Next Issue
Volume 4, June
Previous Issue
Volume 3, December
 
 

GeoHazards, Volume 4, Issue 1 (March 2023) – 6 articles

Cover Story (view full-size image): Drones help to measure and monitor geyser geothermal fields. Some geothermal fields contain hundreds of thermal point-like vents, which are only visible on thermal infrared imagery. A new study shows that it is possible for such geysers to suddenly explode, posing a threat to tourists and changing the environment. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
30 pages, 7019 KiB  
Article
Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process in Coastal Regions of South Aegean Volcanic Arc Islands
by Pavlos Krassakis, Andreas Karavias, Paraskevi Nomikou, Konstantinos Karantzalos, Nikolaos Koukouzas, Ioannis Athinelis, Stavroula Kazana and Issaak Parcharidis
GeoHazards 2023, 4(1), 77-106; https://doi.org/10.3390/geohazards4010006 - 16 Mar 2023
Cited by 2 | Viewed by 3380
Abstract
Coastal environments are highly recognized for their spectacular morphological features and economic activities, such as agriculture, maritime traffic, fishing, and tourism. In the context of climate change and the evolution of physical processes, the occurrence of intense natural phenomena adjacent to populated coastal [...] Read more.
Coastal environments are highly recognized for their spectacular morphological features and economic activities, such as agriculture, maritime traffic, fishing, and tourism. In the context of climate change and the evolution of physical processes, the occurrence of intense natural phenomena adjacent to populated coastal areas may result in natural hazards, causing human and/or structural losses. As an outcome, scientific interest in researching and assessing multi-hazard susceptibility techniques has increased rapidly in an effort to better understand spatial patterns that are threatening coastal exposed elements, with or without temporal coincidence. The islands of Milos and Thira (Santorini Island) in Greece are prone to natural hazards due to their unique volcano-tectonic setting, the high number of tourist visits annually, and the unplanned expansion of urban fabric within the boundaries of the low-lying coastal zone. The main goal of this research is to analyze the onshore coastal terrain’s susceptibility to natural hazards, identifying regions that are vulnerable to soil erosion, torrential flooding, landslides and tsunamis. Therefore, the objective of this work is the development of a multi-hazard approach to the South Aegean Volcanic Arc (SAVA) islands, integrating them into a superimposed susceptibility map utilizing Multi-Criteria Decision-Making (MCDM) analysis. The illustrated geospatial workflow introduces a promising multi-hazard tool that can be implemented in low-lying coastal regions globally, regardless of their morphometric and manmade characteristics. Consequently, findings indicated that more than 30% of built-up areas, 20% of the transportation network, and 50% of seaports are within the high and very high susceptible zones, in terms of the Extended Low Elevation Coastal Zone (ELECZ). Coastal managers and decision-makers must develop a strategic plan in order to minimize potential economic and natural losses, private property damage, and tourism infrastructure degradation from potential inundation and erosion occurrences, which are likely to increase in the foreseeable future. Full article
Show Figures

Figure 1

17 pages, 11046 KiB  
Article
Geothermal Explosion at the 2014 Landslide-Covered Area of the Geyser Valley, Kamchatka, Russian Far East
by Masoud Allahbakhshi, Alina V. Shevchenko, Alexander B. Belousov, Marina G. Belousova, Horst Kämpf and Thomas R. Walter
GeoHazards 2023, 4(1), 60-76; https://doi.org/10.3390/geohazards4010005 - 10 Mar 2023
Cited by 1 | Viewed by 1771
Abstract
Geyser geothermal fields are scenic volcanic landforms that often contain tens to hundreds of thermal spot vents that erupt boiling water or contain bubbling mud pools. The fields are potentially hazardous sites due to boiling water temperatures and changes in vent locations and [...] Read more.
Geyser geothermal fields are scenic volcanic landforms that often contain tens to hundreds of thermal spot vents that erupt boiling water or contain bubbling mud pools. The fields are potentially hazardous sites due to boiling water temperatures and changes in vent locations and eruption dynamics, which are poorly understood. Here we report on the rapid and profound changes that can affect such a geyser field and ultimately lead to a dangerous, unanticipated eruption. We studied the Geyser Valley, Kamchatka Peninsula, which is a field of geysers and other thermal features and boiling pools. Using high-resolution tri-stereo satellite data and unmanned aerial systems (UAS) with optical and thermal infrared cameras in 2018 and 2019, we were able to identify a newly emerging explosion site. Structure-from-motion analysis of data acquired before and after the explosion reveals morphological and thermal details of the new vent. The explosion site produced an aureole zone of more than 150 m3 of explosively redeposited gravel and clay, a slightly elliptical crater with a diameter of 7.5 m and a crater rim 0.30 m high. However, comparison with archives of photogrammetric data suggests that this site was thermally active years earlier and contained a crater that was obscured and covered by landslides and river sediments. The results allow us to develop a conceptual model and highlight the hazard potential of thermal features buried by landslides and clastic deposits. Sudden explosions may occur at similar sites elsewhere, highlighting the need for careful assessment and monitoring of geomorphological and hydrological changes at geyser sites in other regions. Full article
(This article belongs to the Collection Geohazard Characterization, Modeling, and Risk Assessment)
Show Figures

Figure 1

20 pages, 8854 KiB  
Article
Collapsing Response of a Nonlinear Shear-Beam Building Model Excited by a Strong-Motion Pulse at Its Base
by Hamid Abbasgholiha, Vlado Gičev, Mihailo D. Trifunac, Reza S. Jalali and Maria I. Todorovska
GeoHazards 2023, 4(1), 40-59; https://doi.org/10.3390/geohazards4010004 - 07 Feb 2023
Cited by 1 | Viewed by 1696
Abstract
We present a simple nonlinear model of a shear-beam building that experiences large nonlinear deformations and collapse when excited by large pulses of strong earthquake ground motion. In this paper, we introduce the model and show that its properties can be selected to [...] Read more.
We present a simple nonlinear model of a shear-beam building that experiences large nonlinear deformations and collapse when excited by large pulses of strong earthquake ground motion. In this paper, we introduce the model and show that its properties can be selected to be consistent with the damage observed in a seven-story hotel in San Fernando Valley of the Los Angeles metropolitan area during the 1994 Northridge earthquake. We also show an example of excitation that leads to the collapse of the model. We illustrate the response only for a sequence of horizontal pulses. We will describe the response of the same model to horizontal, vertical, and rocking motions at its base, as well as for more general excitation by strong earthquake ground motion, in future papers. Full article
Show Figures

Figure 1

15 pages, 3995 KiB  
Article
Ground Investigations and Detection and Monitoring of Landslides Using SAR Interferometry in Gangtok, Sikkim Himalaya
by Rajinder Bhasin, Gökhan Aslan and John Dehls
GeoHazards 2023, 4(1), 25-39; https://doi.org/10.3390/geohazards4010003 - 13 Jan 2023
Cited by 3 | Viewed by 2908
Abstract
The Himalayan state of Sikkim is prone to some of the world’s largest landslides, which have caused catastrophic damage to lives, properties, and infrastructures in the region. The settlements along the steep valley sides are particularly subject to frequent rainfall-triggered landslide events during [...] Read more.
The Himalayan state of Sikkim is prone to some of the world’s largest landslides, which have caused catastrophic damage to lives, properties, and infrastructures in the region. The settlements along the steep valley sides are particularly subject to frequent rainfall-triggered landslide events during the monsoon season. The region has also experienced smaller rock slope failures (RSF) after the 2011 Sikkim earthquake. The surface displacement field is a critical observable for determining landslide depth and constraining failure mechanisms to develop effective mitigation techniques that minimise landslide damage. In the present study, the persistent scatterers InSAR (PSI) method is employed to process the series of Sentinel 1-A/B synthetic aperture radar (SAR) images acquired between 2015 and 2021 along ascending and descending orbits for the selected areas in Gangtok, Sikkim, to detect potentially active, landslide-prone areas. InSAR-derived ground surface displacements and their spatio-temporal evolutions are combined with field investigations to better understand the state of activity and landslide risk assessment. Field investigations confirm the ongoing ground surface displacements revealed by the InSAR results. Some urban areas have been completely abandoned due to the structural damage to residential housing, schools, and office buildings caused by displacement. This paper relates the geotechnical investigations carried out on the ground to the data obtained through interferometric synthetic aperture radar (InSAR), focusing on the triggering mechanisms. A strong correlation between seasonal rainfall and landslide acceleration, as well as predisposing geological-structural setting, suggest a causative mechanism of the landslides. Full article
Show Figures

Figure 1

2 pages, 176 KiB  
Editorial
Acknowledgment to the Reviewers of GeoHazards in 2022
by GeoHazards Editorial Office
GeoHazards 2023, 4(1), 23-24; https://doi.org/10.3390/geohazards4010002 - 13 Jan 2023
Viewed by 881
Abstract
High-quality academic publishing is built on rigorous peer review [...] Full article
22 pages, 31711 KiB  
Article
GIS-Based Assessment of Fire Effects on Flash Flood Hazard: The Case of the Summer 2021 Forest Fires in Greece
by Niki Evelpidou, Maria Tzouxanioti, Evangelos Spyrou, Alexandros Petropoulos, Anna Karkani, Giannis Saitis and Markos Margaritis
GeoHazards 2023, 4(1), 1-22; https://doi.org/10.3390/geohazards4010001 - 23 Dec 2022
Cited by 1 | Viewed by 3350
Abstract
Greece, like the rest of the Mediterranean countries, faces wildland fires every year. Besides their short-term socioeconomic impacts, ecological destruction, and loss of human lives, forest fires also increase the burnt areas’ risk of flash flood phenomena, as the vegetation, which acted in [...] Read more.
Greece, like the rest of the Mediterranean countries, faces wildland fires every year. Besides their short-term socioeconomic impacts, ecological destruction, and loss of human lives, forest fires also increase the burnt areas’ risk of flash flood phenomena, as the vegetation, which acted in a protective way against runoff and soil erosion, is massively removed. Among the most severe wildland fire events in Greece were those of summer 2021, which were synchronous to the very severe heat waves that hit the broader area of the Balkan Peninsula. More than 3600 km2 of land was burnt and a significant amount of natural vegetation removed. Three of the burnt areas are examined in this work, namely, Attica, Northern Euboea, and the Peloponnese, in order to assess their risk of future flash flood events. The burnt areas were mapped, and their geological and geomorphological features studied. Flash flood hazard assessment was accomplished through a Boolean logic-based model applied through Geographic Information Systems (GIS) software, which allowed the prioritization of the requirement for protection by identifying which locations were most prone to flooding. The largest part of our study areas is characterized by geomorphological and geological conditions that facilitate flash flood events. According to our findings, in almost all study areas, the regions downstream of the burnt areas present high to very high flash flood hazard, due to their geomorphological and geological features (slope, drainage density, and hydrolithology). The only areas that were found to be less prone to flood events were Vilia and Varimpompi (Attica), due to their gentler slope inclinations and overall geomorphological characteristics. It is known that vegetation cover acts protectively against flash floods. However, in this case, large areas were severely burnt and vegetation is absent, resulting in the appearance of flash floods. Moreover, imminent flooding events are expected to be even more intense in the areas downstream of the burnt regions, possibly bearing even worse impacts on the local population, infrastructure, etc. Full article
(This article belongs to the Special Issue Advances in Applied Wildfire Research)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop