured as follows. In Section 2, we provide the
background on Android permission system architecture. The taxonomy of the permission
flags and the protection level is described. In Section 3, we review the existing work
relevant to our research. Materials and methods for our model are described in Section 4.
Results and discussion are presented in Section 5. The conclusion is provided in Section 6.

2. Background

This section provides background to the Android permission architecture and other
components. It also provides detailed background on the protection levels, permis-
sion flags, and other essential Android security components such as the API calls and
message intents.

J. Cybersecur. Priv. 2021, 1 706

2.1. Android Permission Architecture and Other Components

The security architecture of Android revolved around its permission system. Based
on the security architectural design of the Android platform, no application is allowed
to install and function in any form if the Android OS, other applications, or users’ data
are affected adversely. The security architecture that regulates and enforces this is the
permission system. However, due to regular updates in Android versions and code names,
the permission system keeps evolving. Additionally, the range of the Android API levels
increases with the increase in the number of permissions (Table 1). Each Android version
released is incorporated with higher API levels and more permission features. For instance,
the first Android code name (Base) released has an API level of 2 with total permissions of
73 [13,14]. However, as new code names emerged, there is an increase in the API levels
and the permission features. The increase in the total number of permissions is influenced
by the protection level offered by the device. The protection level is one of the permission
groups defined by Android [15].

Table 1. Android code name release versions showing the increase in the API level and number
of permissions.

Code Name Platform Version API Level Number of Permissions

Android 11 beta 11 30 167
Q 10 29 158
PI 9 28 148

Oreo 8.0−8.1 26−27 144
Nougat 7.0−7.1 24−25 135

Marshmallow 6 23 131
Lollipop 5.0−5.1 21−22 120

KitKat Watch 4.4 W 20 113
KitKat 4.4 19 112

Jelly Bean 4.1−4.3.1 16−18 104
Ice Cream Sandwich 4.0.1−4.0.4 14−15 98

Honeycomb 3.0.−3.2 11−13 95
Gingerbread 2.0−2.3.5 9−10 94

Froyo 2.2. 8 87
Éclair 2.0−2.1 5−7 86
Donut 1.6 4 85

Cupcake 1.5 3 81
Base 1−1.1 1−2 73

2.2. Protection Levels and Permission Flags

The levels mean the intention of using specific permission and the resultant effects or
consequences that come with using such permission. The protection level in the Android
system defines the potential threat hidden in the permission. It specifies the possible
measure the system should adapt when deciding whether to grant access or deny the
permission requested by an application. Android permission system supports four basic
types of protection levels with different permission flags (as shown in Figure 1). These
include normal protection level, dangerous protection level, signature protection level, and
signatureOrSytem protection level.

2.2.1. Normal Protection Level

Systems usually grant access to normal protection levels without needing compliance
from the user. Normal permissions are sometimes misused by malware to bypass mobile
device security to access device resources and other private data. Malware authors may
define some functionalities as access control mechanisms to communicate with pre-defined
applications to access the resources. For instance, when these permissions are excessively
requested by the over-privileged applications, this poses security issues by increasing the
threat level of a device.

J. Cybersecur. Priv. 2021, 1 707

Figure 1. Protection level and permission-based flags.

2.2.2. Signature Protection Level

This protection level compares the certificate of declaring and requesting application
to determine if it can be signed by the same certificate as that of the device manufacturer.
Permission is granted only if the certification condition is satisfied; that is to say, signature
permissions can only be granted if the same certification signs both parties. Signature
permissions are only granted if the requesting application is signed by the same developer
that defined the permission.

2.2.3. Dangerous Protection Level

Dangerous protection level grants access to the device’s resources, private information
of the user, device operating system, and the functioning of other applications installed
on the device. Dangerous permissions are operational when users grant explicit access to
them. On most occasions, dangerous permissions are presented to the user when installing
third-party applications.

2.2.4. Signature or System Protection Level

SignatureOrSytem protection level is granted to only applications that are signed with
the same system Android system mage certificate. SignatureOrSytem permissions are
required where applications built by two or more vendors need specific features of the
system image to be shared explicitly.

While the pre-installed applications can use permissions in all the protection level
categories, only normal and dangerous permissions can be used by third-party applications.
Any time permissions from the signature and SignatureOrSytem protection level are
requested by third-party applications, such permissions are rejected by the OS platform.
Malicious applications can leverage different permission flag constants such as pre23 [16,17]
of the system protection level to automatically grant permissions to malicious applications
that target API levels. Applications with permission flags granted automatically reside
in the Original Equipment Manufactural (OEM) partition of the Android. Due to the
connection between the OEM and the MaskBase [18] in the protection level, privileged

J. Cybersecur. Priv. 2021, 1 708

flags such as vendorPrivileged enables both malicious and benign applications to access
any permission, especially those associated with the system image.

2.3. Intent Message

Malek defined an Intent message as “a trigger event for an activity or service to be
performed along with the required data which supports that requested action” [19]. Intent
messages, when exchanged, can be used by malicious applications to escalate privileges.
The inter-component communication mechanizing [20] of Android relies chiefly on Intent
messages. Intents are generally used by Android to aid data delivery via asynchronous
messages. An Intent object is significant in Android permission because it holds data
that the Android system uses to define recipient components needed to operate. This
is significant because it enhances and eases service implementation in passing data and
making it available to applications. This allows the user to initiate an action in a different
application by calling a simple operation that the user would like to perform. Examples
of such activities include but are not limited to taking pictures or viewing maps [21].
Intent plays a significant role as a communication mechanism in intra-application and
inter-application message exchange.

2.4. API Calls

API stands for Application Programing Interfaces [22], whose levels are represented
by integer values that uniquely identify each Android framework version. The android
operating system uses APIs to reinforce third-party applications. Through APIs, entry
to the device resources and features is easily made. Application programing interfaces
consist of two structural components: API library and API implementation (as shown in
Figure 2). API library is situated in the virtual machine (VM) of the Android application.
The implementation structure of the API is the system’s running process. These two API
structures are packed in the Software Development Kits (SDK) of the Android platform.
During the device operation process, the application library of the API calls the private
interface. The private interface then invokes and initiates all the remote process calls. This
helps in assigning services from the service thread during the runtime process. Critical
examination of the Android API call chain can aid virtually in disclosing an application’s
intention. CFGs form the entire representation of the Android application. It forms a graph
consisting of finite sets of nodes (N) [23] of the documented API calls and the finite set of
edges (E) [24], which link successive instructions.

Figure 2. Android OS API call architectural handling process. This figure shows the connection the APIs structure and Call
states interfaces respectively.

J. Cybersecur. Priv. 2021, 1 709

Control Flow Graph (CFG) is a directed graph description of how a program is
controlled during execution. Straight lines, nodes, and edges are some of the graphical
notations used by CFG. The ability of the CFG to link the entry block helps in summarizing
the control flow. When an application has malicious intent, CFG blocks the code and makes
it unreachable from appending to the Android OS or existing applications. However,
adversarial examples can manipulate CFGs by modifying a sample to evade detection
from a classifier or a detection engine. In the same vein, malware use code level or binary
to manipulate their sample byes during compilations. This manipulation enables benign
applications to inject their block of bytes into malicious binary. According to [25], some
code-level malware applies perturbation and then modifies the original code structure.
When malware attack the CFG of an Android-based device, it causes structural modification
of the code’s feature space.

3. Related Work

The existing work for this research is classified as follows.

3.1. Permission-Based Detection and Feature Extraction

Several studies have been carried out on Android permission requests [26], Android
user privacy [27], attacks on Android and other mobile platforms [28,29], including mal-
ware attacks [30], synchronous channels attack [31], side-channel attacks [32], runtime
repackaging attacks [33], and Man-in-the-Middle attacks [34] accuracy. This section of the
paper provides a brief examination of some of the related works carried out. Almomani and
Al Khayer [1] discussed the Android permission systems by providing a general overview
of the Android control mechanism. The study identified and grouped Android dangerous
permissions based on their API levels. The research showed the significant influence of
Android permissions at diverse protection levels. Zarni and Zaw [35] proposed an Android
malware detection framework that collects Android applications’ permissions by applying
clustering algorithms. Their system monitors several permission features obtained from
Android apps to determine whether the permissions are malicious or benign.

In [36], Akleylek proposed permission-based detection of Android malware using a
feature selection approach based on linear regression. Using a minimum of 27 features, their
research selected the most distinctive permissions to enhance the framework’s performance
instead of using all the permission feature vectors. In [37], Mcdonald et al. used four
different algorithms to classify Android malicious applications as either malicious or
benign based on their permissions manifest files. Using a dataset with a sample size of
5243, the best algorithm obtained a performance accuracy of 81.5% accuracy. The research
concluded that hackers target manifest permission features as an attack vector to infect
mobile devices. In [38], Mathur et al. proposed a detection framework for detecting
Android malware using custom and native permissions features. Their findings show that
the increasing number of Android permissions increases options to gain access and control
over sensitive information and mobile devices.

In [39], Shahriar et al. proposed a framework for the detection of Android permis-
sions that are anomalous. The detection system focused on the identification of relevant
categories by applying a latent semantic index [40,41]. The result of the study shows that
dangerous permissions constitute a security vulnerability. The understanding of permis-
sions relationships could help in the detection of malicious applications. In [42], Li et al.,
proposed an Android malware detection tool called SigPid. Their system is based on the
analysis of permission usage. Using a three-level pruning approach, their study mined
the permission dataset to effectively and distinguishingly identify significant permissions
in malicious and benign applications. Although their study achieved a high detection
accuracy of 93.62%, only 22 out of 135 permissions were considered. Additionally, the
research did not consider the protection level or threat level of those permissions.

J. Cybersecur. Priv. 2021, 1 710

3.2. Control Flow Graph and Information Gain

In [43], Arora et al. used permission pairs to identify conspicuous permissions that
lead to Android malware detection. Their study compared graphs of malicious and benign
applications by mining the permission pairs. However, understanding the influence of
pairing permissions is significant in malware detection using permission feature attributes.
The proposed detection system, however, has some limitations, one of which is that mali-
cious applications with single or no permission cannot be detected or analyzed. Another
limitation of their research is that they did not explain which pair of permissions are
predominantly present in benign or malicious applications. To overcome this challenge,
an understanding of the correlation between protection levels and permission flags will
help in developing a robust detection tool that could detect malware with permissions run
time attributes.

In [44], Khariwal and Singh used the Information Gain approach to rank intents
and permission features based on their Information Gain score. Their research combined
both permissions and intents attributes and then applied four different machine learning
algorithms. Using the Bag-of-Words model [45–47], the extracted intents and permissions
from the manifest file of the Android APK were embedded in the NLP [48,49]. Investigating
the dynamic permissions using machine-learning methods to detect Android malware,
dynamic permissions were extracted from a large number of public Android applications
using J48, Naïve Bayes, and Random Forest algorithms in the research of Mahindru
and Singh [50]. The results obtained by the algorithms were then compared based on
their accuracy. However, their research did not demonstrate how correlated dynamics
permissions are, and by this, false suggestions might be caused. The research of [51]
compared two specific Android features: system calls and permission requests as an
approach to malware detection. Their research identified some techniques which are
essential in malware identification, and avoidance including USB examination and scanning
and disabling mobile mode for automatic app download. However, the study did not
compare machine learning algorithms to determine which could be more suitable to achieve
a better and more accurate detection.

3.3. Bayesian Correlation, Opcode Sequence, and t-Distribution Stochastic Neighbor Embedding
(t-SNE)

Bayesian correlation is one of the statistical linear mixed models that consistently
produces probabilistic management of variables in a sample population. Bayes methods
are used in different applications for matching functions with correlated likelihoods. The
likelihoods are deployed in filtering responses used for learning training population sam-
ples [52]. Using Bayesian correlation, the research of [53] studied object localization to
derive asymptotic properties of permissions with close similarities though different in their
very nature. Using images as a sample population, the researchers deployed a Multiple
Scale (MS) approach to determine the basis for which images with similar features can be
classified using background modeling. The result of their research shows that Bayesian
correlation can be effectively used for cross-correlation when using large-scale parameters
for modeling relationships between variables [54]. The research of [55] used Bayesian
linear regression to represent the relationship between gene particles by estimating the
gene weights using correlation coefficient factors. The research used a profile dataset to
model how the properties in gene A are related to gene B and vice versa.

Working on the Bayes model, the research of [56] formulated a Bayesian model using
canonical analysis correlation to extract the correlation between sample data sets. In their
approach, the data set decomposed into specific sets of statistical independence to help
make logical inferences on other variables with similar attributes in the data set. Exploring
multiple features of Android malware, the study of [57] designed a multiple feature
detection framework for extraction of opcode sequence and N-Gram with symmetrical
uncertainties using correlation-based models. Malware features extracted by the model
were not complete in identifying some characteristics of malware. The framework was also

J. Cybersecur. Priv. 2021, 1 711

inadequate in demonstrating the correlation that exists among those features extracted; thus,
it cannot identify emerging Android malware. Using t-distribution stochastic neighbor
embedding (t-SNE) for visualization, Zhang et al. [58] proposed a method for detecting
malicious adverts in addresses of web pages using lexical-based features. Even though
HTTPs provide authentication on the web browsers and pages to offer data secrecy [59],
the study of Barrera et al. [60] demonstrated that sophisticated malware leverage on
permission-based security vulnerabilities to infect Android and web-based applications.

4. Materials and Methods

Various visualization techniques are used for analyses of pairwise similarities and
relationships between variables in complex dataset distribution. Some of the virtualization
techniques include Scatter plot [61], interpolation [62], and histogram [63], among others.
These traditional virtualization techniques have limitations in facilitating virtualization of
limited variables of data set at a time as highlighted when virtualizing their similarities
as highlighted by Van [64]. This limits traditional virtualization techniques from being
used on data sets with high dimensions and complexity like malware. To develop a
model that generates correlation between permissions in the Android malware dataset, it is
essential to automate the data analysis before virtualization. In this research, we used the
t-Distribution stochastic neighbor embedding (t-SNE) [65] to study data low-dimensional
embedding and Self-Organizing Map (SOM) [66] to present the interactive view of Android
permissions and identify the relationship between them in high dimensional shape. In
addition to producing inputs with high dimensions, we used in our study to manage the
complication of having too many points that begin to overlap, which is the same approach
used in hexagonal binning [67]. In a typical permission-based architecture, numerous
permissions are at the user’s disposal. In our research, the processing method focused
on understanding how the Android permission model is used and demonstrating how
an attacker can leverage high threat levels to escalate privileges based on the permission
vulnerabilities. Our methodology allows us to gain insights on how malicious use the
given permission model in practice and highlights the strengths and shortcomings of the
model accordingly. We note that although the case study focuses on Android, our empirical
analysis is appropriate for various other Android permission-based architectures, as long
as the applications are represented as a bit string of permissions.

4.1. Data Set

Two categories of datasets were used for this study, the benign and malicious datasets.
Dataset was obtained from Contagio [68], VirusShare [69], and Androzoo [70]. Though
Drebin is an old dataset, we included part of the dataset obtained from the Impact cyber
repository [71] to have a large dataset of both old and new permissions. Using VirusTotal
scanner, 12,267 malicious applications were selected. A total of 10,837 benign applications
with different categories were obtained from the Android PlayStore. This research is a
continuation of the previous study on the Android malware permission request variables
designed to classify Android permission requests based on protection and threat level.
These data sets were chosen because they contain large app variants of malicious files
that were collected from the official Google Play store and other official and legitimate
alternative markets such as Slideme and legitimate repositories such as F-Droid.

To extract permissions from the selected Android applications, the Apktool was
used to decompile the .apk file into different contents, including ‘AndroidManifest.xml’,
‘Classes.dex’, and the ‘res’. All the applications permissions are contained in the ‘An-
droidManifest.xml’, while the dex has strings and Dalvik Opcodes. The most significant
features were selected using information gained by extracting the similarities between
sets of permission and then calculating and scoring each permission individually. Using
feature encoding, the permissions were converted into binary vectors by concatenating
all the features, which is the input of the model. Details of how permission features were

J. Cybersecur. Priv. 2021, 1 712

extracted from the data set with other attributes and how they are converted into input
vectors have been described in our previous research published in [72].

4.2. The t-Distribution Stochastic Neighbor Embedding

Take a data set D with highly dimensional input variables and a function f , which
determines the distance between pairs of variables. Let D = {y1, y2, . . . , yN}, and f =
e
(
yi, yj

)
= ‖yi, yj‖. To determine the K-dimensional embedding that each variable is

embodied with point ε = {x1, x2, . . . , xN}, xi was expressed to belong to a set of code
points expressed as xi ∈ Rk. The joint probabilities Pij that computes the similarity existing
between permissions yi and yj is expressed as follows:

Pij =

E
(
−e
(

yi ,yj)
2

2`i
2

∑k 6=1 E(−e(yi ,yk)
2

2`i
2

(1)

Pij =
Pj|i + Pi|j

2N
(2)

From Equation (1) above, E is the exponentiation of the f function, ` represents the
Gaussian kernel parameter, and N is the number of variables, in our case, permissions. In
our study, we defined ` in the dimension that Pi = µ. The function µ is the perplexity of the
conditional probability P, which enables optimization of the ` value. The optimal value of
the Gaussian kernel differs at every point, and its value decreases in areas that the density
of the data is higher in the data space, and it increases in regions of lower data density,
respectively. As shown in Figure 3, the value of `2 decreases in regions where the slope
is steep. This shows how the weighting matrices can be influenced when determining
the correlation between two permissions in the data set. The k-dimensional embedding
represented as ε measures the similarity between x1 and x2 pairs of points expressed as:

Qij =

(
1 + ‖xi − xj‖2

)−1

∑k 6=1

(
1 + ‖xk − xl‖2

)−1 (3)

Figure 3. Gaussian Kernel optimization values. The optimal value of the Gaussian kernel differs at
every point, and its value decreases in areas that the density of the data is higher in the data space
and it increases in regions of lower data density, respectively.

From Equation (3) above, the student-t distribution enables the identification of
dissimilar variable input yi and yj at the low-dimensional counterparts xi and xj. Applying

J. Cybersecur. Priv. 2021, 1 713

the Kullback–Leibler principle [73], we compute the divergence existing between the Q
and P express as follows:

Ku` = Kl(P‖Q) = ∑
i 6=j

Pij log
Pij

Qij
(4)

The Kl in Equation (4) above is the Kullback–Leibler normalization factor [73] between
P and Q distribution over the number of distinctive variables. To estimate the input
variables similarity computed, the approximation technique of Barnes–Hut cited in [74]
was applied. This technique also helps to avoid embedding quality from being negatively
impacted while locating the nearest neighbors for every N number of input variable and
enables seen the relationship between two dimensions with size and color (see Figure 4)
similar to bubble chat [75]. By applying the approximation technique, Equation (1) was
reformulated as:

Pij =


E
(
−e
(

yi ,yj)
2

2`i
2)

∑k∈Ni
E(−e(yi ,yk)

2

2`i)

, Provided j belongs to Ni (5)

Figure 4. Points correlation and proportions.

Equation (5) forms the vantage point tree VP-tree [76,77] for retrieving permission
features from the data set without necessarily being in a high dimensional variable space
based on the e

(
yi, yj

)
= ‖yi, yj‖metric function. The VP-tree technique enables our method

to be applied on data sets whose xi ∈ RD vectors have input data of high dimensions.

4.3. The Self-Organizing Map (SOM)

As highlighted in Section 4, SOM is an important tool for creating and representing
highly dimensional input space, which binds correlated variable densities and displays
them using colors or the variable region. Another advantage of this algorithm is that it
can encapsulate complex data and still maintain the topographical attributes of the data in
the input vector space [78]. Consider a neural network of b weights consisting of y input
correlating to an Android app having its permissions represented by binary string {0, 1}.
Let g represent the matching neuron; then, the Euclidian distance existing between y and b
is expressed as:

ed = ‖y− bg‖ = mini{‖y− bi‖ (6)

bi(h + 1) = bi(h) + rgi(h)[y(h)− bi(h)] (7)

Equation (7) was achieved by adjusting matching neuron g in the neighbor neuron
index i and the kernel rgi and time h. The function rgi is a function with reference to the

J. Cybersecur. Priv. 2021, 1 714

Euclidian distance and time. If the learning rate of the model is α and the location of the
two-dimensional network neuron is (h), Equation (7) becomes:

rgi(h) = r
(
‖lg − li‖, h

)
α(h)rgi(h) = E

−
(
‖lg − li‖2

)
(2`2(h))

 α(h) (8)

where ` is the Gaussian kernel factor (Section 4.1, Equation (1)). During the network
training, the learning rate of 0.01 with a batch size of 8 was set on the weight decay of
0.001 at momentum of 0.9. We set the value of α(h) high to enhance better transformations
in the Self-Organizing Map weight points (Figure 5) and the U-matrix (Figure 6) of the
permissions. However, the limitation of setting a high value of the learning rate is that
changes in the network neurons were not incremented significantly. Consequently, the
training parameters must be tested using exploratory analysis before permission can be
visibly visualized.

Figure 5. SOM weight positions of the permission input variables.

Figure 6. SOM U-matrix for Android permissions. The hexagons indicate spaces between network
neurons with a binary string {0, 1}, which forms the Euclidean distance.

As shown in Figure 6, there are some regions (in the hexagon upper region) that are
darker than others, while others are sparsely populated involving. During the inspection,

J. Cybersecur. Priv. 2021, 1 715

we discovered that permissions presented in the darker regions are those that use traditional
mobile features such as text messaging and calls, among others (see Section 4.4). This
shows that those regions have related input patterns implying that Android apps in the
same category with permissions in the same region do not have necessarily behave the
same and request the same permissions. It then means that Android apps in the same
cluster can request similar permissions. It is then significant to understand applications
and permission clusters by performing exploratory plane analysis to determine Android
permission correlation and how they are frequently requested.

4.4. Exploratory Factor Analysis

Determining the correlation between permissions in complex data sets such as An-
droid malware is challenging. A total of 12,267 malicious and 10,837 benign applications
were used for our study. Exploratory factor analysis is a great simulation technique in
reducing multivariate data dimensionality to identify minute factors that explain the under-
lying correlation between variables. This technique was applied in the research of [79] to
analyze the dataset. We apply the equamax exploratory factor analysis rotation method to
reduce the number of independent k factors based on their eigenvalues (see Figure 7) that
could be obtained from many correlated permissions and to test for possible permission
correlation using correlation methods (Pearson, Spearman, and Kendall correlation).

Figure 7. The Scree plot shows how much there is variance in the dataset by eigenvalues in the three
factors.

Factor analysis technique enhances establishment of the best portion of permissions
variables interrelationship among factors. Using Kaiser–Meyer–Olkin’s approach [80], we
extracted three factors by MSA extraction procedure. The factors in the structure matrix
of the selected variables using the equamax rotation method (see Table 2) explain the
correlation among the permission variables. Each of the factors (factor 1, factor 2, and factor
3) was represented by circles, and the permission variables selected were represented by
boxes in the path diagram (see Figure 8).

J. Cybersecur. Priv. 2021, 1 716

Table 2. Structure Matrix of some selected variables using equamax rotation method.

Factor 1 Factor 2 Factor 3

WRITE_SMS 0.972 0.077 −0.220
READ_SMS −0.252 0.967
SEND_SMS 0.934 −0.302 0.191

RECEIVE_SMS 0.972 0.077 −0.220
RECEIVE_WAP_PUSH −0.252 0.967

CALL_PHONE 0.934 −0.302 0.191
READ_PHONE_STATE −0.252 0.967

READ_CALL_LOG 0.934 −0.302 0.191
WRITE_CALL_LOG 0.972 0.077 −0.220
ADD_VOICE_MAIL −0.252 0.967

USE_SIP 0.934 −0.302 0.191
PROCESS_OUTGOING_CALLS 0.972 0.077 −0.220

GET_ACCOUNTS −0.252 0.967
READ_ACCOUNTS 0.934 −0.302 0.191
WRITE_ACCOUNTS 0.972 0.077 −0.220
ACCESS_CAMERA −0.252 0.967

READ_EXTERNAL_STORAGE 0.934 −0.302 0.191
WRITE_EXTERNAL_STORAGE 0.934 −0.302 0.191

READ_CALENDAR 0.934 −0.302 0.191
ACCESS_COARSE_LOCATION −0.252 0.967

ACCESS_FINE_LOCATION 0.972 0.077 −0.220
RECORD_AUDIO 0.934 −0.302 0.191

WRITE_CALENDAR 0.972 0.077 −0.220

Figure 8. Exploratory analysis path diagram of the correlation factors and the permission variables.

Figure 8 shows the cursors from the factors pointing to the permission variables
signify how a factor loads on the permission variable. When there is a positive load-
ing, the model represents it with green arrows; otherwise, red arrows. The dimension
of the loading is determined by the size of the arrow. This means that when loading is
high, the arrows become wider; when loading is low, the arrows become narrower. Ac-

J. Cybersecur. Priv. 2021, 1 717

cordingly, record_audio, read_calendar, write_external_storage, read_external_storage,
read_accounts, use_sip, read_call_log, call_phone, and send_sms are associated with factor
1. Read_sms, receive_wap_push, read_phone_state, add_voice_mail, get_accounts, ac-
cess_camera, and access_coarse_location are associated with factor 2. Lastly, write_calender,
access_fine_loaction, write_account, process_outgoing_calls, write_call_logs, receive_sms,
and write_sms are associated with factor 3. We observed that though there is a clear asso-
ciation of specific variables to specific factors, some of the variables are partly associated
with more than two factors.

Figure 9 shows the exploratory factor analysis visualizing some traditional permis-
sions frequently requested by Android applications. The result shows that most permis-
sions in the large subcategory were requested by very few Android applications, while
frequently used permissions were those in the small subcategory. With regards to state of
the art, this signifies that there is no adequate expressiveness from permissions that are re-
quested frequently. We infer that those not frequently requested could be disintegrated into
the common class. As a result, we suggest adding finer granularity as a security approach
for Android permissions that are frequently requested by applications will enhance this
expressiveness and enhance Android security, especially when combined with the ones
occasionally requested.

Figure 9. Exploratory visualization of permission.

J. Cybersecur. Priv. 2021, 1 718

4.5. Correlation between Android Permissions

According to [81], when modeling relationships between variables of interest, Bayesian
inference is the best starting point to formulate the prior distribution of such a model.
Bayesian prior distribution enables quantization of the parameter values before sample size
observation. It reflects the observed attributes of the p-values and gives more information
about the data set central tendency that forms parameter estimation points. Posterior differ-
ences quantify the parameter estimation uncertainties, which indicates that the uncertainty
increases with an increase in the dispersion. However, it is not every correlation coefficient
that could determine the posterior distribution from sample sizes as identified by [82].

In this subsection, we aim to represent the interaction between permission variables as
a factor of linear combinations of threat and permission levels. Let X represent a permission
variable relating to whether the threat level in the permission variable is high (X = 1)
or low (X = 0). Additionally, let ∅ be the parameter symbolizing the probability that
X = 1, that is, the threat level of the dangerous permission is high. Going by the Bayesian
correlation approach, we compute and express our confidence in the probability α using the
posterior distribution on parameter ∅. Following the Bayesian correlation approach, we
assume that the parameter ∅ obeys the generalized hyperparameters Beta distribution [83]
of the prior expectation and variance control of the ∅ prior. Let β represent Beta consisting
of the prior expectation e and variance control g of the prior given as:

β(eg, e(g− 1)) (9)

Using empirical evidence [84,85], consider ε to be the empirical evidence of dangerous
permission in a malicious file. Let ε = 1 if the threat level of any dangerous permission
is high in the data set, and ε = 0 contrarily. If no benign permission variable is present
in the list of permission features, then no threat level will be observed. Otherwise, it will
be detected by the probability α. The evidence for the presence of a high threat level in
the model is expressed as H1, otherwise H0. The evidence is captured by delta β, which
depends on the decision. Let α ∈ R+ and β ∈ R+ be the parameters for the probability
density function, which supports x ∈ [0, 1]. The moments of the empirical evidence ε and
variance σ2 for each permission variable obtained from the dataset expressed as:

ε(X) = α(α + β)− (10)

σ2(X) = αβ(α + β)−2 (α + β + 1)−1 (11)

To assess the goodness of fit of the cumulative distribution function of a permission
variable, we applied Cramer–von Mises statistical parameterization approach [86]. In
estimating the parameters, the range of x was set from 0 to 1 x ∈ [0, 1] with a confidence
interval of 95%. The range is the highlighted interval for both the density and the probability
(as shown in Figure 10).

Figure 10. Density plot for random permission variable. The y-axis displays the value of the density
function for a particular value of the permission variable. The dotted line represents the density,
while the blue-colored region is the probabilistic region.

J. Cybersecur. Priv. 2021, 1 719

In the analysis, we chose to reflect on the risk permission request poses on mobile
devices, particularly the Android platform. We focus on analyzing the relationship between
the threat and protection level. However, we are uncertain of the probability that a
permission request has a high threat level or low protection level. The decision to set
∝ over the parameters was based on the robust Bayesian approach [87] of analyzing
uncertainties in variables correlation, assuming that the variance is homogenous in the
variable distribution. Given that the variance treatment is equal:

σ2
1 = σ2

2 = · · · = σ2
k (12)

σ2
i 6= σ2

j (13)

where k is the number of permission groups in the sample distribution and i and j represent
at least one pair. To check for sample deviation from the normal distribution, we applied
Bartlett’s test assumption check [88]. Let σ2

P represent the pooled variance expressed as:

σ2
P =

∑k
i=1(Ni − 1)σ2

i
(N− k)

(14)

χ2 =
(N− k)|n

(
σ2

P
)
−∑k

i=1(ni − 1)|n(σ2
i)

1 + 1
3(k−1)

(
∑k

i=1

(
1

ni−1

)
−
(

1
N−k

)) (15)

Equation (7) represents Bartlett’s test. σ2
P represent the pooled variance, σ2

i is the
variance of the ith permissions groups, N is the permission sample size, ni is the permission
sample size in the ith variable group, and k is the number of factors with k-levels. The result
of Bartlett’s test shows the interaction of the effects of permission sample size and other
parameters (see Table 3).

Table 3. Interaction effects of the test statistics using MANOVA.

n χ2 k σ2

n1 15.925 2.130 0.708
n2 16.002 3.403 0.611
n3 16.201 3.342 0.579
n4 15.925 2.133 0.731
n5 16.002 2.421 0.816
n6 15.001 3.342 0.903
n7 15.521 2.530 0.881
n8 15.106 3.501 0.908
n9 17.067 2.367 0.736

If the correlation that exists between Android permissions is represented as ρ, consider
permission variables with respective prior odds represented as p(u0)|p(u1) in the dataset
represented as D = {y1, y2, . . . , yN }. The model posterior odds are expressed as:

p(u0|D)

p(u1|D
=

p(D|u0)

p(D|u1)
× p(u0)

p(u1)
(16)

where u0 and u1 represents instantiations for the null hypothesis (H0) and alternative
hypothesis (H1), respectively. From Equation (18), the function p(D|u0)

p(D|u1)
forms the Bayes

factor. This is the proportion of the likelihoods of the posterior distribution. However, we
represented the function (Bayes factor) in our model as B f n where ntakes values of 10 and
01 of the permission sample size in the ith variable group expressed as:

B fn =
p(u0|D)

p(u1|D
× p(u1)

p(u0)
(17)

J. Cybersecur. Priv. 2021, 1 720

These factors represent the two sides of the research hypothesis at a stretched beta
prior value range of −1 to 1 using density ratio. Our Bayesian correlation model was
formulated using Pearson’s correlation coefficient represented as ρ. At ρ = 0 under B f 01
and posterior under H1 expressed as:

Bf01 =
p(D|H0)

p(D|H1)
=

p(ρ = 0|D, H1)

p(ρ = 0|H1)
(18)

Bf10 =
p(D|H1)

p(D|H0)
=

p(ρ = 1|D, H0)

p(ρ = 1|H0)
(19)

In the alternative hypothesis, u1 instantiates the presence of correlation between
permission requests variables represented as H1: ρ 6= 0. Using Jeffrey’s prior [89], we assign
prior distribution correlation under the null hypothesis to take uniform default values
between the range −1 to +1 as a default ρ. This was relative to the alternative hypothesis
using two population correlation coefficients, namely Pearson’s rho and Kendall’s tau. The
two correlation coefficients were used for the posterior and prior comparison of our model
(as shown in Figure 11).

Figure 11. Sequential analysis of the empirical evidence of dangerous permission with high threat levels.

4.5.1. Pearson Correlation

The non-parametric function in our study helps to measure how permission request
variables correlate to each other. Given x and y as permission variables contained in the
Android malware dataset, the Pearson correlation is expressed as:

r =
nΣxi + yi − Σxi + Σyi√

nΣx2
i − (Σxi)

2
√

nΣy2
i − (Σyi)

2
(20)

The n represents the sample size in the dataset distribution. In determining r, we
assumed that all the permission request variables in the dataset were normally and equally
distributed according to the principle of variable homoscedasticity [90–92]. Otherwise, the
principle of variable heterogeneity [93] sets in. Let τ represent the heterogeneity that occurs in
the Android data set D. We represent the group-level effect size with µ. The Bayes factor B f n
then propagates a heterogeneity factor written as B fr f and B f f r under prior H1 and random
factor H1 (as shown in Figure 12). At this instance, the B f10 gives the Bayesian inference
while B f01 is automatically set to zero. This helps in accepting or rejecting the null hypothesis.
We assumed that when heterogeneity occurs in the permission distribution, the Bayes factor
becomes heterogeneous for H1. Table 4 shows the posterior estimate of the model.

J. Cybersecur. Priv. 2021, 1 721

Figure 12. Flag supported correlation when permission distribution is heterogeneous in the sample
distribution. (a) Model Effect size. (b) Heterogeneity. (c) Bayes factors heterogeneity. (d) Posterior
model probabilities.

Table 4. Posterior estimate of the model.

Mean SD Lower Upper BF10

Fixed effects µ 5.585 0.274 5.030 6.117 2.8x1084

Random
effects µ 5.588 0.276 5.049 6.124 7.2x1051

τ 0.209 0.163 0.010 0.601 0.291 a

Averaged µ b 5.586 0.273 5.045 6.119 ∞

τ c 0.291
Where µ is the group-level effect size which forms the mean in the distribution. a Bayes factor of the random
effects H1 over the fixed effects H1. Posterior estimates are based on the models that assume an effect to be
present. The Bayes factor is based on all four models: fixed effects H1 and random effects H1 over the fixed effects
H0 and random effects H0. c Model averaged posterior estimates for τ.

From the data set variables, selecting four of the Android permissions requests:
READ_SMS, CALL_PHONE, RECEIVE_SMS, and WRITE_SMS of n total sample pop-
ulation of the permission variables, the Pearson r was determined using the p-value and
the VS-MPR (https://doi.org/10.17862/cranfield.rd.13363322.v1 (accessed on 2 August
2021)). As shown demonstrated in Figure 13, Pearson r takes a value range between −1
and 1. The r value measures the potency of the correlation between the data variables
under examination. Using the rule of Thumb postulated by Guildford [94] to determine the
degree of correlation between permission requests, our research states that if the value of r
is greater than 0, there is a positive correlation between the Android permission variables.

https://doi.org/10.17862/cranfield.rd.13363322.v1

J. Cybersecur. Priv. 2021, 1 722

Figure 13. Pearson’s correlation coefficient for some selected permission variables.

If the value of r is less than 0, then there is a negative association that exists between
the threat level and the protection level. However, if r turns close to 0, it implies that the
correlation existing between permissions is weak. The correlation between two permissions
is considered very strong if the value of r is greater than 0.7. In a situation where the
correlation between the permissions request is negatively correlated, the result of the
p-value is less than 0.001, expressed as p < 0.1.

4.5.2. Spearman Correlation

A non-parametric check measures the level of magnitude of how two or more per-
missions requests in the dataset are associated with one another. However, our research
only focused on determining the degree of correlation between two permissions and not
multi-permissions variables association. We assumed that the scores in each permission
request are uniformly associated with other permission requests. Given the sample size n
and the rank difference di between the corresponding permission variables, the Spearman
correlation p, between two permission requests is expressed as:

ρ =
1− 6Σdi

n(n2 − 1)
(21)

Let us consider some permission requests from the sample space n = 112. The degree
of ranking between any of the two permission variables helps in ordering the observation
of their correlation magnitude. The ranking order demonstrates that the higher the p-value
existing between two permission requests, the lower the value of Spearman ρ and vice
versa. If Spearman ρ and the p-value are inversely proportional, the correlation between
the threat level and the protection level of a permission request is inversely proportional
to each other (https://doi.org/10.17862/cranfield.rd.13363322.v1 (accessed on 2 August
2021)). Figure 14 shows Spearman’s rho correlation coefficients of some selected variables.

https://doi.org/10.17862/cranfield.rd.13363322.v1

J. Cybersecur. Priv. 2021, 1 723

Figure 14. Spearman’s rho correlation coefficients.

4.5.3. Kendall Correlation

Kendall correlation measures the stability of how two permission variables depend
on each other. For instance, if we consider four permission variables say: WRITE_SM,
SEND_SMS, RECEIVE_SMS, and READ_SMS with a sample size n, according to [95,96],
the composite number of matches between two variables can be expressed as n(n− i)/2.
The Kendall correlation between the variables can be expressed as:

τ =
nc − nd

1/2(n− 1)
(22)

where nc and nd represent the number of concordance and discordance, respectively. The
number of concordances ensures an even ordering of permission variables while discor-
dance orders permission variables heterogeneously or abnormally. The p-value took a
range of p < 0.05 p < 0.01 p < 0.001. The -Sellke Maximum p –Ratio (VS-MPR) was Based on
the p-value, where the maximum possible odds in favor of H1 over H0 equals 1/(-e plog(p))
for p ≤ 0.37, as shown in Figure 15.

As shown in Figure 15, it is only the correlation between RECEIVE_SMS and WRITE_SMS
that has τ = 1. It, therefore, means that it is only the correlation between RECEIVE_SMS and
WRITE_SMS that captures the exact non-linearity that exists in all the four selected permission
request variables. The stability of dependence tends to increase as the sample size increases.
When correlating a few variables, there is no significant difference in the appearance of the
scatter plots of the plotted variables. However, the difference becomes clearer when the sample
size increases (https://doi.org/10.17862/cranfield.rd.13363322.v1 (accessed on 2 August 2021)).

4.6. Comparison of the Correlation Coefficients

This sub-section of the research paper compares the correlation coefficients under
study: Pearson, Spearman, and Kendall’s tau-b. The comparison aims to test the statistical
significance to assess if the critical value is less than the observed value. This will help in
rejecting the null hypothesis under study. During this study, we observe that the correlation
line is difficult to identify at extreme negative values example, r = −0.172, ρ = −0.243, and
τ = −0.120. This shows that a correlation is weak in those instances. However, it becomes
more visible and clearer as the correlation becomes stronger. The order of permissions
requests in the correlation is not significant but provides the only evidence of association,

https://doi.org/10.17862/cranfield.rd.13363322.v1

J. Cybersecur. Priv. 2021, 1 724

not causation. As shown in Figure 16, the positive values and the negative values indicate
a positive and negative association between the permission requests, respectively.

Figure 15. Kendall’s tau-b correlation coefficient for some selected permission variables.

Figure 16. Correlation at different degrees of coefficient strengths.

Extreme observations are affected and strongly impacted by the correlation coefficient.
This signifies that the value of extreme values decreases as the number of samples increases.
This information is necessary to help us conduct further analysis to provide additional
information about the relationship between threat level and protection level of each permis-

J. Cybersecur. Priv. 2021, 1 725

sion request. The overall correlation table that compared the results of the three correlation
coefficients generated by our model (https://doi.org/10.17862/cranfield.rd.13363322.v1
(accessed on 2 August 2021)). The correlation heatmap for Spearman’s rho, Pearson’s r
correlation, and Kendall’s tau-b correlation heatmaps (https://doi.org/10.17862/cranfield.
rd.13363322.v1 (accessed on 2 August 2021)).

4.7. Threat and Protection Levels Evaluation

A threat model can be defined as a well-defined description regarding the information
which affects or influence an application’s security. Modeling a threat level involves
information capturing, organization, and analysis to facilitate decision-making concerning
the security threat of an application. Modeling threat helps to identify vulnerabilities and
other risks associated with an application or a system. We acknowledge that dangerous
permissions as threats are hard to address apart from adjusting to their requirements.
Privacy threats caused by dangerous permissions create a serious security risk to users and
system developers.

This subsection of the research focuses not on developing a threat model but on
determining the relationship between threat and protection level in some selected Android
permission requests. Understanding the threat level of permission is significant to classify
permission to be normal or dangerous. The implication is that if the permission access
granted has not much negative effect on that resource; such a permission request has a
low threat level while the device has high protection level at that instance. Consider a
malicious Android application requesting permissions to access the camera resource of the
mobile device when the user does not open a feature that necessitates using the camera, it
looks so suspicious. Using Bayesian hierarchical modeling was deployed in our research to
estimate the relationship between protection and threat level in each permission request by
an Android malicious application. In our approach, we defined the two concepts as Level 1
for protection level and Level 2 for threat level, respectively.

Level 1: Protection level. Protection level indicates the possible risk suggested in
Android permission and the process a device should adhere to when deciding whether
allow an application access system resources. In our model, it is represented as the observed
data in the distribution of the permissions selected from the sample space. Let ϕ and ∂
denote true variance values, and ϕε and ∂ε represent their respective errors associated with
their distribution. We then state that for each ith observation taken values from 1 to N
represented as i = 1 . . . N, their observed data values assume values with respect to their
errors and variances respectively written as:

ˆ
ϕi ∼ Normal

(
ϕi,σ2

ϕεi

)
(23)

∂̂ ∼ Normal
(

∂i,σ2
∂εi

)
(24)

From Equations (15) and (16), σ2
ϕε i and σ2

∂ε i
represent the assumed know priori error

variances for ϕ and ∂. The error variances across the observation N do not assume homo-
geneity, but each of the ith observations assumed their unique individual error variances.

Level 2: Threat level. This is meant to provide a distinct indication of the probability
of a malicious attack on a mobile device. In our model, threat level represents the inferred
parameters for ϕi and ∂i observations. The informed parameters assumed bivariate normal
distribution with their respective means and variances. Let the mean and variance parame-
ters be defined as Mean: µ ∈ R; Variance: σ2 ∈ R+ with a support x ∈ R where R assumes
the value {0, 1} properly written as x ∈ {0, 1}. The two parameters are functions of the two
moments E(X) = µ and Var(X) = σ2, respectively. Additionally, let µϕ and µ∂ be the mean
for the inferred parameters α, which forms the effect size of the distribution given as:

µ =

(
µϕ

µ∂

)
(25)

https://doi.org/10.17862/cranfield.rd.13363322.v1
https://doi.org/10.17862/cranfield.rd.13363322.v1
https://doi.org/10.17862/cranfield.rd.13363322.v1

J. Cybersecur. Priv. 2021, 1 726

The covariance confusion matrix estimated from the prior distribution of the selected
sample set is given as:

Cov(ϕ, ∂) =

(
σ2

ϕ

ρσϕσ∂

ρσϕσ∂

σ2
∂

)
(26)

The values of the prior of µϕ and µ∂ are set to be large (−1, 1) according to Jeffreys’
principles [97] to generate no uniformity for its distribution while the prior for the variance,
σϕ and σ∂ are equally set with the same dimension to prior distribution uninformative. The
advantage of setting in this dimension is to enhance the automatic adjustment of ρ when
a new data variability source that could result in observations uncertainty is added to it.
Specifically, ϕ̂ and ∂̂ observations shrink in the direction of their matching class mean. In
the model, if the observed parameters are highly dispersed than the inferred parameters,
then permission should consider having a higher threat level than the protection level.

The relationship between level 1 (protection level) and level 2 (threat level) with data
density distribution using RM factor. The result of the correlation between the observed
(protection level) and the inferred (threat level) as shown in Figure 17. This demonstrates that
the posterior distribution of the observed correlation is decreased to lower values compared to
the inferred correlation of the model correspondingly. Figure 17 shows the correlation between
the represented levels estimated at ϕε and ∂ε, respectively. The posterior representation and
the model accuracy in the estimation of the inferred and the observed parameters. The
summary of the evaluation metrics for the model’s precision, recall, F1 score, support, and the
AUC is represented in Table 5, while the results of the model class proportion for the observed
and inferred parameters are represented in Table 4 accordingly.

Figure 18 is the matrix plot for correlation between protection and threat level existing
between permissions. The red color indicates the threat level while the blue indicates the
protection level of individual permissions, which is distributed sparsely in an application.
The denser region shows that the relative correlation between the threat and protection
level between the two permissions is strong. One of the remarkable findings is that each
permission has a protection and threat level. We also identified that Android permissions
with the same protection level have the same threat level. This signifies that such permis-
sions have a similar component plane in their distribution in the sample space. The details
of the correlation model comparison of some selected permissions are presented in Table 6.

Table 5. Evaluation metrics.

Precision Recall F1 Score Support AUC

Protection
level 0.917 1.000 0.957 11 0.996

Threat level 1.000 0.909 0.952 11 0.975

Table 6. Correlation model comparison of some selected permissions.

Models P(M) P(M|data) BF M BF 10 error %

RM Factor 1 + Correlation + SEND_SMS + RECEIVE_SMS + RM
Factor 1 [Correlation 0.050 0.966 535.883 1.000

RM Factor 1 + Correlation + RECEIVE_SMS + RM Factor 2 [
Correlation 0.050 0.034 0.674 0.035 0.070

RM Factor 1 + Correlation + SEND_SMS + RM Factor 3 [
Correlation 0.050 1.044 × 10−21 1.984 × 10−20 1.081 × 10−21 0.537

RM Factor 2 + Correlation + RM Factor 1 [Correlation 0.050 1.005 × 10−29 1.910 × 10−28 1.041 × 10−29 0.979

RM Factor 2 + SEND_SMS + RECEIVE_SMS + RM Factor 2 [
Correlation 0.050 3.255 × 10−38 6.184 × 10−37 3.370 × 10−38 0.411

RM Factor 2 + Correlation + SEND_SMS + RM Factor 3 [
Correlation 0.050 1.184 × 10−38 2.250 × 10−13 1.226 × 10−38 0.321

J. Cybersecur. Priv. 2021, 1 727

Table 6. Cont.

Models P(M) P(M|data) BF M BF 10 error %

RM Factor 3 + Correlation + RECEIVE_SMS + RM Factor 1 [
Correlation 0.050 5.025 × 10−39 9.547 × 10−38 5.203 × 10−39 0.960

RM Factor 3 + RECEIVE_SMS + RM Factor 2 [Correlation 0.050 1.378 × 10−41 2.617 × 10−40 1.426 × 10−41 0.173

RM Factor 3 + Correlation + SEND_SMS + RM Factor 3 [
Correlation 0.050 3.116 × 10−49 5.919 × 10−48 3.226 × 10−49 0.265

Correlation + RECEIVE_SMS 0.050 1.790 × 10−13 3.402 × 10−32 1.854 × 10−33 0.007
Models P(M) P(M|data) BF M BF 10 error %

SEND_SMS + RECEIVE_SMS 0.050 1.347 × 10−13 .559 × 10−32 1.395 × 10−33 0.580

Correlation + SEND_SMS 0.050 8.379 × 10−14 1.592 × 10−32 8.676 × 10−34 0.885

Correlation + SEND_SMS + RECEIVE_SMS 0.050 3.802 × 10−14 7.224 × 10−33 3.937 × 10−34 0.793

Null model (incl. subject) 0.050 7.182 × 10−13 1.365 × 10−37 7.437 × 10−35 0.529

SEND_SMS 0.050 5.468 × 10−13 1.039 × 10−35 5.662 × 10−35 0.740

Correlation 0.050 1.428 × 10−13 2.714 × 10−41 1.479 × 10−35 0.660

Note. All models include subject.

Figure 17. Model posterior distribution showing the correlation between the observed data (protection level) and the
inferred data (threat level). Figure 17a shows the observed and inferred relationship of the RM factor and the density levels
as detailed in Table 6. Figure 17b shows the protection and threat level correlation model output which demonstrates how
the inferred and observed parameters in Figure 17c are related with reference to the ROC curve (Figure 17d).

J. Cybersecur. Priv. 2021, 1 728

Figure 18. Plot Matrix showing exploratory plane analysis visualization of the correlation between threat and protection
level in permissions. The red color indicates the threat level, while the blue indicates the protection level which forms the
guarded region.

To segregate individual permissions and visualize their threat and protection level,
we adopted a minimization approach [98]. Consider two permission parameters ϕ and ∂
represent two different random variables. Let ϕ represent the observed random variable and
∂ the unobserved, respectively. Let the minimization factor in the observed random variable
be ϕε and ∂ε, respectively. The separate factor between ϕ and ∂ parameters is given as:

C∂ = ϕ + ϕε (27)

ϕ = ∂ + ∂ε (28)

Figure 19 shows the sum of weights of individual permissions in relation to their
protection and threat level.

To minimize error in the separation factor, we assumed that the minimization factor in
both the observed and unobserved random parameters are distributed normally with their
respective variances. Let the variances in the normal distribution for ϕε and ∂ε be σ2

ϕε and
σ2

∂ε
. The correlation that exists between ϕ and ∂ with their given variances is minimized

and expressed as:

ρ =
σϕ∂√
σ2∂σ2ϕ

(29)

Using Behseta Bayesian correlation principles [99], error minimization in ρ is expressed
as follows:

ρ =
σϕ∂√(

σ2
ϕ + σ2

ϕε

)
+ (σ2

∂ + σ2
∂ε
)

(30)

J. Cybersecur. Priv. 2021, 1 729

However, if an error in the measurement is not correlated with the observed and
unobserved random parameters, then the correlation of the unobserved parameter is
greater than that of the observed random parameters accordingly.

Figure 19. Exploratory factor plane visualization of permissions threat and protection level class correlation.

5. Results and Discussion

This section of the paper discusses some of the results obtained from the model
and their implications. The research identifies the relationship between the protection
and the threat level permission could present. In presenting the result, we selected a
few permissions to test their threat and protection level relationship based on our model
formulation. Using the correlation tables, the rest of the permissions can be tested by any
researcher, mobile security experts, and Android users to determine the correlation that
exists between the threat and protection level of each permission request. The Boxplots
(Figure 20) and the distribution plots (Figure 21) for some permissions and their threat and
protection levels relationship. We observed that the threat level is higher than the protection
level in the ACCESS_CAMERA and READ_PHONE_STATE, respectively. On the other
hand, the protection level in the RECORD_AUDIO and WRITE_EXTERNAL_STORAGE
is higher than the threat level posed by those permission variables. Figure 22 shows the
threat level of sensitive API extracted by our methodology.

J. Cybersecur. Priv. 2021, 1 730

Figure 20. Boxplots showing correlation between protection and threat level of some selected
dangerous permission variables.

We observed that each permission has a threat and protection level. Android permis-
sions with the same protection level have the same threat level Figure 23, especially if they
are in the same. Permissions in the same clusters have similar densities and attributes.
We observe that permissions that are in the same cluster may exhibit similar attributes
and if coming from a malicious application, such permissions behave similarly in their
effects (Appendix A shows details of how the cluster tree was formed using a decision tree
algorithm). This implies that if any of them request access, the other ones in the same set
will tend to execute some functionalities in the background.

The research identifies that permissions are interposed in sets and can only be asso-
ciated with a set with higher density. According to the results produced by the model,
Bayes factors that are one-sided signify substantiation for the non-existence of correlation
between threat level and protection level for both the inferred and observed relationship.
However, this is not the situation in Android applications. As shown in Figure 23, the result
shows that Android malicious applications have different threat levels. Under the risk
heading, the threat level posed by an application is ranked from 1 to 10 using rectangular
dots. If the risk level of an application to a device is more than 6, our model classifies the
permission as dangerous based on the protection level of the permission name. Conversely,
if permission has a protection level whose threat level is less than 7, our method classifies
such permission as dangerous.

From the result obtained, we can infer that if a malicious application has a low threat
level, it is highly unlikely for such an application to dangerously infect a mobile device.
At a moderate threat level, an attack on a device is potential but not likely. However, in
substantial threat level applications, attack on mobile devices is likely and highly likely in
severe threat levels (ranked up to 7 in our model). Permissions requested by applications
with severe threat levels are likely to be dangerous permissions, as illustrated in Figure 24.
Applications with critical threat level (ranked from 8 to 10 in our model) are highly likely to
infect a mobile application and could request a combination of both normal and dangerous
permissions.

J. Cybersecur. Priv. 2021, 1 731

Figure 21. Scatter plots showing the protection and threat level of each permission per count.

Figure 22. Visualization of some sensitive API showing their path index, threat level, caller code, and operation.

J. Cybersecur. Priv. 2021, 1 732

Figure 23. Classifying protection and threat level of certain permissions based on their usage.

J. Cybersecur. Priv. 2021, 1 733

Figure 24. Android applications threat level classification.

During clustering analysis, the results obtained (as shown in Figure 25) demonstrated
that most permissions in the same cluster have similarities in the feature distribution.
For instance, READ_CALL_LOG and RECORD_AUDIO have some similarities in their
structural distribution as can be seen in RECEIVE_SMS and WRITE_SMS respectively.
This also demonstrated that permission in the same cluster have relevant features that
are correlated.

J. Cybersecur. Priv. 2021, 1 734

Figure 25. Cluster density plots showing dangerous permission-based clustering. (a) Permissions in cluster 1. (b) Permis-
sions in cluster 2. (c) Permissions in cluster 3. (d) Permissions in cluster 4.

We observe that correlated permissions usually appear in locations that are the same.
This suggests that Android applications that request CALL_LOG, SMS, or any permission
sets that are correlated, similar permission sets will be requested underground and will
be operational in the same region. Permissions in the same region execute frequent tasks
such as read SMS and access audio and camera, among others. However, not all frequent
permissions are dangerous. For example, a permission request to access the internet does

J. Cybersecur. Priv. 2021, 1 735

not invoke internet access control obtained by an application. We then inferred that internet
permission does not support adequately grained management or control of the device
resources. Comparatively, rather than use direct permission features to gain control of a
device, malware authors may define some functionalities as access control. This aids in
specifying how the malicious program can communicate with pre-defined applications
to access the resources in question without necessarily requesting permission related
to such resources. Based on the results obtained, we recommend improvement in the
permission model of Android OS by differentiating internet permission access and other
similar permissions into distinct groups and classes. Let a clear mechanism be provided
for specifying Android permissions that are correlated with device resources. When the
access control list is specified, this will help permissions definition by developers without
using permissions attributes that are self-defined. For Android, numerous permissions
have effects on Android end users and even developers. It is then pertinent to configure a
system to help understand each permissions’ action concerning the device resources rather
than over-requesting them by the developers simply because they want an app to function.
This could be a good security strategy in preventing a malware infection on mobile devices
in general. However, studying actions associated with each permission is beyond the scope
of our research.

Attackers and Permission Request to Escalate Its Privileges

This subsection provides a short description of how an attack leveraged misplaced trust
in a permission request to escalate its privileges as illustrated in Figure 26. Malware, like
any other program, can potentially execute any permission from a standard user to root
(administrator) based on the context it was originally executed within. However, an Android
application version that has less permission is not restricted to access components of a more
privileged application. For instance, consider X, Y, and Z represent three different Android
applications, each running in its own sandbox and having two components. In application
Z, component Zz1 is protected by permission p1. Similarly, Zz2 by p2. Application Y is
granted permission p1; hence, YZ1 and YZ2 can access Zz1. However, Y is not protected by
any permission, and its components are publicly accessible. X does not have any permissions,
but its component Zx1 can access Zx1. Zx1 is not accessible to Zz1 directly since it does not have
permission p1; however, it can do so through component XY1. This is a privilege escalation
attack since the privileges of application X are escalated by the attacker to the privileges of
application Z indirectly through Y, which indicates transitive usage of permission privileges.
To prevent this kind of permission escalation attack, application Y must ensure that another
application calling it must have permission p1.

Figure 26. Demonstrating how an attack leveraged misplaced trust in a permission request to escalate its privileges.

J. Cybersecur. Priv. 2021, 1 736

6. Conclusions

In this work, we carried out factor analysis to determine the correlation between
dangerous permission variables for Android malware samples using Bayesian correlation.
The aim is to establish if there is a correlation in the set of a given permission request
variables. This method is to assist in the analysis of the Android permissions security
structure. Using SOM and t-SNE techniques, we visualized the Android malware data
set by applying exploratory factor plane analysis, which reviewed patterns in which
permissions are related. Large data set consisting of 12,267 malicious and 10,837 benign
applications with different categories were used for the experiments.

Our results demonstrate our model can correctly recognize the correlation between
dangerous permissions. We identified that permissions that are in the same protection
level have the same threat level. Visualization results indicate that most permissions in the
large subcategory were requested by very few Android applications, while frequently used
permissions were those in the small subcategory. This signifies that there is no adequate
expressiveness from permissions that are requested frequently. We infer that those not
frequently requested could be disintegrated into the common class. As a result, we suggest
adding finer granularity as a security approach for Android permissions that are frequently
requested by applications will enhance this expressiveness and enhance Android security,
especially when combined with the ones occasionally requested.

In general, this method will facilitate researchers infer correlation in the presence of
estimation uncertainties in distributed clusters of Android permissions. The understanding
of high threat permission will assist in enforcing security parameters at the permission
security system of the Android platform and other mobile OS. These findings are significant
for offering insights to assist mobile users in making low-risk decisions during application
installations and when granting access to applications that have high threat levels, espe-
cially when similar permission names with the same protection level are requested. This
provides insight to researchers and android users to infer the latent relationship between
(1) Android permission requests from malicious Android applications; (2) the threat level
and protection level of a permission request; and (3) to understand how a single grant of
one permission may trigger background actions of others that are correlated with similar
attributes. Although our model used three correlation coefficients, further research can
be conducted on using more correlation coefficient parameters to model the relationship
between permissions based on their threat and protection level. We used only the Android
malware data set for this model; we suggest that malware data set from other mobile
platforms could be used as a further study to explore their permissions architecture using
our methodology.

In conclusion, with the number of malicious applications increasing daily at a very fast
rate, vulnerabilities are also increasing, making the platform for attackers wider. Thus, there
is a need for a technique that provides a complete solution against permission privilege
escalation attacks along with satisfying all the usability requirements. In the future, the
impact on the security of Android users and vendors using Android permissions at different
protection levels might be studied vigorously. Other permission systems on other mobile
operating systems could be investigated, such as Windows and iOS. Moreover, further
studies could investigate more if the defined permissions of the existing applications are
fully utilized by them, or they are classified as over-privileged applications.

Author Contributions: Conceptualization, methodology, software, M.A.; validation, S.M.; original
draft preparation, M.A.; writing—review and editing M.A. and S.M.; supervision, S.M.; project
administration, S.M.; funding acquisition, M.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Petroleum Technology Development Fund (PTDF), grant
number PTDF/ED/PHD/AMA/1245/17/17.

J. Cybersecur. Priv. 2021, 1 737

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the nature of the dataset [malicious
files].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Decision Cluster Tree
Tree

android.permission.DISABLE_KEYGUARD > 0.500
| android.permission.SEND_SMS > 0.500
| | android.permission.CALL_PHONE > 0.500: cluster_0 {cluster_0=33, cluster_1=0, cluster_2=0,

cluster_3=0}
| | android.permission.CALL_PHONE ≤ 0.500: cluster_1 {cluster_0=0, cluster_1=1, cluster_2=0,

cluster_3=0}
| android.permission.SEND_SMS ≤ 0.500
| | android.permission.ACCESS_WIFI_STATE > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=3}
| | android.permission.ACCESS_WIFI_STATE ≤ 0.500: cluster_2 {cluster_0=0, cluster_1=0,

cluster_2=3, cluster_3=0}
android.permission.DISABLE_KEYGUARD ≤ 0.500
| android.permission.READ_PHONE_STATE > 0.500
| | android.permission.INTERNET > 0.500
| | | android.permission.RECEIVE_SMS > 0.500
| | | | android.permission.WRITE_SMS > 0.500
| | | | | type > 0.500: cluster_1 {cluster_0=0, cluster_1=18, cluster_2=0, cluster_3=0}
| | | | | type ≤ 0.500: cluster_3 {cluster_0=0, cluster_1=0, cluster_2=0, cluster_3=1}
| | | | android.permission.WRITE_SMS ≤ 0.500
| | | | | android.permission.READ_CONTACTS > 0.500
| | | | | | android.permission.CALL_PHONE > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=1}
| | | | | | android.permission.CALL_PHONE ≤ 0.500: cluster_1 {cluster_0=0, cluster_1=1,

cluster_2=0, cluster_3=0}
| | | | | android.permission.READ_CONTACTS ≤ 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=12}
| | | android.permission.RECEIVE_SMS ≤ 0.500
| | | | type > 0.500
| | | | | android.permission.ACCESS_NETWORK_STATE > 0.500
| | | | | | android.permission.ACCESS_WIFI_STATE > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=92}
| | | | | | android.permission.ACCESS_WIFI_STATE ≤ 0.500
| | | | | | | android.permission.READ_CONTACTS > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=8}
| | | | | | | android.permission.READ_CONTACTS ≤ 0.500
| | | | | | | | android.permission.VIBRATE > 0.500: cluster_2 {cluster_0=0, cluster_1=0,

cluster_2=1, cluster_3=0}
| | | | | | | | android.permission.VIBRATE ≤ 0.500
| | | | | | | | | android.permission.GET_TASKS > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=2}
| | | | | | | | | android.permission.GET_TASKS ≤ 0.500
| | | | | | | | | | android.permission.RECEIVE_BOOT_COMPLETED > 0.500: cluster_3

{cluster_0=0, cluster_1=0, cluster_2=0, cluster_3=2}
| | | | | | | | | | android.permission.RECEIVE_BOOT_COMPLETED ≤ 0.500: cluster_2

{cluster_0=0, cluster_1=0, cluster_2=1, cluster_3=0}
| | | | | android.permission.ACCESS_NETWORK_STATE ≤ 0.500

J. Cybersecur. Priv. 2021, 1 738

| | | | | | android.permission.ACCESS_COARSE_LOCATION > 0.500: cluster_3 {cluster_0=0,
cluster_1=0, cluster_2=0, cluster_3=9}

| | | | | | android.permission.ACCESS_COARSE_LOCATION ≤ 0.500
| | | | | | | android.permission.CHANGE_WIFI_STATE > 0.500: cluster_3 {cluster_0=0,

cluster_1=0,
cluster_2=0, cluster_3=2}

| | | | | | | android.permission.CHANGE_WIFI_STATE ≤ 0.500
| | | | | | | | android.permission.ACCESS_FINE_LOCATION > 0.500: cluster_3 {cluster_0=0,

cluster_1=0, cluster_2=0, cluster_3=1}
| | | | | | | | android.permission.ACCESS_FINE_LOCATION ≤ 0.500: cluster_2 {cluster_0=0,

cluster_1=0, cluster_2=6, cluster_3=0}
| | | | type ≤ 0.500
| | | | | android.permission.ACCESS_COARSE_LOCATION > 0.500: cluster_3 {cluster_0=0,

cluster_1=0, cluster_2=0, cluster_3=3}
| | | | | android.permission.ACCESS_COARSE_LOCATION ≤ 0.500
| | | | | | android.permission.CHANGE_WIFI_STATE > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=1}
| | | | | | android.permission.CHANGE_WIFI_STATE ≤ 0.500: cluster_2 {cluster_0=0, cluster_1=0,

cluster_2=8, cluster_3=0}
| | android.permission.INTERNET ≤ 0.500: cluster_2 {cluster_0=0, cluster_1=0, cluster_2=5,

cluster_3=0}
| android.permission.READ_PHONE_STATE ≤ 0.500
| | android.permission.CHANGE_WIFI_STATE > 0.500
| | | android.permission.ACCESS_COARSE_LOCATION > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=2}
| | | android.permission.ACCESS_COARSE_LOCATION ≤ 0.500
| | | | android.permission.ACCESS_NETWORK_STATE > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=1}
| | | | android.permission.ACCESS_NETWORK_STATE ≤ 0.500
| | | | | android.permission.READ_CONTACTS > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=1}
| | | | | android.permission.READ_CONTACTS ≤ 0.500: cluster_2 {cluster_0=0, cluster_1=0,

cluster_2=4, cluster_3=0}
| | android.permission.CHANGE_WIFI_STATE ≤ 0.500
| | | android.permission.ACCESS_COARSE_LOCATION > 0.500
| | | | android.permission.ACCESS_WIFI_STATE > 0.500: cluster_3 {cluster_0=0, cluster_1=0,

cluster_2=0, cluster_3=2}
| | | | android.permission.ACCESS_WIFI_STATE ≤ 0.500: cluster_2 {cluster_0=0, cluster_1=0,

cluster_2=5, cluster_3=0}
| | | android.permission.ACCESS_COARSE_LOCATION ≤ 0.500: cluster_2 {cluster_0=0, cluster_1=0,

cluster_2=169, cluster_3=0}

References
1. Almomani, I.M.; Al Khayer, A. A Comprehensive Analysis of the Android Permissions System. IEEE Access 2020, 8, 216671–216688.

[CrossRef]
2. Peng, S.; Cao, L.; Zhou, Y.; Xie, J.; Yin, P.; Mo, J. Challenges and Trends of Android Malware Detection in the Era of Deep Learning.

In Proceedings of the 2020 IEEE 8th International Conference on Smart City and Informatization (iSCI), Guangzhou, China, 31
December 2020–1 January 2021; pp. 37–43. [CrossRef]

3. Ren, Z.; Wu, H.; Ning, Q.; Hussain, I.; Chen, B. End-to-end malware detection for android IoT devices using deep learning. Ad
Hoc Netw. 2020, 101, 102098. [CrossRef]

4. Hussain, S.J.; Ahmed, U.; Liaquat, H.; Mir, S.; Jhanjhi, N.; Humayun, M. IMIAD: Intelligent Malware Identification for Android
Platform. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi
Arabia, 3–4 April 2019; pp. 1–6. [CrossRef]

5. Faruki, P. AndroSimilar: Robust Statistical Feature Signature for Android Malware Detection. In Proceedings of the 6th
International Conference on Security of Information and Networks, Aksaray, Turkey, 26–28 November 2013; pp. 152–159.

http://doi.org/10.1109/ACCESS.2020.3041432
http://doi.org/10.1109/isci50694.2020.00014
http://doi.org/10.1016/j.adhoc.2020.102098
http://doi.org/10.1109/iccisci.2019.8716471

J. Cybersecur. Priv. 2021, 1 739

6. Feng, J.; Shen, L.; Chen, Z.; Wang, Y.; Li, H. A Two-Layer Deep Learning Method for Android Malware Detection Using Network
Traffic. IEEE Access 2020, 8, 125786–125796. [CrossRef]

7. Yu, L.; Guan, X.; Fan, M.; Luo, X.; Liu, T.; Liu, J. Android malware detection: A survey. Sci. Sin. Inf. 2020, 50, 1148–1177.
[CrossRef]

8. Ashawa, M.; Morris, S. Host-Based Detection and Analysis of Android Malware. Int. J. Inf. Secur. Res. 2019, 9, 871–880. [CrossRef]
9. Ashawa, M.; Morris, S. Analysis of Android Malware Detection Techniques: A Systematic Review. Int. J. Cyber-Secur. Digit.

Forensics 2019, 8, 177–187. [CrossRef]
10. Felt, A.P.; Chin, E.; Hanna, S.; Song, D.; Wagner, D. Android permissions demystified. In Proceedings of the 18th ACM conference

on Computer and communications security, Chicago, IL, USA, 17–21 October 2011; pp. 627–638. [CrossRef]
11. Felt, A.P.; Ha, E.; Egelman, S.; Haney, A.; Chin, E.; Wagner, D. Android permissions: A perspective combining risks and benefits.

In Proceedings of the Eighth Symposium on Usable Privacy and Security (SOUPS ‘12). Association for Computing Machinery,
New York, NY, USA, 11–13 July 2012; pp. 1–14. [CrossRef]

12. Kesler, R.; Kummer, M.E.; Schulte, P. Mobile Applications and Access to Private Data: The Supply Side of the Android Ecosystem.
SSRN Electron. J. 2018, 17, 17–75. [CrossRef]

13. Nguyen-Vu, L.; Ahn, J.; Jung, S. Android Fragmentation in Malware Detection. Comput. Secur. 2019, 87, 101573. [CrossRef]
14. Ifip, A.; Conference, W.G.; Hutchison, D. Data and Applications Security and Privacy XXVII; Springer: Cham, Switzerland, 2013.
15. Wei, X.; Gomez, L.; Neamtiu, I.; Faloutsos, M. Permission evolution in the Android ecosystem. In Proceedings of the 28th Annual

Computer Security Applications Conference (ACSAC ‘12), Association for Computing Machinery, New York, NY, USA, 3–7
December 2012; pp. 31–40. [CrossRef]

16. Gorski, S.A.; Enck, W. ARF: Identifying redelegation vulnerabilities in Android system services. In Proceedings of the 12th
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec ‘19). Association for Computing Machinery, New
York, NY, USA, 15–17 May 2019; pp. 151–161. [CrossRef]

17. Monrose, F.; Dacier, M.; Blanc, G.; Garcia-Alfaro, J. Research in Attacks, Intrusions, and Defenses. In Proceedings of the 19th
International Symposium, RAID 2016, Paris, France, 19–21 September 2016.

18. Zhauniarovich, Y.; Gadyatskaya, O. Small Changes, Big Changes: An Updated View on the Android Permission System; Sringer: Cham,
Switzerland, 2016; pp. 346–367. [CrossRef]

19. Mahmood, R.; Mirzaei, N.; Malek, S. EvoDroid: Segmented Evolutionary Testing of Android apps; Springer: Cham, Switzerland, 2014;
pp. 599–609. [CrossRef]

20. Gallingani, D.; Zanero, S.; Venkatakrishnan, V.N. Practical exploit generation for intent message vulnerabilities in android.
In Proceedings of the 5th ACM Conference on Data and Application Security and Privacy (CODASPY ’15). Association for
Computing Machinery, New York, NY, USA, 2–4 March 2015; pp. 155–157. [CrossRef]

21. Elish, K.O.; Yao, D.D.; Ryder, B.G.; Tech, V. On the need of precise inter-app ICC classification for detecting Android malware
collusions. In Proceedings of IEEE Mobile Security Technologies (MoST), in Conjunction with the IEEE Symposium on Security
and Privacy. 2015. Available online: https://www.ieee-security.org/TC/SPW2015/MoST/papers/s2p4.pdf (accessed on 9 July
2021).

22. Pektaş, A.; Acarman, T. Deep learning for effective Android malware detection using API call graph embeddings. Soft Comput.
2019, 24, 1027–1043. [CrossRef]

23. Cao, S.; Sun, X.; Bo, L.; Wei, Y.; Li, B. BGNN4VD: Constructing Bidirectional Graph Neural-Network for Vulnerability Detection.
Inf. Softw. Technol. 2021, 136, 106576. [CrossRef]

24. Wu, Y.; Lu, J.; Zhang, Y. Vulnerability Detection in C/C ++ Source Code with Graph Representation Learning. In Proceedings
of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Nevada, NV, USA, 27–30
January 2021; pp. 1519–1524.

25. Alasmary, H.; Abusnaina, A.; Jang, R.; Abuhamad, M.; Anwar, A.; Nyang, D.; Mohaisen, D. Soteria: Detecting Adversarial
Examples in Control Flow Graph-based Malware Classifiers. In Proceedings of the 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020; pp. 888–898. [CrossRef]

26. Feng, Y.; Chen, L.; Zheng, A.; Gao, C.; Zheng, Z. AC-Net: Assessing the Consistency of Description and Permission in Android
Apps. IEEE Access 2019, 7, 57829–57842. [CrossRef]

27. Rashidi, B.; Fung, C.; Nguyen, A.; Vu, T.; Bertino, E. Android User Privacy Preserving Through Crowdsourcing. IEEE Trans. Inf.
Forensics Secur. 2017, 13, 773–787. [CrossRef]

28. Wang, X.; Li, C.; Song, D.; Wang, C. CrowdNet: Identifying Large-Scale Malicious Attacks Over Android Kernel Structures. IEEE
Access 2020, 8, 15823–15837. [CrossRef]

29. Irshad, M.; Al-Khateeb, H.; Mansour, A.; Ashawa, M.; Hamisu, M. Effective methods to detect metamorphic malware: A
systematic review. Int. J. Electron. Secur. Digit. Forensics 2018, 10, 138. [CrossRef]

30. Mishra, P.; Aggarwal, P.; Vidyarthi, A.; Singh, P.; Khan, B.; Alhelou, H.H.; Siano, P. VMShield: Memory Introspection-Based
Malware Detection to Secure Cloud-Based Services Against Stealthy Attacks. IEEE Trans. Ind. Inform. 2021, 17, 6754–6764.
[CrossRef]

31. Joux, A. Attacks on stream ciphers. Taylor and Francis Group, algorithmic cryptanalysis. 2009, pp. 391–414. Available online:
https://www.iacr.org/books/2010_tf_Joux_AlgorithmicCryptanalysis.pdf (accessed on 9 July 2021). [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3008081
http://doi.org/10.1360/SSI-2019-0149
http://doi.org/10.20533/ijisr.2042.4639.2019.0100
http://doi.org/10.17781/P002605
http://doi.org/10.1145/2046707.2046779
http://doi.org/10.1145/2335356.2335360
http://doi.org/10.2139/ssrn.3106571
http://doi.org/10.1016/j.cose.2019.101573
http://doi.org/10.1145/2420950.2420956
http://doi.org/10.1145/3317549.3319725
http://doi.org/10.1007/978-3-319-45719-2_16
http://doi.org/10.1145/2635868.2635896
http://doi.org/10.1145/2699026.2699132
https://www.ieee-security.org/TC/SPW2015/MoST/papers/s2p4.pdf
http://doi.org/10.1007/s00500-019-03940-5
http://doi.org/10.1016/j.infsof.2021.106576
http://doi.org/10.1109/icdcs47774.2020.00089
http://doi.org/10.1109/ACCESS.2019.2912210
http://doi.org/10.1109/TIFS.2017.2767019
http://doi.org/10.1109/ACCESS.2020.2965954
http://doi.org/10.1504/IJESDF.2018.090948
http://doi.org/10.1109/TII.2020.3048791
https://www.iacr.org/books/2010_tf_Joux_AlgorithmicCryptanalysis.pdf
http://doi.org/10.1201/9781420070033-17

J. Cybersecur. Priv. 2021, 1 740

32. Yuan, Y.; Wu, L.; Zhang, X.; Yang, Y. Side-channel collision attack based on multiple-bits. In Proceedings of the 2017 11th IEEE
International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 27–29 October 2017; pp. 1–5.
[CrossRef]

33. Song, L.; Tang, Z.; Li, Z.; Gong, X.; Chen, X.; Fang, D.; Wang, Z. AppIS: Protect Android Apps Against Runtime Repackaging
Attacks. In Proceedings of the 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen,
China, 15–17 December 2017; pp. 25–32. [CrossRef]

34. Arnaldy, D.; Perdana, A.R. Implementation and Analysis of Penetration Techniques Using the Man-In-The-Middle Attack. In
Proceedings of the 2019 2nd International Conference of Computer and Informatics Engineering (IC2IE), Banyuwangi, Indonesia,
10–11 September 2019; pp. 188–192. [CrossRef]

35. Aung, Z.; Zaw, W. Permission-Based Android Malware Detection. Int. J. Sci. Technol. Res. 2013, 2, 228–234.
36. Sahin, D.; Kural, O.E.; Akleylek, S.; Kılıç, E. A novel permission-based Android malware detection system using feature selection

based on linear regression. Neural Comput. Appl. 2021, 1–16. [CrossRef]
37. Mcdonald, J.; Herron, N.; Glisson, W.; Benton, R. Machine Learning-Based Android Malware Detection Using Manifest Permis-

sions. In Proceedings of the 54th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2021; p. 6976.
[CrossRef]

38. Mathur, A.; Podila, L.M.; Kulkarni, K.; Niyaz, Q.; Javaid, A.Y. NATICUSdroid: A malware detection framework for Android
using native and custom permissions. J. Inf. Secur. Appl. 2021, 58, 102696. [CrossRef]

39. Shahriar, H.; Islam, M.; Clincy, V. Android malware detection using permission analysis. SoutheastCon 2017, 2017, 1–6. [CrossRef]
40. Al Ajrawi, S.; Agrawal, A.; Mangal, H.; Putluri, K.; Reid, B.; Hanna, G.; Sarkar, M. Evaluating business Yelp’s star ratings using

sentiment analysis. Mater. Today Proc. 2021. [CrossRef]
41. Paper, F. Latent Semantic Indexing: An overview. Techn. Rep. INFOSYS 2000, 240, 1–16.
42. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H. Significant Permission Identification for Machine-Learning-Based Android

Malware Detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]
43. Arora, A.; Peddoju, S.K.; Conti, M. PermPair: Android Malware Detection Using Permission Pairs. IEEE Trans. Inf. Forensics Secur.

2019, 15, 1968–1982. [CrossRef]
44. Khariwal, K.; Singh, J.; Arora, A. IPDroid: Android Malware Detection using Intents and Permissions. In Proceedings of the 2020

Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp.
197–202. [CrossRef]

45. Wang, H.; Li, Y.; A Khan, S.; Luo, Y. Prediction of breast cancer distant recurrence using natural language processing and
knowledge-guided convolutional neural network. Artif. Intell. Med. 2020, 110, 101977. [CrossRef]

46. Wu, X.; Zhao, Y.; Radev, D.; Malhotra, A. Identification of patients with carotid stenosis using natural language processing. Eur.
Radiol. 2020, 30, 4125–4133. [CrossRef]

47. Peddoju, S.K.; Upadhyay, H.; Soni, J.; Prabakar, N. Natural Language Processing based Anomalous System Call Sequences
Detection with Virtual Memory Introspection. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 455. [CrossRef]

48. 2Xipeng, Q.I.U.; Tianxiang, S.U.N.; Yige, X.U.; Yunfan, S.; Ning, D.A.I.; Xuanjing, H. Pre-trained models for natural language
processing: A survey. Sci. China Technol. Sci. 2020, 63, 1–26. [CrossRef]

49. Vu, L.N.; Jung, S. AdMat: A CNN-on-Matrix Approach to Android Malware Detection and Classification. IEEE Access 2021, 9,
39680–39694. [CrossRef]

50. Mahindru, A.; Singh, P. Dynamic Permissions based Android Malware Detection using Machine Learning Techniques. In
Proceedings of the 10th Innovations in Software Engineering Conference, Jaipur, India, 5–7 February 2017; pp. 202–210.
[CrossRef]

51. Leeds, M.; Keffeler, M.; Atkison, T. A comparison of features for android malware detection. In Proceedings of the SouthEast
Conference, New York, NY, USA, 13–15 April 2017; pp. 63–68. [CrossRef]

52. Zhang, L.; Ji, Q. A Bayesian Network Model for Automatic and Interactive Image Segmentation. IEEE Trans. Image Process. 2011,
20, 2582–2593. [CrossRef] [PubMed]

53. Sullivan, J.; Blake, A.; Isard, M.; MacCormick, J. Object localization by Bayesian correlation. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1068–1075. [CrossRef]

54. Dahman, G.; Flordelis, J.; Tufvesson, F. Cross-Correlation of Large-Scale Parameters in Multi-Link Systems: Analysis Using the
Box-Cox Transformation. IEEE Access 2018, 6, 13555–13564. [CrossRef]

55. Sarder, P.; Schierding, W.; Cobb, J.P.; Nehorai, A. Estimating Sparse Gene Regulatory Networks Using a Bayesian Linear
Regression. IEEE Trans. NanoBioscience 2010, 9, 121–131. [CrossRef] [PubMed]

56. Safayani, M.; Momenzadeh, S.; Mirzaei, A.; Razavi, M.S. A latent variable model for two-dimensional canonical correlation
analysis and the variational inference. Soft Comput. 2020, 24, 8737–8749. [CrossRef]

57. Bai, H.; Xie, N.; Di, X.; Ye, Q. FAMD: A fast multifeature Android malware detection framework, design and implementation.
IEEE Access 2020, 8, 1. [CrossRef]

58. Zhang, X.; Lashkari, A.H.; Ghorbani, A.A. Classifying and clustering malicious advertisement uniform resource locators using
deep learning. Comput. Intell. 2020, 37, 511–537. [CrossRef]

59. Ahirwal, R.R.; Ahke, M. Elliptic Curve Diffie-Hellman Key Exchange Algorithm for Securing Hypertext Information on Wide
Area Network. Int. J. Comput. Sci. Inf. Technol. 2013, 4, 363–368.

http://doi.org/10.1109/icasid.2017.8285732
http://doi.org/10.1109/icpads.2017.00015
http://doi.org/10.1109/ic2ie47452.2019.8940872
http://doi.org/10.1007/s00521-021-05875-1
http://doi.org/10.24251/hicss.2021.839
http://doi.org/10.1016/j.jisa.2020.102696
http://doi.org/10.1109/secon.2017.7925347
http://doi.org/10.1016/j.matpr.2020.12.137
http://doi.org/10.1109/TII.2017.2789219
http://doi.org/10.1109/TIFS.2019.2950134
http://doi.org/10.1109/worlds450073.2020.9210414
http://doi.org/10.1016/j.artmed.2020.101977
http://doi.org/10.1007/s00330-020-06721-z
http://doi.org/10.14569/IJACSA.2020.0110559
http://doi.org/10.1007/s11431-020-1647-3
http://doi.org/10.1109/ACCESS.2021.3063748
http://doi.org/10.1145/3021460.3021485
http://doi.org/10.1145/3077286.3077288
http://doi.org/10.1109/TIP.2011.2121080
http://www.ncbi.nlm.nih.gov/pubmed/21356618
http://doi.org/10.1109/iccv.1999.790391
http://doi.org/10.1109/ACCESS.2018.2797418
http://doi.org/10.1109/TNB.2010.2043444
http://www.ncbi.nlm.nih.gov/pubmed/20650703
http://doi.org/10.1007/s00500-020-04906-8
http://doi.org/10.1109/ACCESS.2020.3033026
http://doi.org/10.1111/coin.12422

J. Cybersecur. Priv. 2021, 1 741

60. Barrera, D.; Kayacik, H.G.; van Oorschot, P.C.; Somayaji, A. A methodology for empirical analysis of permission-based security
models and its application to android. In Proceedings of the 17th ACM conference on Computer and communications security,
Chicago, IL, USA, 4–8 October 2010. [CrossRef]

61. Wang, Y.; Han, F.; Zhu, L.; Deussen, O.; Chen, B. Line Graph or Scatter Plot? Automatic Selection of Methods for Visualizing
Trends in Time Series. IEEE Trans. Vis. Comput. Graph. 2017, 24, 1141–1154. [CrossRef] [PubMed]

62. Schlegel, S.; Korn, N.; Scheuermann, G. On the Interpolation of Data with Normally Distributed Uncertainty for Visualization.
IEEE Trans. Vis. Comput. Graph. 2012, 18, 2305–2314. [CrossRef]

63. Lee, J.; Son, H.; Lee, G.; Lee, J.; Cho, S.; Lee, S. Deep color transfer using histogram analogy. Vis. Comput. 2020, 36, 1–15. [CrossRef]
64. Van Der Maaten, L. Accelerating t-SNE using Tree-Based Algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245.
65. Arora, S. An Analysis of the t-SNE Algorithm for Data Visualization. In Proceedings of the Conference on Learning Theory,

Stockholm, Sweden, 5–9 July 2018; Volume 75, pp. 1–8.
66. Faradonbeh, R.S.; Haghshenas, S.S.; Taheri, A.; Mikaeil, R. Application of self-organizing map and fuzzy c-mean techniques for

rockburst clustering in deep underground projects. Neural Comput. Appl. 2019, 32, 8545–8559. [CrossRef]
67. Teanby, N. An icosahedron-based method for even binning of globally distributed remote sensing data. Comput. Geosci. 2006, 32,

1442–1450. [CrossRef]
68. Contagio Malware Dump. Available online: https://www.impactcybertrust.org/dataset_view?idDataset=1273 (accessed on 12

July 2021).
69. VirusShare. VirusShare.com—Because Sharing is Caring. Available online: https://virusshare.com/login (accessed on 9 July

2021).
70. AndroZoo. AndroZoo Access Conditions. Available online: https://androzoo.uni.lu/access (accessed on 9 July 2021).
71. Impact Cyber Trust. The Drebin Dataset. Available online: https://www.impactcybertrust.org/dataset_view?idDataset=1372

(accessed on 9 July 2021).
72. Ashawa, M.; Morris, S. Android Permission Classifier: A deep learning algorithmic framework based on protection and threat

levels. Secur. Priv. 2021, 4, e164. [CrossRef]
73. Van Erven, T.; Harremoës, P. Rényi Divergence and Kullback—Leibler Divergence. IEEE Trans. Inform. Theory 2014, 60, 3797–3820.

[CrossRef]
74. Aronsson, J.; Butt, K.; Jeffrey, I.; I Okhmatovski, V. The Barnes–Hut Hierarchical Center-of-Charge Approximation for Fast

Capacitance Extraction in Multilayered Media. IEEE Trans. Microw. Theory Tech. 2010, 58, 1175–1188. [CrossRef]
75. Khan, M.; Shah Khan, S. Data and Information Visualization Methods, and Interactive Mechanisms: A Survey. Int. J. Comput.

Appl. 2011, 34, 975–8887.
76. Myasnikov, E. Nearest Neighbor Search in Hyperspectral Data Using Binary Space Partitioning Trees. In Proceedings of the

11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The
Netherlands, 24–26 March 2021; pp. 1–4. [CrossRef]

77. Nielsen, F. Bregman vantage point trees for efficient nearest neighbor queries. In Proceedings of the 2009 IEEE International
Conference on Multimedia and Expo, New York, NY, USA, 28 June–3 July 2009; pp. 878–881.

78. Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [CrossRef]
79. Manera, M. Exploratory Factor Analysis of Rainbow Trout Serum Chemistry Variables. Int. J. Environ. Res. Public Health 2021, 18,

1537. [CrossRef] [PubMed]
80. Viloria, A.; Bucci, N.; Luna, M.; Lis-Gutiérrez, J.-P.; Parody, A.; Bent, D.E.S.; López, L.A.B. Determination of Dimensionality of the

Psychosocial Risk Assessment of Internal, Individual, Double Presence and External Factors in Work Environments; Springer: Cham,
Switzerland, 2018; pp. 304–313. [CrossRef]

81. Matzke, D.; Ly, A.; Selker, R.; Weeda, W.D.; Scheibehenne, B.; Lee, M.D.; Wagenmakers, E.-J. Bayesian Inference for Correlations
in the Presence of Measurement Error and Estimation Uncertainty. Collabra Psychol. 2017, 3, 25. [CrossRef]

82. Tan, P.; Filter, A.P. An Adaptive Particle Filter Based on Posterior. In Proceedings of the 2010 8th World Congress on Intelligent
Control and Automation, Jinan, China, 7–9 July 2010; pp. 5886–5890.

83. An, E.; Ctor, I. Modeling heavy-tailed bounded data by the trapezoidal beta distribution with applications. Revstat. Appear 2021,
1–19.

84. Tonhauser, J.; Matthewson, L. Empirical Evidence in Research on Meaning. Master’s Thesis, The Ohio State University and
University of British Columbia, Ohio, OH, USA, 2015; pp. 2010–2015.

85. Vinkenburg, C.J.; Weber, T. Managerial career patterns: A review of the empirical evidence. J. Vocat. Behav. 2012, 80, 592–607.
[CrossRef]

86. Balakrishnan, N.; Chimitova, E.; Galanova, N.; Vedernikova, M. Testing Goodness of Fit of Parametric AFT and PH Models with
Residuals. Commun. Stat. Simul. Comput. 2013, 42, 1352–1367. [CrossRef]

87. Wanke, P.; Chen, Z.; Zheng, X.; Antunes, J. Sustainability efficiency and carbon inequality of the Chinese transportation system: A
Robust Bayesian Stochastic Frontier Analysis. J. Environ. Manag. 2020, 260, 110163. [CrossRef] [PubMed]

88. Zhang, J.-T.; Zhou, B.; Guo, J.; Liu, X.; Ibm, X.-A. A Modified Bartlett Test for Heteroscedastic Two-way MANOVA. J. Adv. Stat.
2016, 1. [CrossRef]

89. Niemi, J. Parameter Estimation. Norm. Model 2015, 1–35.
90. Parra-Frutos, I. Testing homogeneity of variances with unequal sample sizes. Comput. Stat. 2012, 28, 1269–1297. [CrossRef]

http://doi.org/10.1145/1866307.1866317
http://doi.org/10.1109/TVCG.2017.2653106
http://www.ncbi.nlm.nih.gov/pubmed/28092562
http://doi.org/10.1109/TVCG.2012.249
http://doi.org/10.1007/s00371-020-01921-6
http://doi.org/10.1007/s00521-019-04353-z
http://doi.org/10.1016/j.cageo.2006.01.007
https://www.impactcybertrust.org/dataset_view?idDataset=1273
https://virusshare.com/login
https://androzoo.uni.lu/access
https://www.impactcybertrust.org/dataset_view?idDataset=1372
http://doi.org/10.1002/spy2.164
http://doi.org/10.1109/TIT.2014.2320500
http://doi.org/10.1109/TMTT.2010.2045536
http://doi.org/10.1109/whispers52202.2021.9484041
http://doi.org/10.1016/j.neunet.2012.09.018
http://doi.org/10.3390/ijerph18041537
http://www.ncbi.nlm.nih.gov/pubmed/33562845
http://doi.org/10.1007/978-3-319-93803-5_29
http://doi.org/10.1525/collabra.78
http://doi.org/10.1016/j.jvb.2012.02.001
http://doi.org/10.1080/03610918.2012.659824
http://doi.org/10.1016/j.jenvman.2020.110163
http://www.ncbi.nlm.nih.gov/pubmed/32090849
http://doi.org/10.22606/jas.2016.12006
http://doi.org/10.1007/s00180-012-0353-x

J. Cybersecur. Priv. 2021, 1 742

91. Sataeva, T.S.; Lemeshko, B.Y. About properties and power of classical tests of homogeneity of variances. In Proceedings of the
2016 11th International Forum on Strategic Technology (IFOST), Novosibirsk, Russia, 1–3 June 2016; pp. 350–354. [CrossRef]

92. Ghazal, M.; Amer, A. Homogeneity Localization Using Particle Filters with Application to Noise Estimation. IEEE Trans. Image
Process. 2010, 20, 1788–1796. [CrossRef] [PubMed]

93. Lu, M. An embedded method for gene identification problems involving unwanted data heterogeneity. Hum. Genom. 2019, 13, 45.
[CrossRef] [PubMed]

94. Kumar, K. A Beginner’s Guide to Structural Equation Modeling, 3rd ed.; Psychology Press: East Sussex, UK, 2012; Volume 175, no. 3.
95. Jacobs, R.; Smith, P.; Goddard, M. CENTRE FOR H EALTH E CONOMICS Measuring performance: An Examination of Composite

Performance Indicators; Centre of Health Economics, University of York: York, UK, 2004.
96. Hoskins, T.J. Proofs of the Twin Primes and Goldbach Conjectures. arXiv 2019, 1–33.
97. Robert, C.; Chopin, N.; Rousseau, J. Harold Jeffreys’s Theory of Probability Revisited. Stat. Sci. 2009, 24. [CrossRef]
98. Qin, C.; Schlemper, J.; Caballero, J.; Price, A.N.; Hajnal, J.V.; Rueckert, D. Convolutional Recurrent Neural Networks for Dynamic

MR Image Reconstruction. IEEE Trans. Med Imaging 2018, 38, 280–290. [CrossRef] [PubMed]
99. Behseta, S.; Berdyyeva, T.; Olson, C.R.; Kass, R.E. Bayesian Correction for Attenuation of Correlation in Multi-Trial Spike Count

Data. J. Neurophysiol. 2009, 101, 2186–2193. [CrossRef] [PubMed]

http://doi.org/10.1109/ifost.2016.7884125
http://doi.org/10.1109/TIP.2010.2097272
http://www.ncbi.nlm.nih.gov/pubmed/21138803
http://doi.org/10.1186/s40246-019-0228-0
http://www.ncbi.nlm.nih.gov/pubmed/31639059
http://doi.org/10.1214/09-STS284
http://doi.org/10.1109/TMI.2018.2863670
http://www.ncbi.nlm.nih.gov/pubmed/30080145
http://doi.org/10.1152/jn.90727.2008
http://www.ncbi.nlm.nih.gov/pubmed/19129297

	Introduction
	Background
	Android Permission Architecture and Other Components
	Protection Levels and Permission Flags
	Normal Protection Level
	Signature Protection Level
	Dangerous Protection Level
	Signature or System Protection Level

	Intent Message
	API Calls

	Related Work
	Permission-Based Detection and Feature Extraction
	Control Flow Graph and Information Gain
	Bayesian Correlation, Opcode Sequence, and t-Distribution Stochastic Neighbor Embedding (t-SNE)

	Materials and Methods
	Data Set
	The t-Distribution Stochastic Neighbor Embedding
	The Self-Organizing Map (SOM)
	Exploratory Factor Analysis
	Correlation between Android Permissions
	Pearson Correlation
	Spearman Correlation
	Kendall Correlation

	Comparison of the Correlation Coefficients
	Threat and Protection Levels Evaluation

	Results and Discussion
	Conclusions
	Decision Cluster Tree
	References

