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Abstract: Bioethanol, which is currently produced commercially from a growing variety of renewable
biomass and waste sources, is an appealing feedstock for the production of fuels and chemicals.
The literature clearly shows that bioethanol is a versatile building block to be used in biorefineries.
The ethanol conversion using several catalysts with acidic, basic, and redox characteristics results
in a diverse assortment of high-value bioproducts. High-acidity tungsten zirconia-based catalysts
are stated to compete with traditional zeolitic catalysts and can be employed in the dehydration of
ethanol to ethylene, but for a low reaction temperature acetic acid is formed, which causes corrosion
issues. WO3-ZrO2 (W/Zr = 1, atomic) catalysts modified with MoO3 were prepared by a sol-gel-like
procedure and tested in a gas phase ethanol conversion in the presence of air. The citrate derived
xerogels were annealed at 853 K for 12 h, allowing low surface area (<10 m2/g) materials with a Mo-W
mixed-oxide-rich surface over tetragonal nanostructured zirconia. Catalysts with MoO3-loading
produced mainly acetaldehyde, instead of ethylene, as a result of the high reducibility of Mo6+ when
compared to W6+. During the reaction, the Mo6+ becomes partially reduced, but Mo6+/Mo5+ species
are still active for methanol conversion with increased ethylene selectivity due to the high acidity of
tetrahedral MOX species formed during the reaction. Adding water to ethanol, to simulate bioethanol,
only leads to a slight inhibition in ethanol conversion over the MoO3/(WO3-ZrO2) catalysts. The
results show that molybdenum oxide deposited on tungstated zirconia catalyst is active, with low
sensitivity to water, for the valorization of bioethanol into high-value chemicals, such as ethylene and
acetaldehyde, and whose selectivity can be tuned by changing the amount of MoO3 that is loaded. The
MoO3/(WO3-ZrO2) catalysts prepared show catalytic behavior similar to that of noble metal-based
catalysts reported in the literature for the dehydrogenation of bioethanol in high-value chemicals.

Keywords: bioethanol valorization; ethylene; acetaldehyde; sol-gel catalysts; WO3-ZrO2;
dehydrogenation; dehydration

1. Introduction

Given that oil and its derivatives are responsible for global warming and adverse
climate change, today’s civilization faces significant hurdles in terms of the energy and
chemical sources that are critical to sustaining a high socioeconomic level. Ethanol, bio,
currently produced commercially from a growing variety of renewable biomass and waste
sources, is an appealing feedstock for the production of fuels and chemicals [1]. The data
reported in the literature clearly show that bioethanol is a versatile building block to be
used in biorefineries [2] (Figure 1). According to Posada et al. [2], the 1,3 butadiene and
diethyl ether are the most promising ethanol derivates followed by ethylene, propylene,
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acetaldehyde, ethylene oxide, and ethyl acetate. A more recent evaluation of the potential
profitability of ethanol-derived chemicals indicates a different point of view where ethylene
is a nonprofitable ethanol-derived product [3]. Many factors influence the economic
feasibility of each of the conceivable ethanol-derived products, such that Frosi et al. [4]
identified ethanol diluted in water as the most cost-effective approach for the viability of
ethylene synthesis.
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Figure 1. Ethanol as a building block in a biorefinery concept (adapted from [2]).

Ethanol can be converted in different catalyzed processes including dehydrogenation,
C−C bond coupling, aromatization, hydrogen transfer, and dehydration [5]. The ethanol
dehydrogenation and dehydration reactions are widely used as model reactions to charac-
terize acidic and basic catalysts [6]. Acid catalysts promote ethanol dehydrogenation to
ethylene and, at low temperatures, produce diethyl ether. Basic catalysts promote ethanol
dehydrogenation to form acetaldehyde. For metal oxide catalysts, the ethanol dehydration
and dehydrogenation mechanisms are schematized in Figure 2.
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Figure 2. Ethanol dehydration and dehydrogenation reaction mechanisms over methanol oxide
catalysts (adapted from [6]).

Different metal oxides present different catalytic activities for both reactions (Table 1).
By combining different metal oxides, it is possible to obtain catalysts with morphologies
and solid-state properties that give them catalytic performance, such as activity, selectivity,
and stability, for a given reaction [7].
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Table 1. Dehydration and dehydrogenation abilities of different metal oxide catalysts (adapted
from [6]).

Metal Oxide Dehydration (%) Dehydrogenation (%)

ThO2 100 trace
Al2O3 98.5 1.5
W2O4 98.5 1.5
Cr2O3 91 9
SiO2 84 16
TiO2 63 37
BeO 45 55
ZrO2 45 55
UO2 24 76

Mo2O5 23 77
Fe2O3 14 86
V2O5 9 91
ZnO 5 95
MnO 0 100
SnO 0 100
CdO 0 100

Mn3O5 0 100
MgO 0 100

Phung et al. [8] investigated ethanol dehydrogenation over WO3/ZrO2 and WO3/TiO2
catalysts. The authors reported the formation of strong Brönsted acid sites when both
zirconia and titania were modified with WO3. Such strong acidity prevents the formation
of byproducts, making these catalysts serious competitors to conventional zeolitic acid
catalysts. Combining theoretical computations with experimental nanoscopic characteriza-
tion techniques, Zhou et al. [9] describe the active sites of a WO3/ZrO2 catalyst as Zr-WOx
agglomerates of around 1 nm; thus, the catalytic activity is being strongly influenced by
the W species surface density and by the preparation methodology. Rousseau et al. [10]
compared the catalytic behavior of W6+ and Mo6+ clusters in the dehydrogenation and de-
hydration of alcohols such as ethanol. The authors concluded that the strong Lewis acidity
of W6+ relative to Mo6+ makes tungsten clusters more active than molybdenum analogs, but
the higher reducibility of Mo6+ increases the selectivity of molybdenum clusters towards
oxidation reactions, such as ethanol to acetaldehyde, which is a valuable chemical.

Chuklina et al. [11] used (Zr+Ce)/Al2O3 mixed-oxide catalysts, prepared by the sol-gel
method, to convert ethanol into ethylene, acetaldehyde, and diethyl ether. For low temper-
atures, the researchers reported a competition between dehydration and dehydrogenation
reaction paths because ethylene and acetaldehyde have the same reaction intermediate.
Catalysts with low ZrO2 content promoted the selectivity towards diethyl ether, which was
produced over Al3+ sites with Lewis acidity.

Acetaldehyde, once formed, can be further oxidized into acetic acid. Li and Iglesia [12]
reported high selectivity towards acetic acid during the catalytic oxidation of ethanol
over Mo-V-Nb mixed-oxide catalysts. The authors also reported a small water inhibition
effect on the ethanol oxidation rate, which seems relevant for bioethanol processing, which
has a high water content. Other catalysts based on multicomponent mixed oxides have
been studied for the conversion of ethanol into acetic acid. In these catalytic systems,
oxidation is carried out in the presence of oxygen and takes place in two stages. According
to Xiang et al. [13], such a reaction in the presence of air, or even pure oxygen, presents a
security issue due to the high flammability of alcohols/oxygen mixtures, but the use of
bioethanol can help to overcome such drawback since water will reduce the flammability
and explosion issues.

The oxidative dehydrogenation of ethanol to acetaldehyde has been studied since the
1960s and is of great importance today in the biorefinery as a process to valorize bioethanol,
which is produced in large quantities from biomass. The typical reaction network for the
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dehydrogenative oxidation of ethanol over a wide variety of multicomponent, bulk, and
supported metal oxide-based catalysts is that proposed by Pang et al. (Figure 3), where the
formation of acetic acid is problematic as it promotes the corrosion of the equipment.
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The catalytic systems described in the literature for the conversion of ethanol into
high-value products are numerous, and the identification of the active centers and reaction
mechanisms have not been systematized. Given the relevance of bioethanol as a renewable
feedstock for the production of highly demanded chemical goods, such as ethylene, the
preparation of performant catalysts is relevant to the development of green chemistry
processes. In this context, the following sections present data on the catalytic conversion of
ethanol over multicomponent catalysts based on Mo, Zr, and W oxides prepared by the
combustion of citrate-derived xerogels.

2. Experimental
2.1. Preparation and Characterization of the Catalysts

The catalysts were prepared following a sol-gel-like procedure using citric acid as a
complexation agent as described before [15]. The WO3-ZrO2 support material (ZrW) was
prepared by a sol-gel-like technique in the presence of citric acid (molar ratio Zr/citric
acid and W/citric acid = 1). Aqueous solutions of zirconyl chloride and ammonium
paratungstate were prepared with an atomic ratio of Zr/W = 1. The solubilization of the
zirconyl chloride was achieved by adding HNO3 (65% w/w solution). The tungsten solution
was slowly added to the Zr solution under vigorous stirring. The gel was obtained by
evaporating the water by heating it. No precipitation occurs during this step. The gel was
dried overnight at 393 K and finally calcined in a muffle at 853 K for 12 h. A yellow-green
product was obtained after the calcination step. The deposition of MoO3, over the calcined
support material, was performed by wet impregnation. Aqueous solutions of ammonium
heptamolybdate in the presence of citric acid (molar ratio Mo/citric acid = 1) were used.
The support material was added to the Mo solution and then the water was evaporated
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by heating the suspension under vigorous stirring. After drying overnight (393 K), the
samples were calcinated in a muffle (853 K) for 12 h. Since the burning of citrate releases
heat, the temperature of powders during calcination will be higher than the ZrO2 Hüttig
temperature (896 K), which is needed for the ZrO2 agglomerate with WO3 as reported by
Zhou et al. [9]. Samples with 5%, 10%, 20%, and 30% w/w of MoO3/support were prepared.
The green shade of the sample intensifies, raising the MoO3 content. The morphology of
fresh catalysts was evaluated by nitrogen adsorption at liquid nitrogen temperature and
scanning electron microscopy (SEM). The N2 physisorption curves were collected using a
Perkin–Elmer–Shell 212 C sorptometer (Perkin-Elmer Corporation, Shelton, CT, USA) and
data were analyzed using the BET isotherm [16] to compute the surface areas (ae) of the
powders. The SEM micrographs were acquired for samples spread over double-face carbon
tape covered by a thin carbon film. A JEOL JSM 840 (JEOL Ltd., Tokyo, Japan) equipment
with a Delta Kevex energy-dispersive X-ray analyzer (Kevex Corporation, Foster City, CA,
USA) was used to perform chemical analysis (EDS) during image acquisition.

The Raman spectra for fresh catalysts were recorded on a HORIBA LabRam HR
Evolution Microscopic Confocal spectrometer (HORIBA, Kyoto, Japan) with a 532 nm
argon ion laser.

2.2. Catalytic Tests of Dehydration Dehydrogenation of Ethanol

The ethanol (EtOH) dehydration/dehydrogenation reaction was carried out in a
conventional continuous flow apparatus at atmospheric pressure. Catalytic behavior
was studied in steady-state conditions. Feed mixtures (6.5%, v/v) were prepared by
injecting ethanol, or EtOH plus water (water/ethanol = 0.27 v/v), into the airflow (35 NL/h)
with a precise Gilson 302 pump (Gilson, Wisconsin, WI, USA). The powdered catalysts,
dp < 125 mm, (200–900 mg), were diluted with inert SiC (1:4, weight) to avoid adverse
thermal effects and charged into a tubular pyrex reactor with a thermocouple in a coaxial-
centered thermowell. The reactor outlet was kept at 130 ◦C to prevent the condensation of
liquid products, and was connected to a Shimadzu GC-8A (Shimadzu Corporation, Kyoto,
Japan) gas chromatograph with a TCD detector. The carbon balance was evaluated for each
catalytic test and the data were rejected if the error was higher than 5%.

3. Results and Discussion

The surface area of fresh catalysts assessed by N2 physisorption was computed using
the BET model. All the characterized materials presented a relatively low surface area
because during calcination, the burning of citrate species releases a large amount of heat
which promotes sinterization. The data in Figure 4 show that the surface deposition
of MoO3 favors a decrease in the surface area because the MoO3 crystal promotes the
clogging of the pores in the support material. The surface area of the ZrW material is
lower than that reported for coprecipitated WO3-ZrO2 materials, even when calcined at
higher temperatures [17]. For sol-gel WO3-ZrO2 mixed oxides, prepared with isopropoxide
salts in the presence of isopropanol, Signoretto et al. [18] reported samples having surface
areas in the 35–77 m2/g range. The solids calcined at 800 ◦C showed surface areas that
varied with the WO3 content and on the solvent drying process. More recently, Sarkar
et al. [19] referred the production of mesoporous ZrO2-WO3 and ZrO2-MO3 with large
surface areas (ae > 200 m2/g) by a sol-gel procedure using cheap water-soluble salts and a
cationic surfactant, which was removed after the gel preparation by a selective extraction
procedure. These results underline the sintering effect promoted by citrate burning from
the adopted preparation methodology.
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Figure 4. BET surface area of fresh catalysts assessed by N2 adsorption.

BET data are compatible with the morphology of fresh catalysts analyzed by SEM
(Figure 5), which shows the formation of larger agglomerates for samples with larger MoO3
content. The morphology of the bar ZrW material is slightly different from those reported
in the literature due to the unusual preparation methodology adopted and high WO3
content. The crystallite clusters in Figure 5 are two orders of magnitude larger than those
reported by Chen et al. [20], which is because materials that have a high WO3 content
have a relatively low Tammann temperature, and, therefore, promotes sintering during the
annealing treatment. EDS elemental analysis in Table 2 shows that elongated agglomerates
in the ZrW material are W-rich and seem to vanish for the post-reaction sample, maybe
due to recrystallization or/and sublimation. For samples containing MoO3, data in Table 2
show that MoO3 is located over the surface because Mo content is always higher than the
value used in the sample preparation, which was computed as a bulk content. This result is
visible in the 5% MoO3 sample, which has almost twice as much Mo in the EDS elemental
analysis (average value of 9.1% instead of 5%).

Table 2. EDS elemental analysis of fresh catalysts with low and high MoO3 contents (analysis
performed in different points).

Catalysts

Atomic (%) 0% MoO3 5% MoO3 30% MoO3

Point #1 #2 #3 #1 #2 #3 #1

Zr 46.3 42.6 28.2 * 25.0 12.0 12.2 28.4
W 53.7 57.4 71.8 * 67.5 78.8 77.3 27.3
Mo 0.0 0.0 0.0 7.5 9.2 10.5 44.3

* Needle-shaped agglomerate.

The XRD patterns of fresh catalysts, Figure 6, show XRD diffraction lines mainly
ascribable to monoclinic WO3 [21] overlaid with XRD lines of mixed Mo-W oxide, which
is formed due to the resemblance between W6+ and Mo6+ in valence, electronegativity,
and ionic radius (W6+, 74 pm; Mo6+, 73 pm) [22]. The bar ZrW sample presents a low
intensity and broad diffraction line around 30◦ [23], which seems to indicate the presence
of nanostructured tetragonal zirconia. The diffraction lines for zirconia are not particularly
noticeable, which is attributable in part to the fact that this phase has a lower mass than the
total of the W and Mo oxides.
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The Raman spectra of fresh catalysts (Figure 7) are dominated by the Raman features
of crystalline WO3 (803, 711, 324, and 270 cm−1), which is typical of WO3-ZrO2 materials
with WO3 loads beyond a certain value (above the WO3 monolayer level) [24]. The sample
with high MoO3 loadings show shoulders around 838 cm−1 and 742 cm−1 attributable to
mixed oxides Mo1−XWxO3, as reported by Kondrachova et al. [25].

The catalytic behavior of the prepared catalysts was evaluated for ethanol conversion
in oxidative conditions. The gas phase process was carried out using air as an oxidant
and the main data on the catalytic behavior are displayed in Figure 8. As expected, due
to its high acidity, the ZrW catalyst, with 0% of MoO3, mainly produces ethylene by
dehydration [8]. The selectivity towards ethylene is favoured by reaction temperature
due to the endothermic character of the dehydration reaction (DH298 K = 45 kJ/mol) [8].
For the lowest tested temperature (280 ◦C), appreciable production of acetic acid was
obtained (selectivity of 35.3%), which arises from consecutive oxidation of the formed
acetaldehyde which has the same reaction intermediate than ethylene [11]. Increasing
reaction temperature, the conversion and the selectivity toward ethylene increase, and
the selectivity toward acetic acid decreases. The ZrW-tested catalyst presented catalytic
performances like those of protonic catalysts with Brönsted acidity [8]. For ZrW catalysts,
the Brönsted acid sites are related to hydroxylated phases, which can be formed during
the reaction since water is formed for each ethanol molecule converted [14]. The catalysts
with high MoO3 contents presented acetaldehyde as the main reaction product due to
the high reducibility of Mo6+ species on the catalyst surface [10]. For the same surface
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area, the catalysts containing MoO3 are less active than the bar ZrW one (Figure 9). The
catalytic activity decreases as the molybdenum content increases because surface acidity
decreases as the Mo content increases. This is accompanied by an increase in selectivity
for total oxidation products (COx = CO + CO2) and a slight increase in selectivity for
acetaldehyde. The observed result is consistent with the findings of Rousseau et al. [10],
who found that stronger Lewis acidity of the W6+ sites relative to the Mo6+ increases overall
reactivity. Still, the more readily reducible Mo6+ leads to a higher selectivity towards
oxidation reactions. The oxidative dehydrogenation of ethanol into acetaldehyde is an
exothermic process (DH298 K = 179 kJ/mol) [26]; hence, the rise of the reaction temperature
is unfavourable. The acetaldehyde selectivity achieved by the multicomponent mixed-
oxide catalysts studied was comparable to those produced by noble metal catalysts. The
use of non-noble metals is attractive for economic and environmental reasons [27].

Catalysts containing MoO3 show a loss of Mo in the reaction conditions. The reactor
(pyrex) bottom was blue after the reaction, indicating the formation of Mo volatile species
during the reaction. The effect was more pronounced for the catalysts with a high Mo
content. The post-reaction catalysts show a color change, which seems to indicate that
Mo+6 was partially reduced to Mo5+, which according to Chan et al. [14], is not a catalyst
deactivation source because the Mo6+/Mo5+ species are still as active in alcohol dehydro-
genation as the Mo+6 species. However, data in Figure 10 show a drop in acetaldehyde
selectivity, raising the ethanol conversion because the Mo6+/Mo5+ species form tetrahedral
MoOX with Brönsted acidity [28], which improves the dehydration ability responsible for
the increase in ethylene selectivity. Also, the formed acetaldehyde can be converted into
COX through consecutive oxidation reactions [14]. For the bar ZrW catalyst, the selectivity
towards ethylene also increases, raising the ethanol conversion, because the slight reduction
in W6+ species during the reaction promotes the formation of WOX clusters with improved
Brönsted acidity [29]. The partial reduction in W6+ was responsible for the grey color,
instead of yellow, of the post-reaction sample. Also, the formation of hydroxylated phases
during the reaction contributes to the selectivity increase [14].
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dots for catalysts with MoO3).

Given that bioethanol can contain high concentrations of water, the catalytic behavior
during the processing of ethanol with a high water content (27% molar) was studied
for the 5% MoO3 catalyst sample. The data in Figure 11 show that the introduction of
water, simulating bioethanol, has only a slightly inhibitory effect, which is because alcohol
and water can adsorb competitively on the active centers of the catalyst, as reported for
methanol/water for the Mo-Fe-O catalyst [30]. Moreover, the dehydration and oxidative
dehydrogenation of ethanol produces water, which is why the water concentration in the
reaction medium is always high, even when dried ethanol is used.
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4. Conclusions

The preparation of ZrW mixed oxides by the citrate route led to low surface area
materials with tetragonal nanostructured zirconia and large WO3 crystals resulting from
the conjunction of the heat released in the burning of the citrates and the relatively low
Tammann temperature of the WO3. The material showed high catalytic activity for ethanol
dehydration into ethylene accompanied, at the low reaction temperature, by the signifi-
cant production of acetic acid which causes corrosion issues. The surface deposition of
MoO3 on the ZrW material leads to a decrease in acidity and an improvement in redox
properties, leading to high selectivities for acetaldehyde produced by ethanol oxidative
dehydrogenation. Acetic acid production is minimal on Mo-modified catalysts. The results
show that multicomponent Mo-W-Zr-based oxide catalysts are versatile for the valorization
of bioethanol as they are not very sensitive to water, and their selectivity for dehydra-
tion/dehydrogenation can be tuned depending on the Mo content. With various economic
and environmental advantages, these catalysts compete with those based on noble metals
for the dehydration of ethanol to acetaldehyde.
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