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Abstract: In the mapping and assessment of mountain hazard susceptibility using machine learning
models, the selection of model parameters plays a critical role in the accuracy of predicting models.
In this study, we present a novel approach for developing a prediction model based on random forest
(RF) by incorporating ensembles of hyperparameter optimization. The performance of the RF model
is enhanced by employing a Bayesian optimization (Bayes) method and a genetic algorithm (GA)
and verified in the Wudu section of the Bailong River basin, China, which is a typical hazard-prone,
mountainous area. We identified fourteen influential factors based on field measurements to describe
the “avalanche–landslide–debris flow” hazard chains in the study area. We constructed training (80%)
and validation (20%) datasets for 378 hazard sites. The performance of the models was assessed using
standard statistical metrics, including recall, confusion matrix, accuracy, F1, precision, and area under
the operating characteristic curve (AUC), based on a multicollinearity analysis and Relief-F two-step
evaluation. The results indicate that all three models, i.e., RF, GA-RF, and Bayes-RF, achieved good
performance (AUC: 0.89~0.92). The Bayes-RF model outperformed the other two models (AUC
= 0.92). Therefore, this model is highly accurate and robust for mountain hazard susceptibility
assessment and is useful for the study area as well as other regions. Additionally, stakeholders can
use the susceptibility map produced to guide mountain hazard prevention and control measures in
the region.

Keywords: mountain hazard chains; susceptibility assessment; machine learning; Bayes-RF mode;
geographic information system

1. Introduction

The accelerated growth and proliferation of urban areas have led to a marked es-
calation in the vulnerability of mountainous regions to an array of geological hazards,
encompassing landslides, avalanches, and debris flows [1]. Landslides and avalanches pro-
vide a solid material supply for debris flows and always develop directly into debris flows
in the routing processes (Figure 1). In other words, those cascading processes ultimately
convert to fatal disaster chains under certain conditions (i.e., triggered by precipitation,
earthquakes, and human activities), which we define herein as mountain hazards account-
ing for catastrophic loss to the world’s economy and the production and security of people’s
lives and property [2,3]. According to China’s 2019 National Geological Disaster Bulletin,
among the 6181 geological disasters that have occurred in the country, 95.5 were triggered
by natural factors, while only 4.5% were triggered by human factors. The direct economic
loss of these disasters is USD 434 million. Mainly due to the unforeseen stochastic character-
istics of the conditioning factors as well as the chain and cascading features of the disaster
processes, the developing processes of mountain hazards always have significant and
complicated multivariate nonlinear characteristics. Therefore, assessing the susceptibility
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to mountain hazards while scientifically, accurately and rapidly seeking effective solutions
for disaster risk mitigation is not only a key academic issue but is also urgently needed to
allow the government and stakeholders to make land use and risk management strategy
decisions [4,5].
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Figure 1. Schematic diagram of cascading hazard chains.

Conventional geological hazard susceptibility assessments are mainly classified into
two distinct groups: qualitative and quantitative. Qualitative evaluations mainly rely on
the experience and knowledge of experts in field investigations and the attributes of disaster
susceptibility. Judgments are made based on the literature, and the disaster susceptibility is
evaluated by the empirical method with strong subjectivity. Quantitative evaluations, in
contrast, emphasize the use of mathematical models as the basis and predict the occurrence
of disasters based on the calculation results of mathematical models, presenting them in a
quantitative form, which is more objective than qualitative evaluation methods.

Over the last three decades, although many models and methodologies for disaster
risk evaluation have been applied, few models have proven to be preferable for providing
effective evaluation modeling solutions [6,7]. In the past 10 years, with the technolog-
ical progress of GIS, remote sensing, and GPS, conventional mathematical and statis-
tical models and machine learning models, such as the weight of evidence, frequency
ratio [8,9], even and parallel models [10], and other methods for constructing weighted
index systems [11], have been widely used for disaster susceptibility assessments. Studies
have shown that conventional mathematical and statistical models, such as the informative
model, are affected by the size and grading of raster image elements and do not reflect
the nonlinear relationship between disasters and their underlying environmental factors,
while machine learning models can accurately detect the data structure and efficiently
predict the occurrence of disasters. According to the literature, there are many frequently
used machine learning models, including logistic regression [12,13], decision trees [14,15],
random forests (RFs) [16,17], support vector machines (SVMs) [18–20], Bayesian algorithms
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(Bayes) [21,22], genetic algorithms (GAs) [23], and artificial neural networks (ANNs) [24,25].
However, there is no consensus on which machine learning model is most suitable for
susceptibility modeling due to the different predisposing factors of geological hazards, the
quality of databases, and the selection of machine learning models. Sameen [26] presented
a deep learning-based approach for landslide susceptibility assessment, using 1D-CNN
and Bayesian optimization. The method shows high accuracy and outperforms ANN and
SVM models in complex situations. Sun [27] used a Bayesian algorithm to establish an
optimized logistic regression model and a random forest model for the landslide suscepti-
bility evaluation with hyperparameter optimization and concluded that the AUC value
of the test dataset in the optimized model increased by 10% in the random forest model,
and the AUC value of the test dataset in the logistic regression model increased by 4%.
The random forest model had better stability and predictive power than the two cases
that required hyperparameter optimization. All of the related research demonstrated that
machine-learning-based models perform well in susceptibility assessments. However, it
appears that these models have only been used for single hazard types rather than the cas-
cading hazard chains mentioned above. Consequently, it is necessary for the susceptibility
of mountain hazard chains to be studied under changing environmental conditions.

China has experienced some of the most serious geological disasters in the world. As
China is located at the intersection of the mid-latitude global natural disaster belt and the
Pacific Rim disaster belt in the northern hemisphere and has a mountainous landscape
and strong crustal movement, diverse and serious natural disasters occur widely. This
has gradually become an obvious obstacle to the construction of ecological security and
high-quality economic development in recent years. In this study, based on a sufficient
field survey and data collection on the developing features of mountain hazard chains in
the Longnan mountainous area in China, while taking the Wudu section of the Bailong
River basin (i.e., Wudu District) where mountain hazards are particularly common as an
example, 14 influencing factors—elevation, slope, aspect, plane curvature, profile curvature,
distance to a road, distance to a river, distance to a fault, roughness, lithology, normalized
difference vegetation index (NDVI), terrain moisture index (TWI), ground cover type, and
precipitation—were selected for the integrated datasets. Two novel model frameworks
were developed with the Bayesian algorithm and genetic algorithm embedded into the RF
model, and a performance analysis of the three different machine learning models was then
conducted. Finally, mountain hazard susceptibility mapping was conducted, and the model
performance and robustness as well as the accuracy were evaluated. The hybrid RF–Bayes
machine learning model and the ensemble modeling approaches established are expected
to provide effective theoretical guidance for the predictive modeling of vulnerability in
other geographically similar areas while putting insight into the application of data-driven
models on earth science systems.

2. Study Area and Data
2.1. Study Area

The Wudu District is located in the southeast of Longnan City, Gansu Province within
the Yangtze River basin between latitudes 32◦47′ and 33◦42′ N and longitudes 104◦34′ and
105◦38′ E. The whole region covers an area of 4683 km2 with a north–south longest span
of 100.8 km and an east–west widest span of 76.2 km. It is composed of 36 townships,
643 villages, and a total population of about 546,600. The main stream of the Bailong River
flows in from the northwest and out from the southwest, and most of the G212 highway is
arranged along the Bailong River (Figure 2). As the study area is in the north subtropical
semihumid climate zone, the climate is characterized by frequent rainfall from May to
September (accounting for 75–85% of the total annual precipitation of 400–900 mm), which
is also the season of the high rates of avalanches, landslides, and debris flow disasters. The
high and middle mountain erosion structures in the study area are mainly distributed in
the north–central and southern parts and the southern mountainous area of the Bailong
River, consisting of metamorphic sandstone, sand slate, and tuff, with an elevation of
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1000–3600 m and a relative elevation difference of 1000–1500 m. Landslides and avalanches
occur frequently in this area, especially in the steep mountains with deep gullies and valleys.
The mountains in the north–central area are mainly composed of phyllite rock, metamorphic
sandstone, chalk, and tertiary sandstones dated from the Devonian period, together with
sandstone, shale and mudstones from the Cretaceous and Tertiary periods. They are prone
to landslides, avalanches, and debris flows due to the weak and loose geotechnical bodies,
sparse vegetation, and fragmentation. In recent years, climate-warming-induced extreme
rainfall events, population growth, urbanization, and other human activities have led to
an increasing number of mountain disasters, having serious impacts on the sustainable
development of the mountain ecosystem. The Bailong River basin located in the Longnan
mountainous area, to which the Wudu District belongs, is an earthquake-prone area, so its
internal geological dynamics can provide data on the occurrence of disasters, while data on
precipitation, weathering, and human engineering activities provide external geological
dynamics. Thus, in this work, based on the historical data of 378 typical mountain hazards
in the study area, we conducted a prediction analysis of a mountain hazard susceptibility
assessment based on GIS and machine learning models.
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2.2. Data Preparation
2.2.1. Mountain Hazard Inventory

A hazard inventory records the location and time of occurrence of a geological hazard
body as well as the hazard types that leave identifiable traces in an area [28]. The data on
the mountain hazard sites covered in this paper were obtained from historical geohazard
literature published up to 2015 [29,30], field surveys, and the government’s open resource
website (www.ngac.cn, accessed on 1 February 2023). A total of 378 geohazards of various
types were recorded, including 110 landslides, 260 debris flows, and 8 avalanches. Field ob-
servations indicated that landslides and avalanches are generally associated with cascading
processes in the study area, and avalanches and landslides also transform gradually into
debris flows in the routing processes or are entrained by heavy-rainfall-induced flooding
after channel fill and ultimately develop into debris flows and even disasters. During
the formation of these hazard chains, landslides often act as a link between the other two

www.ngac.cn
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processes (Figure 1). According to the implementation rules of the Basic Requirements for
Geological Hazard Investigation and Zoning in Counties (Cities), huge landslides in the
Wudu District account for 27% of all landslides, large landslides account for 47%, medium
landslides account for 6%, and small landslides account for 20%, with the huge and large
landslides being dominant and the medium and small landslides being sporadically dis-
tributed. According to their formation eras, the old landslides (early Holocene) and the
ancient landslides (early Late Pleistocene) account for 69% of all landslides, and the new
landslides (or modern landslides) account for 31% of all landslides [31]. In this study, the
378 hazard sites were used as positive samples (PS), and 378 non-geological hazard sites
were randomly generated as negative samples (NSs) outside the 500 m buffer zone of the
hazard sites. Ultimately, 605 sample points (80%) were used as the training dataset, and
151 sample points (20%) were used as the validation dataset. The collected historical hazard
data revealed that the geological hazards showed the characteristics of being large in num-
ber and having a high distribution density, with landslides occurring in all 43 townships in
the region, making it the center of hazards in the Longnan mountain area [32]. In addition,
statistics along the G212 highway showed an average of one landslide every 2 km on the
roadside, with one landslide developing every 1 km in the serious sections.

In order to ensure the accuracy of the statistics of historical disaster sites where possible
and to provide accurate and reliable data for the subsequent attributes analysis, impact
factor selection, dataset classification testing, model validation, algorithm optimization,
and even the disaster susceptibility assessment based on the hazard inventory, we carried
out field surveys on three of the representative historical disaster sites that have been
active for long periods of time. This was conducted through funding for “Research on the
prevention and control techniques of landslides and debris flows from Longnan section
of the G212 highway (Lanzhou–Chongqing)” (supported by the western transportation
construction science and technology project of Ministry of Transport, China).

As shown in Table 1, the Xiaoshui gully is representative of typical gully debris flows
where flash floods in the gully channel entrain the accumulated avalanches. The new
tectonic movement in this region is characterized by differential vertical movement with
fragmented and easily movable rocks and crevice water development as well as intense
human engineering activities. Under the direct influence of the Wenchuan earthquake
in May 2008, an avalanche occurred. According to onsite measurements, the avalanche
volume was 680,000 m3, resulting in an economic loss of RMB 2 million and representing
the largest typical avalanche event in recent years. The Dujia gully is a typical historical
landslide hazard site, and the landslide body is located on the left bank of the Bailong
River, with the free face positioned directly toward the Bailong River. A field investigation
in August 2015 demonstrated that the exposed bedrock of the landslide body is strongly
and fully weathered with severe extrusion and deformation due to long-term tectonic
movement. The loose cover of the landslide is mainly composed of loess-like clay and
fully weathered phyllite rock rubble soil with a soil stone ratio of 3:7. The surface of the
landslide body is seriously disintegrated and the foot of the slope is scoured, forming
a 20–40 m high scrape with an obvious shear outlet from a large landslide. The Taoshu
gully is a typical, valley-type, dilute debris flow channel with steep terrain on both sides
and an average longitudinal slope of 21.3%. It is a mid-mountain area characterized by a
large topographic relief with a relative elevation difference of 673 m, providing sufficient
potential energy for the initiation of debris flows. The intense rainfall events in this region
are mainly characterized by high intensity, short-duration storms, which can provide
sufficient hydrodynamic conditions for the formation of debris flows. Additionally, the
wide distribution of loose solid materials in the channel provides an abundant natural
supply for the formation of debris flows. Following a landslide disaster in August 2017, a
serious debris flow disaster occurred in August 2020. The site investigation revealed that
the event led to serious channel damming and the destruction and avalanches of part of
the drainage guide dike, posing greater threats to the lives and property of 57 households
and 236 people located downstream.
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Table 1. Attributes of the surveyed hazard sites in the Wudu section of the Bailong River basin.

No. Name Type Time Size (104 m2) Economic Loss (USD) Main Conditioning Factors

1 Dujia gully Landslide August 2015 590 29,000 Lithology, Fluvial erosion
2 Taoshu gully Debris flow August 2020 85 36,369 Topography, k Rainfall
3 Xiaoshui gully Avalanche March 2008 68 29,095 Lithology, Human activity

The fieldwork not only further demonstrates the chain and cascading nature of moun-
tain hazards in the study area but also indicates some of the main influencing factors.

2.2.2. Mountain Hazard Influencing Factors

As hazard susceptibility assessment involves a wide range of factors, the reliability
of field data collection is crucial. To accurately evaluate the background of the study
area, a systematic and scientific index system needs to be established through an analysis
of the historical occurrence of geological hazards as well as the regional natural condi-
tions, geo-environmental conditions, and human activities [33,34]. Therefore, in this work,
14 influencing factors, including elevation, slope, aspect, plan curvature, profile curvature,
distance to a road, distance to a river, distance to a fault, roughness, lithology, NDVI, TWI,
ground cover, and precipitation, were selected to study three perspectives (i.e., topography
and tectonics, external dynamic geological environment, and engineering geological rock
group) in a susceptibility assessment. The analysis of Ning [35] on the conditioning factors
of debris flows and the analysis of Qi [30] on the integration of indicators for geological
hazard assessments in the study area further confirm that the above-mentioned influencing
factors significantly influence the development of landslides, debris flows, and avalanches
in the Wudu district.

In accordance with the results of the field survey and the analysis of the underlying
geological conditions in the study area, seven factors were identified in terms of topography
and tectonics (Figure 3a–g): elevation, slope, aspect, plan curvature, profile curvature,
distance to a fault, and roughness. Firstly, the topographic factors of elevation, slope, and
aspect influence the balance of gravitational forces and the surface movement of soil and
rock materials. Specifically, the steeper the slope is, the greater the gravitational force
is, which consequently increases the potential for landslides. The Wudu mountainous
area, which is controlled by regional tectonics, extends in the east–west direction, with the
highest elevation being 3600 m in the northwest and the lowest being 660 m in the southeast.
The overall topography is characterized by strong gully-dissected, steep mountains, a large
topographic relief, and steep slopes. In this study, a 30 m × 30 m digital elevation model
(DEM) of the study area was derived from ALOS multispectral remote sensing image data
(www.usgs.gov, accessed on 1 February 2023). An analysis of the dataset using ArcGIS
10.8 software revealed that the majority of mountain hazards occurred between 918 and
1214 m with a distribution rate of 34% (Figure 3a). Most hazards are situated within
the slope range of 20–30◦ with nearly no occurrence recorded on slopes exceeding 50◦

(Figure 3b). Although the study area encompasses various hills with different slope aspects,
the distribution of hazards is generally even and demonstrates no significant differences
(Figure 3c). Few hazards occur in flat areas. The curvature factors of the plan and profile
pertain to the topography of the land surface, where concave forms are more susceptible to
the accumulation of water, rocks, and debris and are thus more prone to landslides. The
plan curvature is the curvature of a curve projected onto a plane, typically the horizontal
plane. It is defined as the reciprocal of the radius of the circle that best fits the curve on
the plane. Given the first and second partial derivatives of a surface, the formula for plan
curvature is

Kp =

(
∂2z∂2y

∂x2 + ∂2z∂2x
∂y2 − 2 ∂2z

∂x∂y
∂x
∂y

)
(

∂x2

∂y2 +
∂y2

∂x2

) 3
2

(1)

www.usgs.gov
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Figure 3. Factors influencing the mountain hazard susceptibility: (a) elevation, (b) slope, (c) aspect,
(d) plan curvature, (e) profile curvature, (f) distance to a fault, (g) roughness, (h) distance to a road,
(i) distance to a river, (j) NDVI, (k) TWI, (l) ground cover, (m) precipitation, (n) lithology.
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The profile curvature is the curvature of the curve that is normal to the contour lines
of the surface. It is an important factor when modeling the flow of water over a surface.
Given the slope (S) and the second partial derivatives of the surface, the formula for the
profile curvature can be given as

Kt =

∂2z
∂x2

∂x2

∂y2 +
∂2z
∂y2

∂y2

∂x2 − 2 ∂2z
∂x∂y

∂x
∂y(

1 +
(

∂z
∂x

)2
+
(

∂z
∂y

)2
) 3

2
(2)

In terms of the plan curvature and profile curvature, the majority of the hazard sites are
located in areas where the curvature of the ground contours is relatively gentle (Figure 3d,e).

The distance between the hazard and fault is another critical influencing factor for
mountain hazards, where the shorter the distance between the hazard and the fault is,
the higher the probability of triggering dynamic events, such as earthquakes or fault
rupture, resulting in debris flows or landslides. The geotechnical fragmentation, complex
structural deformation, and poor stability in the vicinity of the fault and fracture zones
are obvious, and the number of hazard sites decreases as the distance from the fracture
increases (Figure 3f).

Finally, roughness, based on the terrain surface complexity, influences the transporta-
tion and accumulation of debris, thereby increasing the potential for debris flows. The
units of measurement for roughness are typically meters (m), representing the degree of
deviation from a perfectly flat surface. Roughness, often denoted as Ra, is a measure of
the texture of a surface. It is quantified by the vertical deviations of a real surface from its
ideal form. One way to calculate roughness is by using the arithmetic average (mean) of
the absolute values of the surface height deviations from the mean line within a sampling
length. The formula for roughness (Ra) can be expressed as follows:

Ra =
1
L

∫ L

0
|y(x)− y|dx (3)

Previous results indicated that landslides, avalanches, and debris flows mainly develop
in locations with high levels of slope roughness, as such conditions are not conducive to the
diversion of precipitation, thus accelerating the alteration of the physical and mechanical
characteristics of the rock by groundwater which, in turn, leads to landslides, debris flows,
and avalanches [36]. On the other hand, the occurrence of mountain hazards in the study
area decreases significantly as the slope roughness increases (Figure 3g, also see Appendix A
for detail).

The development of landslides, avalanches, and debris flows is controlled by the
internal dynamics of the environment and is also influenced by the external dynamics.
External dynamic factors are often the direct cause of the above-mentioned mountain
hazards. In this study, six factors were selected as the external dynamic geoenvironmental
factors (Figure 3h–m): distance to road, distance to river, NDVI, TWI, ground cover, and
precipitation. Since the Holocene, human activities have gradually become the main trigger
for geological hazards. The distance to a road and river factors affect the distribution of
water and the stability of slopes. Roads and rivers can trigger landslides and other hazards
through the excavation or diversion of water. Their proximity can also impact debris flow
transportation and accumulation, increasing the likelihood of a disaster. We applied ArcGIS
10.8 to extract the Euclidean distances of roads and rivers based on the road and river data
already collected in the study area (www.tianditu.gov.cn, accessed on 1 February 2023) and
concluded that 62.43% of the hazards occurred within 600 m of the roads, and 46.3% of the
hazards occurred within 600 m of the rivers (Figure 3h,i).

The Normalized Difference Vegetation Index (NDVI) is a measure of the vegetation
coverage and productivity. It plays a crucial role in terrain stability, erosion control, and
regulation of the water cycle. Vegetation prevents erosion, increases soil cohesion, and

www.tianditu.gov.cn
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regulates infiltration rates. The higher the NDVI, the greater the vegetation coverage, and
it lowers the likelihood of the occurrence of landslides and other hazards. The vegetation
cover within the study area was calculated according to the NDVI proposed by Xu [37].
If there is good vegetation cover on the ground, the rate of erosion is very slow due to
the shading of plants and the consolidation of roots, and most geological hazards occur in
areas with sparse vegetation cover (Figure 3j). The Topographical Wetness Index (TWI) [38]
provides comprehensive information on the hydrological characteristics of the terrain,
which are essential for the management of mountainous areas. Surface runoff and soil
moisture are key factors that influence the slope stability and the occurrence of landslides.
The equations provided by Obled [39] and Tarboton [40] were used to calculate the TWI
and to assess the development of geohazards in the context of the spatial distribution
characteristics of soil moisture (Figure 3k). The ground cover fraction denotes the surface
area covered by different types of ground cover, such as rock, soil, vegetation, and water.
The characterized slope stability, erosion control, rainfall infiltration, and runoff gathering
capacity are all relevant factors for mountain hazard assessments. Ground cover data
provided by Globeland 30 (www.globallandcover.com, accessed on 1 February 2023) were
used to count nine different land use types in the study area, with 15.24% of the land being
used for human activities and representing 46.83% of all hazard occurrences. Compared to
the 84.06% vegetation cover and the corresponding 49.74% hazard occurrence, it is clear
that human activities have a significant impact on hazard occurrence (Figure 3l). Finally,
precipitation plays an essential role in hazardous mountain processes. The precipitation
intensity and duration can influence the soil saturation, pore pressure, and slope stability,
increasing the potential for landslides and other hazards to occur. We produced rainfall
contour maps for the study area based on the annual average rainfall data recorded at
19 stations at the National Meteorological Science Data in China (data.cma.cn, accessed on
1 February 2023) (Figure 3m).

Lithology and engineering geological rock formations are closely linked to the devel-
opment and formation of mountain hazards, and lithology influences and even determines
the characteristics of mountain hazards. Lithology (Figure 3n) was selected to assess the
geology of the region based on statistical data and hazard susceptibility assessments con-
ducted by Ning [41]. In order to rapidly and accurately recognize the lithological factor
grouping on the basis of the 1:500,000 geological maps in the study area and with reference
to the Engineering Rock Classification Standard (2014.GB/T 50218-2014.), the Code for
the Design of Building Foundations (2011.GB 50007-2011.), and the Code for Geotechnical
Investigation (2002.GB 50021-2001.), the rock groups in the study area were divided into
four categories according to their levels of softness and hardness: hard rocks, harder rocks,
softer rocks, soft rocks, and loose rocks.

A dataset was created for the study area of Wudou District, Longnan City, China,
and each subset of influencing factors was treated as a point attribute in the model. We
used 5,164,435 grids, 30 m × 30 m in size, which were selected based on data resolution,
computational requirements, analysis precision, and consistency with prior research. The
grid size is supported by previous studies in hazard-prone areas [42] and aligns with
the ALOS DEM dataset resolution. This choice balances computational efficiency and
processing time, making it suitable for our study. The grids were raster aligned using
‘Alignment Points’ in the projection tool. The raster data were processed to obtain the
attributes of all points from a raster map of the study area, and all data were normalized
before the model was implemented. Finally, the dataset was analyzed and evaluated using
ArcGIS 10.8 software (see Table A1 for the frequency ratio of the influencing factors).

3. Methodology

In this study, we used a hyperparametric optimized machine learning model with
5 main steps for mountain hazard susceptibility mapping (Figure 4). The steps were as
follows: (1) generation of a list of mountain hazards and mountain hazard influencing
factors; (2) influencing factor evaluation and dataset classification; (3) benchmark RF model
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construction; (4) optimization of the RF model using Bayesian and genetic algorithms and
susceptibility mapping; and (5) a mountain hazard susceptibility assessment involving
model validation and comparison.
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3.1. Evaluation of Influencing Factors

The occurrence of disasters is controlled by a variety of influencing factors, and there
are differences in the impacts of individual factors on the occurrence of disasters [43].
Therefore, it is necessary to study the importance and mechanism of each influencing factor
to guide the stability and accuracy of prediction models and aid in disaster prediction and
prevention. As mentioned above, although we initially selected 14 possible gestation factors
related to mountain hazards in the study area through literature research and field surveys,
it was still necessary to identify the sequence of the most significant influencing factors for
modeling purposes. Given the complex nonlinear characteristics of the development of
hazard chains, such as avalanches, landslides, and debris flows, we used a multicollinearity
analysis and relief-F two-step analysis to quantitatively assess and measure the predictive
ability of the 14 influencing factors in order to establish a targeted and highly accurate eval-
uation and prediction model to assess the vulnerability of chain and cascading mountain
hazards in the study area.
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3.1.1. Multicollinearity Analysis

When performing a linear regression model analysis, the independent variables are
prone to correlation with each other, and when serious co-linearity problems occur, unstable
model prediction results can be obtained. In this case, it is necessary to eliminate the
independent variables with significant co-linearity to eliminate the effects of multiple
co-linearity. [44]. The Pearson correlation coefficient method [45] is usually used to quantify
multicollinearity. The values produced range from −1 to 1, where −1 indicates that the two
variables are perfectly negatively correlated, 1 indicates that the two variables are perfectly
positively correlated, and 0 indicates that they are not correlated. In this study, Pearson’s
correlation coefficient was used to detect the correlations between two factors influencing
mountain hazards. A value greater than 0.5 indicates a high correlation. Meanwhile, the
discriminant variance inflation factor (VIF) and tolerance level (TOL) were introduced in
this study. It is generally considered that when VIF > 10, TOL < 0.1, a serious covariance
problem occurs in the model, and the two indicators have logical correspondence. Either
one of them can be chosen. In this study, multiple co-integration tests were conducted for
the 14 disaster impact factors using SPSS 26 software.

3.1.2. Relief-F

Relief-F is an effective quantitative analysis method that is used to evaluate the impor-
tance of factors [46]. It measures the importance of each feature by the correlation statistic
and assigns different weight values. Negative importance is eliminated as a redundancy
factor. In this study, by using Relief-F on the MATLAB 2016b platform, we randomly took
one sample R from the training sample set at a time, found k nearest-neighbor samples of R
from the R sample set, and then found k nearest-neighbor samples from each sample set of
different classes of R. Then, we updated the weight of each feature as shown in (4):

W(A) =
W(A)− Σk

j 1di f f
(

A, R, Hj
)

ΣC /∈ class(R)
[
1− p(class(R))Σk

j=1di f f
(

A, R, Mj(C)
)] (4)

where diff (A, R1, R2) denotes the difference between samples R1 and R2 on feature A, and
MJ(C) denotes the j nearest neighbor sample in C /∈ class(R). As shown in (5),

di f f (A, R1,R2) =


|R1[A]− R2[A]| I f A Is Continuous

0 I f A Is Discrete And R1[A] = R2[A]
1 I f A Is Discrete And R1[A] 6= R2[A]

(5)

3.2. Random Forest (RF)

RF is a “Leatherman” in the field of machine learning, not only having the best
accuracy of any current algorithm but also being able to run large datasets efficiently. RF is
an integration of the decision tree, which extracts multiple training sets from the original
sample set by the Bagging method and performs decision tree modeling for each training
set separately. During the growth of the decision tree, random sampling of the feature set is
performed every time the internal nodes split, and the optimal selection is made from the
extracted feature sets. Finally, the final result is obtained by averaging or voting using the
results of all decision tree calculations [47]. The method of classification prediction using
the RF model is as follows [48–53].

1. A training set is formed by sampling N times from N original samples in the form of
sample bagging. The unsampled samples are called Out-Of-Bag (OOB) data and can
be used to evaluate the model’s performance; this is known as OOB estimation.

2. For each training set, a decision tree is generated. Assuming that the sample has
M features and the number of features F ≤M is specified, F features are randomly
selected from the M features as the split feature set at each internal node of the decision
tree, and the node is split by the best split in the split feature set. The value of F is
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generally kept constant and is usually taken as F = M/3 for the regression and as
shown in (6) for the classification.

F =
√

M (6)

3. Decision trees are generated using classification and regression tree algorithms with
each tree growing freely without pruning.

4. The above steps are repeated k times to obtain a total of k training sets, forming k
decision trees, where each tree corresponding to the unselected sample set forms a
total of k out-of-bag data points.

5. The generated k decision trees form an RF, and a regression analysis or classification
prediction is performed on the new data. When used for regression, the final result is
the mean of the computed results of each tree. When used for classification, the final
result is generated by voting on the results of each tree.

In this study, Python 3.5 was used to build an RF model using the Scikit-learn module.
The basic parameters of the running device used were as follows: 11th Gen IntelI CoITM)
i7-11800H @ 2.30 GHz, and a running memory of 16 GB.

3.3. Optimization Algorithm
3.3.1. Bayesian Hyperparameter Optimization

In machine learning, hyperparameters are parameters that need to be set in advance
during the learning process of a machine learning model, and algorithms are rarely hy-
perparameter free. For all algorithms, some hyperparameters significantly impact the
predictive power, and some hyperparameters significantly impact the predictive accuracy
or the accuracy of the model. Therefore, the rational adjustment of these hyperparameters,
i.e., hyperparameter optimization, is particularly important. However, hyperparameter
optimization is a combinatorial optimization problem. It is not optimized by gradient
descent like normal parameters. The computation used to evaluate a set of hyperparameter
configurations is very difficult, because adjusting individual hyperparameters requires
retraining to evaluate their effects.

Nowadays, more and more hyperparameter optimization processes are performed
using automated methods that aim to find the best hyperparameters in shorter time periods
using a policy-based, informed search. Moreover, no initial setup or additional manual
operations are required other than the manual operations conducted during the process.
Bayesian optimization is the primary choice for optimizing the objective function [54–56].
For most optimization algorithms, it is necessary to assume that the objective function is
known in order to solve the derivative, and the function must be convex, but for some
problems, the objective function position is a nonconvex function in the process of param-
eter tuning, which leads to a huge amount of computation and an insignificant solution
effect. To solve such problems, Bayesian optimization algorithms were developed. In such
algorithms, the posterior distribution of the unknown objective function is approximated
by using prior knowledge, and then the next combination of hyperparameters for sampling
is selected according to the optimal partial objective function. To get as close as possible
to the true objective function, the Bayesian algorithm uses an agent model. Moreover,
the Bayesian optimization algorithm is now widely used in hyperparameter tuning for
machine learning.

3.3.2. Genetic Algorithm (GA) Hyperparameter Optimization

As a classical algorithm, the GA uses a stochastic global search algorithm to simulate
the physical process of natural biological evolution. The basic principle lies in simulating
a population of potential solutions, whereby the initial individuals in this population are
randomly generated. Then, the GA algorithm performs selection, crossover, and mutation
operations on each individual to search for the optimal solution, corresponding to the
principles of survival of the fittest, the recombination of genetic material, and random
mutations observed in nature, respectively. By iterating these three operations, the GA
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can continuously regenerate solutions that approximate the true value until a certain
number of new generations of individuals are generated, and then, the objective function
is recalculated for all individuals of the new generation. The best performing individuals
in the new generation are retained in the next generation according to their fitness levels.
Thus, as each generation reproduces, the fitness function of the entire population decreases.
The process is repeated until the results can no longer be improved.

In this study, the idea of genetic function was used to optimize the parameters, and the
process of parameter optimization can be defined as a multiobjective optimization problem,
i.e., using (7): V −min f (x) =

[
f1(x), f2(x), f3(x), · · · , fp(x)

]T

s, t, x ∈ X
X ⊆ Rm

(7)

where V − min denotes vector minimization, i.e., each subobjective function in the vector
objective f (x) is minimized as much as possible.

The parameter optimization of the genetic function needs firstly to be encoded, and the
encoding is carried out in binary form. The length of the chromosome is selected according
to the types of model parameters, and the number of decimal numbers corresponding to
binary is calculated (Mo et al. 2001) using (8):

x = min +
Decimalnumbers× (max−min)

2Chromosomelength−1 (8)

The initial population is thus generated, and its fitness level is calculated, i.e., the
value of the evaluation criterion for measuring cross-validation. The population enters
the reproduction iteration loop, and reproduction replication is performed according to
different cross-validation and variation ratios. If the set number of iterations is reached, the
reproduction will be terminated; otherwise, the reproduction will be continued, and the
optimal solution will be found in the final population.

3.4. Model Validation and Comparison
3.4.1. Model Performance Evaluation Metrics

In this paper, five commonly used statistical metrics were used to validate the perfor-
mance of the prediction model: Accuracy (ACC), Recall, Precision, F1, and ROC-AUC. The
first four are statistically-based metrics. ACC is the ratio of the number of samples correctly
classified by the model to the total number of samples. Recall is the ratio of the number
of positive samples classified by the model into positive classes to the number correctly
classified by the model. Precision is the ratio of the number of positive samples predicted
as positive classes by the classification model to the sum of samples predicted as positive
classes, and F1 is a composite measure of the recall and precision of the model. ROC and
AUC are metrics used for evaluating classifiers. ROC is the abbreviation for the subject
operating characteristic curve, which is also known as the perceptivity curve. The points on
the curve respond in the same way, and they are all responses to the same signal stimulus.
This differs from results obtained with several judgment criteria. AUC is the abbreviation
for the area under the ROC curve. Usually, the larger the AUC is, the higher the diagnostic
accuracy is. These parameters are commonly used and representative indicators.

3.4.2. Mountain Hazard Susceptibility Mapping

The spatial prediction of geological hazards is a binary classification process [57].
Equal numbers of positive samples (hazard points) and negative samples (nonhazard
points) need to be prepared before model training [58]. In this study, the negative sample
data were randomly generated by ArcGIS 10.8 software outside the 500 m range of positive
samples, after which the positive and negative data were divided into training and test sets
in a ratio of 8:2. The established hazard evaluation model was used to calculate a unique
probability value for each raster cell in the whole study area, which was expressed as the
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hazard susceptibility index of the area. The geometric interval classification method was
used to classify the hazard susceptibility index into five susceptibility classes: very low,
low, medium, high, and very high. This is an effective classification method for classifying
hazard susceptibility values [59,60].

4. Results
4.1. Importance of Influencing Factors

According to the results of the multicollinearity analysis of the influencing factors
(Table 2), the maximum VIF and the minimum TOL values were 5.914 and 0.169, respec-
tively. Therefore, there was no multicollinearity in the factors used in this study.

Table 2. Multicollinearity diagnosis statistics for the 14 conditioning factors.

Variables TOL VIF

Elevation 0.423 2.363
Slope 0.169 5.914

Aspect 0.912 1.097
Plan curvature 0.768 1.302

Profile curvature 0.744 1.345
Distance to a road 0.574 1.741
Distance to a river 0.655 1.528
Distance to a fault 0.792 1.263

Roughness 0.191 5.229
Lithology 0.870 1.150

NDVI 0.441 2.266
TWI 0.732 1.367

Ground cover 0.947 1.056
Precipitation 0.540 1.851

The Pearson correlation coefficient method was used to correlate the 14 factors in
the study area according to the two-step analysis of the multiple covariance and Relief-F
significance analysis, and the results are shown in Figure 5.
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Figure 5. Results of Pearson correlation coefficient analysis (V1 elevation; V2 slope; V3 aspect;
V4 roughness; V5 profile curvature; V6 plan curvature; V7 distance to a road; V8 distance to a fault;
V9 distance to a river; V10 NDVI; V11 TWI; V12 ground cover; V13 precipitation; V14 lithology).

As shown in Figure 5, the correlation coefficient between the slope and roughness is
0.90. As this is greater than 0.50, it indicates a high correlation. Therefore, in this study, the
roughness factor was excluded from the mountain disaster susceptibility modeling process,
and the remaining 13 factors were used for the hazard susceptibility assessment.
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Based on the Relief-F model, the contributions of the 13 influencing factors to the
occurrence of disasters in the study area were obtained. As shown in Figure 6, lithology,
precipitation, and NDVI contribute more to the occurrence of hazards than the other
influencing factors, which is consistent with common perceptions about the causes of
geological hazards [61,62] and is also highly consistent with the results of field survey
investigations in this paper (Table 1). The statistical values of the importance of plane
curvature and profile curvature factors were negative, so these aspects are considered to
be redundant factors that should be eliminated. This result is similar to the results of the
previous reference [63]. Therefore, 11 assessment factors—elevation, slope, aspect, distance
to a road, distance to a river, distance to a fault, lithology, NDVI, TWI, ground cover, and
precipitation—were used for the subsequent model construction.
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4.2. Hyperparametric Optimized RF Model

The RF model contains six hyperparameters: n_estimators, max_features, max_depths,
min_samples_split, min_samples_leaf, and bootstrap. Among these, n_estimators rep-
resents the number of trees in the random forest, max_features is the number of fea-
tures at each split, max_depths is the maximum number of splits each tree can have,
min_samples_split is the minimum number of observations required before a node in the
tree splits, min_samples_leaf is the minimum number of observations required at the end of
each tree’s leaf nodes at the end of each tree, and bootstrap indicates whether bootstrapping
was used to provide the data for each tree in the random forest (bootstrapping is random
sampling with replacements from the dataset). In this study, n_estimators and max_depths,
which had the large impacts on the results, were selected for hyperparameter optimization.
The samples were selected using repeated sampling with replacement sampling, so the
bootstrap value was true.

The Bayesian algorithm was used to optimize the hyperparameters of n_estimators
and max_depths and to obtain the hyperparameter values for each iteration. In the hy-
perparameter optimization process, the accuracy was chosen as a measure of the accuracy
of the model. In this study, through hyperparameter optimization training, the optimal
parameters of the model appeared before the 20th iteration, and the accuracy of the model
could not be improved after 30 iterations. Therefore, for hyperparameter optimization, the
number of iterations was chosen to be 50, and the accuracy of the 10th iteration was 0.942.
The optimal hyperparameters were (n_estimators:96.76385895424721, max_depths: 32).

The Genetic Algorithm (GA) model was optimized with hyperparameters and exe-
cuted for 50 iterations, having an accuracy level of 0.915. The accuracy reached its maximal
value at the 41st iteration, at which point the model exhibited an optimal performance. The
hyperparameters were (n_estimators: 42, max_depths: 27).

In this study, optimization of the hyperparameters of the GA-RF model was carried
out, and 80% of the dataset was used as the training sample for modeling and training.
The selected 11 pregnancy disaster factors were input into the RF model and the GA-RF
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model, respectively, and the susceptibility zoning map was drawn (Figure 7a,b). The
susceptibility index of geological hazards in the study area ranged from 0 to 1. The
GA-RF model-drawn geological hazard susceptibility zoning map of the Wudu District
was divided into five levels using the natural breakpoint method, extremely low (0–0.14),
low (0.15–0.33), medium (0.33–0.52), high (0.52–0.74), and extremely high (0.74–1), with
probability distributions of 30.35%, 31.64%, 17.35%, 12.54%, and 8.12%, respectively. Among
them, the distribution results of the extremely high and high susceptibility zones were
consistent with the results of the RF model-drawn geological hazard susceptibility zoning
map and the historical distribution pattern of geological hazards.
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In this study, optimization of the hyperparameters of the Bayes-RF model was carried
out, and 80% of the dataset was used as the training sample for modeling and training. The
selected 11 pregnancy disaster factors were input into the model, and the susceptibility
index of geological hazards in Wudu District was divided into five levels: extremely low
(0–0.19), low (0.19–0.36), medium (0.36–0.55), high (0.55–0.75) and extremely high (0.75–1),
with probability distributions of 34.27%, 29.13%, 17.19%, 11.37%, and 8.03%, respectively.
The results of the geological hazard susceptibility zoning map drawn by the Bayes-RF
model (Figure 7c) showed that the extremely high and high hazard susceptibility zones are
mainly distributed along the rivers and valleys, where human activities are frequent and
soil erosion is severe. The low susceptibility zones are mainly distributed in areas where
human activities are less frequent, the elevation is higher, and the rock is harder, which is
consistent with the historical distribution of geological hazards.

4.3. Model Validation and Comparison

To measure the overall performance of the models, we utilized the ROC-AUC metric
to validate the training success and prediction ability of two optimization models (GA-RF
and Bayes-RF). The AUC value of the training dataset indicates the success of the model,
while the AUC of the validation dataset represents the predictive ability of the model.

As shown in Figure 8, the AUC values for the training dataset of the GA-RF and
Bayes-RF models were 0.99 and 0.99, respectively. The AUC values for the validation
dataset were 0.91 and 0.92, while the AUC values for the training and validation datasets
of the unoptimized RF model were 0.97 and 0.89, respectively. The difference in the AUC
values of the training dataset indicates that the GA-RF and Bayes-RF models exhibited
good fits (success capability) and outperformed the unoptimized RF model in terms of the
overall performance. However, the Bayes-RF model had a higher success capability for
the training data. Similarly, both optimized models had higher prediction abilities, while
the Bayes-RF model predicted with greater accuracy. To evaluate the merit of the training
dataset, four metrics (i.e., ACC, recall, precision and F1) calculated from the confusion
matrix were applied in the training phase of this study. The results are shown in Table 3.
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Table 3. Confusion matrix for RF, GA-RF and Bayes-RF models.

Model TP TN FP FN ACC Recall Precision F1

RF 302 721 76 41 89.74 88.05 79.89 83.78
GA-RF 354 751 24 11 96.93 96.99 93.65 95.29

Bayes-RF 355 752 23 10 97.11 97.26 93.92 95.56

As demonstrated from the metric assignments, the Bayes-RF model and the GA-
RF model exhibited better fits and higher prediction accuracy levels than the RF model.
However, overall, the training and prediction results of the Bayes-RF model were better
than those of the GA-RF model. Therefore, in the model application presented in this study,
the Bayes-RF model has higher predictive power than the GA-RF model.

Based on the predicted mountain hazard susceptibility map of the study area and
historical mountain hazard occurrences, the model of this study was quantitatively an-
alyzed and compared in terms of frequency ratios. When the frequency ratio is greater
than 1, mountain hazards are likely to occur, and the larger the frequency ratio, the higher
the likelihood of mountain hazards. The results presented in Table 4 show that there are
251 hazard points in the very high susceptibility area of the Bayes-RF model, accounting for
66.40% of all hazards, and there are 254 hazard points in the very high susceptibility area
of the GA-RF model, accounting for 67.20% of all hazards. There are one and two hazard
points in the very low susceptibility areas of the Bayes-RF and GA-RF models, accounting
for 0.26% and 0.53% of all hazards, respectively. However, the very low susceptibility
area of the Bayes-RF model (0.26%) is smaller than that of the GA-RF model (0.53%). The
frequency ratio (FR) results presented in Table 4 show that the high susceptibility (1.977)
and low susceptibility (0.136) regions of the Bayes-RF model are larger than the high sus-
ceptibility (1.519) and low susceptibility (0.117) regions of the GA-RF model. The very high
susceptibility (8.266) and very low susceptibility (0.008) regions of the Bayes-RF model are
smaller than the very high susceptibility region of the GA-RF model (8.273) and the very
low susceptibility region (0.017) of the GA-RF model. The above statistical results together
indicate that the susceptibility assessment results and the mountain hazard distribution
pattern of the Bayes-RF model are more reasonable than those of the GA-RF model.
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Table 4. Statistical results of frequency ratios of the RF, GA-RF, and Bayes-RF models.

Model Class Area of Zones (%) Number of Hazards Hazard Percentage (%) FR

RF

Extremely high 9.36 227 60.05 6.415
High 10.57 73 19.31 1.827

Moderate 16.38 45 11.90 0.727
Low 29.30 23 6.08 0.208

Extremely low 34.39 10 2.65 0.077

GA-RF

Extremely high 8.12 254 67.20 8.273
High 12.54 72 19.05 1.519

Moderate 17.35 36 9.52 0.549
Low 31.64 14 3.70 0.117

Extremely low 30.35 2 0.53 0.017

Bayes-RF

Extremely high 8.03 251 66.40 8.266
High 11.37 85 22.49 1.977

Moderate 17.19 26 6.88 0.400
Low 29.13 15 3.97 0.136

Extremely low 34.27 1 0.26 0.008

5. Discussion

This study combined machine learning models (data-driven) with field survey
(knowledge-driven) research to explore human–machine complementarity to improve
disaster prediction accuracy in the future. Based on the physical mechanism of mutual
transformation and cascading of various types of geological hazards in the study area, a
multifactor dataset was established from the perspective of avalanche, landslide and debris
flow hazard chains. The mountain hazard susceptibility assessment results were found to
be generally consistent with the results of historical geological hazard surveys. The team’s
long-term, continuous analysis of the causes of mountain hazards showed that human
activities are increasingly becoming the primary driver of disaster occurrence. Therefore, in
this section, we discuss the model performance further through an in-depth analysis based
on an exploration of how the results of the data analysis in this paper reflect the impacts of
human activities. Then, we present the future research objectives of the team, which are
aimed at improving the prediction accuracy of the model.

5.1. Susceptibility Responses to Human Activities

The Relief-F model further revealed that elevation and NDVI are important factors that
characterize the association between disaster occurrence and human activities in the study
area. For this purpose, the frequency ratios of disaster distribution at different elevations
and NDVI values are plotted as shown in Figure 9.
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As shown in Figure 9a, the frequency ratio at elevations of 918–1214 m is the highest,
reaching 4.62, and this value gradually decreases as the elevation rises. Additionally,
as shown in Appendix A, 65.35% of the hazards occurred in the low elevation area of
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918–1510 m. Frequent human activities in low elevation areas, such as large areas of
reclamation, are associated with low vegetation cover which, in turn, has serious impacts on
the slope stability and frequently causes hazard development. Relatively speaking, human
activities are less common in high elevation areas, and fewer hazards occur in the mountains.
The results presented in Figure 9b show that 84 hazards occurred in the vegetation cover
range of 0.18–0.27 with a frequency ratio as high as 5.79. The frequency ratio decreases as the
vegetation cover increases. Meanwhile, 81.2% of the hazards occurred in the low vegetation
cover range (Appendix A), indicating that the human-activity-triggered destruction of
vegetation is positively related to the hazard frequency.

5.2. Model Optimization and Performance Improvement

Hyperparameters of machine learning algorithms can affect the model prediction
accuracy [64,65], and previous studies have typically used trial-and-error and grid search
methods to determine hyperparameters [66]. However, such methods may miss the best
parameters and can be time consuming, which greatly reduces the accuracy and stability
of the model prediction. Therefore, the Bayesian optimization algorithm was created to
find the best hyperparameters rapidly. The algorithm fits the posterior distribution of the
objective function by increasing the data volume of the samples and input and output
data, and it finally achieves hyperparameter optimization of the model, obtaining the best
parameters while ensuring the accuracy and stability of the model are maintained. The GA
is the most popular evolutionary algorithm, highlighting the properties of the biological
evolutionary process. Most previously developed algorithms are heuristic models that were
built based on different ideal assumptions and cannot guarantee the basic local optimum.
However, the GA basically has no prerequisite assumptions and only needs to design the
value of the objective function, which is much less reliant on the nature of the optimization
problem itself and does not depend on a large set of conditions. From the results of the RF
model before and after optimization shown in Figure 7, it can be seen that after using both
optimization algorithms, the model has a good fit for the training data, and the accuracy
has been improved. In comparison, the Bayesian algorithm hyperparametric optimization
model is more capable of preventing the overfitting problem. Therefore, the accuracy of
fitting and prediction can be improved to a certain extent, and the results of the hazard
susceptibility assessment are more robust and reliable.

In addition to the parameters of the model itself, which can affect the final accu-
racy, the strategy of collecting disaster samples is equally important. There are numer-
ous sampling methods for hazard data, such as the seed cell, point, scarp, and fuzzy
C-means clustering [67,68]. A comparison of the effects of the scarp, seed cell, and point
sampling strategies on landslide susceptibility partition maps concluded that the scarp
sampling strategy provides better results than the point sampling strategy, while the scarp
and seed cell methods have similar results. Dou [69] derived the order of predictive
power by comparing landslide slope surface samples, slope centroids, landslide body sam-
ples, and landslide body centroids as follows: landslide surface > landslide body > slope
centroids > body centroids. This further demonstrated that the disaster sampling strategy
also has a large impact on the prediction ability of the model. Therefore, in future research,
the influence of the model parameters as well as the hazard sampling strategy need to be
taken into consideration. In addition, the hazard sample number also affects the prediction
accuracy of the model. Having adequate disaster samples can make the trained model
more stable and the prediction results more accurate. The mountain hazard sample data
used in this study were obtained from field geological hazard surveys, the geological
hazard data collection library, and remote sensing image verification. However, individual
hazard samples may be missed in the collection process, resulting in incomplete hazard
lists. Therefore, the interferometric synthetic aperture radar (InSAR) technique can be
considered in future studies to identify hazards [70] to compensate for the missing hazard
data and make the evaluation results more reliable.
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5.3. Assessment of Susceptibility Mapping Accuracy

In disaster susceptibility studies, the performance of different models is generally
compared by AUC values, but the differences in susceptibility maps cannot be identified
distinctly through visualization. Therefore, the susceptibility maps were compared before
and after optimization according to the research method presented by Xiao [71]. The opti-
mized susceptibility maps (GA-RF and Bayes-RF) were used to subtract the susceptibility
map without optimization (benchmark RF), and the results are shown in Figure 10.
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The values of RF_GA-RF are within the range of −0.52 to 0.69 (Figure 10a), and the
values of RF_Bayes-RF are within the range of −0.42 to 0.42 (Figure 10b). The comparison
indicated that the overall difference of RF_Bayes-RF is small and shows no obvious distri-
bution law, while the difference of RF_GA-RF is obvious. The high values of RF_GA-RF
(0.25–0.69) are mainly distributed in river valleys (elevation: 1214–1806 m), and the low
values (−0.52 to 0.25) are distributed in mountain ridges (elevation: 1806–2649 m) and
areas of high human activity. In this paper, we argue that there are two reasons for the
large discrepancy in RF_GA-RF. On the one hand, it may be due to the overfitting of the
unoptimized RF model that occurred during the training process, making the error of the
model-predicted susceptibility map larger. Another reason may be that factors such as
elevation, human activities, and distance to a river are associated with extremely high
and low values of hazard susceptibility, implying the importance of geomorphological
meaning and other underlying patterns in susceptibility assessments. Accordingly, we
further revealed that the Bayes-RF model is quite robust, while the GA-RF seems to still
have significant room for optimization, so when conducting susceptibility prediction stud-
ies, it is suggested that different state-of-the-art models and metrics besides the AUC are
selected for comparison as much as possible to further guarantee the reliability of the
susceptibility mapping.

6. Conclusions

This study was based on GIS technology and machine learning methods for moun-
tain hazard susceptibility predictions and assessments. Two integrated machine learning
models, the GA-RF model and the Bayes-RF model, were developed and the RF model was
used as the benchmark classifier. The results show that the Bayes-RF model (AUC = 0.92)
provides significantly better results than the GA-RF model (AUC = 0.91) and the RF model
(AUC = 0.89) when used for hazard susceptibility predictions and mapping. The Bayes-RF
machine-learning-based ensemble modeling method operates robustly and performs well,
so it can be adopted as a model for the spatial prediction of mountain hazard susceptibility
in the study area. The susceptibility mapping results indicate that the densely populated
areas along the Bailong River and the G212 highway in the northwest part of the study area
should be the focus for disaster prevention and mitigation planning.

Based on the physical mechanism of mountain hazards characterized mainly as cascad-
ing landslides, avalanches and debris flow chains and the complex nonlinear characteristics
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of hazard occurrence, this study established a more reliable dataset by selecting 14 hazard
impact factors with the aid of a field survey analysis. Consequently, we enhanced the
accuracy of the Bayes-RF model through a multicollinearity analysis and Relief-F two-
step evaluation. The data preparation method, the corresponding hazard susceptibility
assessment, and the prediction method can be extended and applied to other mountainous
areas that are susceptible to hazards. Moreover, this study proposes the future objective
of exploring the establishment of a hybrid model that integrates a physical mechanism
model and a data-driven model in order to further expand the applications of machine
learning and even deep learning technologies in multiple fields of scientific assessment and
prediction of earth systems.
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Appendix A

Table A1. Frequency ratios (FRs) of the influencing factors.

Class Value Type Pixels in Domain Pixel (%) Hazard Points Hazard (%) FR

Geomorphology and structure

Elevation (m)

622–918

Continuous

46,842 0.91 2 0.53 0.58
918–1214 381,802 7.39 129 34.13 4.62
1214–1510 773,992 14.99 118 31.22 2.08
1510–1806 1,292,308 25.02 86 22.75 0.91
1806–2102 1,548,613 29.99 31 8.20 0.27
2102–2398 671,677 13.01 11 2.91 0.22
2398–2694 349,662 6.77 1 0.26 0.04
2694–2990 90,410 1.75 0 0.00 0.00
2990–3554 9129 0.18 0 0.00 0.00

Slope (◦)

0◦–10◦

Continuous

510,164 9.91 39 10.32 1.04
10◦–20◦ 897,118 17.42 77 20.37 1.17
20◦–30◦ 1,664,789 32.33 135 35.71 1.10
30◦–40◦ 1,494,180 29.02 103 27.25 0.94
40◦–50◦ 509,507 9.89 22 5.82 0.59
>50◦ 73,906 1.44 2 0.53 0.37
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Table A1. Cont.

Class Value Type Pixels in Domain Pixel (%) Hazard Points Hazard (%) FR

Aspect

Level

Discrete

144,270 2.80 10 2.65 0.94
North 613,964 11.92 32 8.47 0.71
Northeast 648,775 12.60 56 14.81 1.18
East 621,581 12.07 55 14.55 1.21
Southeast 683,261 13.27 56 14.81 1.12
South 603,608 11.72 63 16.67 1.42
Southwest 666,433 12.94 41 10.85 0.84
West 570,245 11.07 27 7.14 0.65
Northwest 597,527 11.60 38 10.05 0.87

Plan curvature

−11.16 to
−2.10

Continuous

15,881 0.31 0 0.00 0.00

−2.10 to −1.50 53,862 1.04 1 0.26 0.25
−1.50 to −0.90 251,392 4.87 13 3.44 0.71
−0.90 to −0.30 997,039 19.31 63 16.67 0.86
−0.30 to 0.30 2,463,614 47.71 206 54.50 1.14
0.30–0.90 1,028,772 19.92 73 19.31 0.97
0.90–1.50 275,196 5.33 16 4.23 0.79
1.50–2.10 60,030 1.16 5 1.32 1.14
2.10–10.21 18,475 0.36 1 0.26 0.74

Profile curvature

−15.05 to
−2.90

Continuous

12,555 0.24 0 0.00 0.00

−2.90 to −2.10 33,546 0.65 0 0.00 0.00
−2.10 to −1.30 142,997 2.77 13,500 3.97 1.43
−1.30 to −0.50 612,532 11.86 27,900 8.20 0.69
−0.50 to 0.30 3,107,184 60.17 206,100 60.58 1.01
0.30–1.10 971,309 18.81 71,100 20.90 1.11
1.10–1.90 212,169 4.11 19,800 5.82 1.42
1.90–2.70 52,221 1.01 1800 0.53 0.52
2.70–13.00 19,748 0.38 0 0.00 0.00

Distance to a
fault (m)

0–1400

Continuous

2,061,661 39.92 167 44.18 1.11
1400–2800 1,206,521 23.36 103 27.25 1.17
2800–4200 713,656 13.82 67 17.72 1.28
4200–5600 389,221 7.54 18 4.76 0.63
5600–7000 247,265 4.79 12 3.17 0.66
7000–8400 174,649 3.38 6 1.59 0.47
8400–9800 152,306 2.95 3 0.79 0.27
9800–11,200 133,363 2.58 2 0.53 0.20
11,200–15,300 85,687 1.66 0 0.00 0.00

Roughness

1–1.06

Continuous

1,206,403 23.42 108 28.57 1.22
1.06–1.13 1,227,880 23.84 103 27.25 1.14
1.13–1.20 956,001 18.56 79 20.90 1.13
1.20–1.28 731,988 14.21 43 11.38 0.80
1.28–1.38 516,868 10.04 23 6.08 0.61
1.38–1.51 301,528 5.85 11 2.91 0.50
1.51–1.70 146,928 2.85 10 2.65 0.93
1.70–2.04 52,998 1.03 1 0.26 0.26
2.04–4.44 10,056 0.20 0 0.00 0.00

External dynamic geological environment

Distance to a
road (m)

0–600

Continuous

1,063,274 20.59 236 62.43 3.03
600–1200 764,896 14.81 75 19.84 1.34
1200–1800 665,424 12.88 23 6.08 0.47
1800–2400 576,527 11.16 14 3.70 0.33
2400–3000 491,529 9.52 12 3.17 0.33
3000–3600 418,827 8.11 7 1.85 0.23
3600–4200 329,689 6.38 3 0.79 0.12
4800–5400 254,513 4.93 5 1.32 0.27
>5400 599,710 11.61 3 0.79 0.07
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Table A1. Cont.

Class Value Type Pixels in Domain Pixel (%) Hazard Points Hazard (%) FR

Distance to
river (m)

0–600

Continuous

1,044,339 20.22 175 46.30 2.29
600–1200 974,622 18.87 112 29.63 1.57
1200–1800 887,629 17.19 33 8.73 0.51
1800–2400 755,208 14.62 15 3.97 0.27
2400–3000 588,124 11.39 19 5.03 0.44
3000–3600 411,297 7.96 15 3.97 0.50
3600–4200 254,621 4.93 6 1.59 0.32
4200–4800 140,460 2.72 2 0.53 0.19
4800–6500 108,065 2.09 1 0.26 0.13

NDVI

−0.17 to 0

Continuous

5922 0.11 0 0.00 0.00
0–0.09 13,499 0.26 1 0.26 1.01
0.09–0.18 52,154 1.01 16 4.23 4.19
0.18–0.27 198,057 3.84 84 22.22 5.79
0.27–0.36 522,153 10.11 115 30.42 3.01
0.36–0.45 1,280,418 24.79 91 24.07 0.97
0.45–0.54 2,374,744 45.98 63 16.67 0.36
0.54–0.63 716,918 13.88 8 2.12 0.15
0.63–0.66 345 0.01 0 0.00 0.00

TWI

<2

Continuous

1,407,116 27.32 86 22.75 0.83
2–4 1,029,832 20.00 95 25.13 1.26
4–6 1,566,516 30.42 94 24.87 0.82
6–8 649,138 12.61 52 13.76 1.09
8–10 225,259 4.37 24 6.35 1.45
10–12 100,898 1.96 12 3.17 1.62
12–14 36,637 0.71 4 1.06 1.49
14–16 64,978 1.26 5 1.32 1.05
16–30 69,240 1.34 6 1.59 1.18

Ground cover

Cropland

Discrete

727,981 14.10 158 41.80 2.97
Forest 3,133,568 60.68 118 31.22 0.51
Grass 1,197,002 23.18 70 18.52 0.80
Shrub 10,382 0.20 0 0.00 0.00
Wetland 800 0.02 0 0.00 0.00
Water 6002 0.12 0 0.00 0.00
Artificial 58,798 1.14 19 5.03 4.41
Bareland 29,843 0.58 13 3.44 5.95
Ice 27 0.00 0 0.00 0.00

Precipitation (mm)

468–500

Continuous

301,757 5.84 39 10.32 1.77
500–550 815,298 15.79 97 25.66 1.63
550–600 1,084,602 21.01 107 28.31 1.35
600–650 701,797 13.59 73 19.31 1.42
650–700 678,150 13.13 24 6.35 0.48
700–750 573,149 11.10 28 7.41 0.67
750–800 644,650 12.48 8 2.12 0.17
800–860 364,114 7.05 2 0.53 0.08

Engineering geological petrofabric

Lithology

Loose rock

Discrete

3,419,409 66.21 172 45.50 0.69
Softer rock 745,401 14.43 45 11.90 0.82
Soft rock 460,951 8.93 102 26.98 3.02
Harder rock 399,788 7.74 55 14.55 1.88
Hard rock 138,832 2.69 4 1.06 0.39
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