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Abstract: The synthetic methods leading to furo[3,2-b]pyrroles and thiazolo [5,4-d]thiazoles are
reviewed herein. Furo-, thieno- and seleno [3,2-b]pyrroles are related to heteropentalenes, contain-
ing two heteroatoms in the entire structure, one each per core. The synthetic approach follows
the Hemetsberger–Knittel protocol covering three reaction steps—the nucleophilic substitution of
halogen-containing aliphatic carboxylic acid esters, Knoevenagel condensation and, finally, thermol-
ysis promoting the intramolecular cyclocondensation to O,N-heteropentalene. The Hemetsberger–
Knittel reaction sequence is also known for the preparation of O,N-heteropentalenes with three
heteroatoms (2:1) and their sulphur and selen heteroatoms containing structural analogues and
bispyrroles. The synthetic approach towards thiazolo [5,4-d] thiazoles represents a more straightfor-
ward route, according to the Ketcham cyclocondensation. Proceeding with the Ketcham process is
more challenging since it occurs stepwise and the formation of by-products is obvious. Thiazolo
[5,4-d]thiazole is a representative of the aromatic heteropentalene with four heteroatoms in the
structure—twinned N and S, two for each of the five-membered rings. The synthetic approaches
towards those particular heteropentalnes have been chosen as a consequence of our ongoing research
dealing with the design, synthesis and applications of substituted furo [3,2-b]pyrroles and thiazolo
[5,4-d]thiazole-based derivatives. While the furopyrroles are known for their pharmacological activity,
thiazolothiazoles have become of interest to materials science. We are aware that from a “bank” of
existing compounds/procedures not all are presented in this review, and we apologise to respective
groups whose research have not been objectively included.

Keywords: heteropentalenes; furo [3,2-b]pyrroles; thiazolo [5,4-d]thiazole; Hemetsberger–Knittel;
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1. Introduction

Annelated [5+5] heterocyclic systems that consist of two-fused, five-membered rings
represent a family of heteropentalenes (HPs) [1]. HPs are isoelectronic to pentalenyl dianion
(PnDa, Figure 1) [2] with the preserved 10π-electron system since the electron pair/s of
heteroatom/s are involved in the conjugation. In combination with the structural planarity
and bicyclic motif, HP scaffolds are aromatic [3]. Since the first Ramsden’s classification
of HPs into four general types (I–IV, Figure 2) in 1977 [4,5], the number of identified
5-5 bicyclic regioisomers with two heteroatoms, one for each core (1:1), has increased
dramatically [1,6]. The presence of four heteroatoms in a structure, two per core (2:2),
has led to the rise of basic structural prototypes up to sixteen [7]. Undoubtedly, through
the addition of more heteroatoms into the bicyclic system and by variations in modes of
fusion altogether, including the non-classical heteropentalenes and betaines, the number of
possible isoconjugates has reached an uncountable number. Generally, oxygen, sulphur,
nitrogen, selenium and tellurium are the most commonly employed as heteroatoms [1–7],
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but a few reports on HPs with phosphorus [8], boron [9] or silicon [10] in the position of
heteroatom have recently been published.
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formula (1) can be applied for recognising the appropriate hetarene [11] according to: 

hetaryl[m,n-p]hetarene (1)

where m,n are numbers of carbon atoms shared by both rings, the p-junction mode reveals 
the shared bond, hetaryl is the name of a five-membered heterocycle in a prefix, and he-
tarene is the name of a superior five-membered heterocycle [1,4,6,7,11]. 
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Figure 2. Structure of general types of HPs containing two heteroatoms, one per core, according to 
Ramsden’s classification [4,11]: I—hetaryl [3,2-b]hetarene (1,4-diheteropentalene), II—hetaryl [2,3-
c]hetarene = hetaryl [3,4-b]hetarene (1,5-diheteropentalene), III—hetaryl [2,3-b]hetarene (1,6-dihet-
eropentalene), IV—hetaryl [3,4-c]hetarene (2,5-diheteropentalene). In combination with the formula 
(1), the distinguishing strategy can be applied for a whole class of HPs.A,X,Y = heteroatoms (O,S,N, 
rarely Se, Te); a, b, c – condensed bond positioning. 

Although there is a plethora of HPs permutations, at the same time they represent a 
small-organic-type compounds with an advantage of being easily prepared. The ring clo-
sure reactions, cyclisations and cycloadditions are obviously performed to obtain a par-
ticular HP derivative [12–14]. With their synthetic availability, in combination with a va-
riety of advantageous optoelectronic, physicochemical and pharmacological properties, 
HPs are of significant interest in the fields of both academic research and industry.  

With respect to our research aims [15,16], together with taking into account the enor-
mous number of existing derivatives, herein we have highlighted the synthesis of furo 
[3,2-b]pyrroles (V, Figure 3) using a three-step Hemetsberger–Knittel procedure, and thi-
azolo [5,4-d]thiazoles (VI, Figure 3) as representative products of the Ketcham reaction. 
While the furo [3,2-b]pyrroles come from a category of O,N-two heteroatoms containing 
HPs with applications in pharmaceuticals, the thiazolo [5,4-d]thiazole scaffold consists of 
two thiazole rings containing a combination of four heteroatoms, nitrogen and sulphur in 
each annelated core and are very important in applied science for the development of 
optoelectronic devices such as organic photovoltaic cells (OPV and organic field-effect 
transistors (OFETs).  

Figure 1. Resonance structures of the pentalenyl dianon (PnDa) as a leading structure for a class of
heteropentalenes.
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Figure 2. Structure of general types of HPs containing two heteroatoms, one per core, according
to Ramsden’s classification [4,11]: I—hetaryl [3,2-b]hetarene (1,4-diheteropentalene), II—hetaryl
[2,3-c]hetarene = hetaryl [3,4-b]hetarene (1,5-diheteropentalene), III—hetaryl [2,3-b]hetarene (1,6-
diheteropentalene), IV—hetaryl [3,4-c]hetarene (2,5-diheteropentalene). In combination with the
Formula (1), the distinguishing strategy can be applied for a whole class of HPs. A,X,Y = heteroatoms
(O,S,N, rarely Se, Te); a, b, c—condensed bond positioning.

For a structural description in combination with the HPs’ nomenclature, the general
Formula (1) can be applied for recognising the appropriate hetarene [11] according to:

hetaryl[m,n-p]hetarene (1)

where m,n are numbers of carbon atoms shared by both rings, the p-junction mode reveals
the shared bond, hetaryl is the name of a five-membered heterocycle in a prefix, and
hetarene is the name of a superior five-membered heterocycle [1,4,6,7,11].

Although there is a plethora of HPs permutations, at the same time they represent
a small-organic-type compounds with an advantage of being easily prepared. The ring
closure reactions, cyclisations and cycloadditions are obviously performed to obtain a
particular HP derivative [12–14]. With their synthetic availability, in combination with a
variety of advantageous optoelectronic, physicochemical and pharmacological properties,
HPs are of significant interest in the fields of both academic research and industry.

With respect to our research aims [15,16], together with taking into account the enor-
mous number of existing derivatives, herein we have highlighted the synthesis of furo
[3,2-b]pyrroles (V, Figure 3) using a three-step Hemetsberger–Knittel procedure, and thi-
azolo [5,4-d]thiazoles (VI, Figure 3) as representative products of the Ketcham reaction.
While the furo [3,2-b]pyrroles come from a category of O,N-two heteroatoms containing
HPs with applications in pharmaceuticals, the thiazolo [5,4-d]thiazole scaffold consists of
two thiazole rings containing a combination of four heteroatoms, nitrogen and sulphur
in each annelated core and are very important in applied science for the development of
optoelectronic devices such as organic photovoltaic cells (OPV and organic field-effect
transistors (OFETs).
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Figure 3. Structure of furo [3,2-b]pyrrole (V) as representative of two heteroatoms containing HPs 
(1:1, each core), achievable through the Hemetsberger–Knittel procedure, and thiazolo [5,4-d]thia-
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2. Furo-, Thieno- and Selenopheno [3,2-b]pyrroles

Furo [3,2-b]pyrroles (V, Figure 3) and their thieno- and selenopheno- analogues are
isosteres of the indole ring system in which the benzene ring is replaced by the furan,
thiophene or selenophene rings. Efficient synthetic routes to these heterocycles are of
great interest [17–19] because of their significant biological activity. 4H-Furo [3,2-b]pyrrole
derivatives have been screened for their analgesic and anti-inflammatory activity [20], or
antituberculotic [21] activity. 4H-Furo [3,2-b]pyrrole-5-carboxylic acid showed inhibitory
activity against D-amino acid (DAO) oxidase, which is important for the treatment of
schizophrenia [22]. 2,3,5,7-Tetrabromobenzofuro [3,2-b]pyrrole, isolated from a marine
Pseudoalteromonas sp., displayed significant antimicrobial activity against methicillin-resistant
Staphylococcus aureus [23]. Furo [3,2-b]pyrrole derivatives are also used as fluorescent dyes [24].
Thieno [3,2-b]pyrroles has shown anti-tumorous [25] and antiviral [26] activity. Thieno
[3,2-b]pyrrole dimers have promising semiconductive properties [27].

2.1. Hemetsberger–Knittel Synthesis of Furo [3,2-b]pyrroles and Related Compounds

The first preparation of various aromatic or heteroaromatic pyrrole-fused heterocycles
was accomplished by H. Hemetsberger and D. Knittel in 1972 [28]. The Hemetsberger–
Knittel reaction is a versatile method for the synthesis of functionalised indoles [29–31] or
azaindoles [32]. The Hemetsberger process has been extended to include the synthesis of
many heterocyclic compounds from 2-azido-3-heteroaromatic-acrylates, including nitrogen-
containing heteropentalenes [33–35].

Hemetsberger–Knittel synthesis requires readily available starting materials with a
wide variety of functional groups and often induces good overall yields. The overall process
involves three steps: the initial synthesis of an alkyl azidoacetate 3, followed by a base-
promoted Knoevenagel condensation of alkyl azidoacetate 3 and an aromatic aldehyde 4 to
form 2-azido-3-arylacrylate 5, and finally the thermolysis of the 2-azido-3-arylacrylate 5 in
an intramolecular cyclisation to form the fused pyrrole skeleton 1 (Scheme 1). The major
limitation of the Hemetsberger–Knittel process emerged from the use of sodium azide and
two potentially explosive intermediates, 3 and 5, in sequence [36].
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2.2. Behaviour of the Hemetsberger–Knittel Procedure

Alkyl azidoacetates 3 can be synthesised from an alkyl haloacetate 2 and sodium
azide, usually by heating in DMF [35], aceton/H2O [37] or methanol [38], producing high
yields (85–87%).

The second step of the Hemetsberger–Knittel procedure involves the Knoevenagel con-
densation of aromatic aldehydes 4 with alkyl azidoacetate 3 to form 2-azido-3-arylacrylates
5 in relatively low yields. Typical yields of 5 have been reported to range from 12% to 65%
when five-membered heteroaromatic aldehydes were used [28,39].

The low yields of 5 could be explained [36] due to two primary reasons. First, alkyl
azidoacetates 3 decompose in the presence of base, and the decomposition competes with
the desired condensation process.

The second reason lies in the hydrolysis of the ester functionality of the alkyl azi-
doacetate reagent 3, the azido alcohol intermediate and the 2-azido-3-arylacrylate product
5, which is promoted by the hydroxide by-product from the condensation. In the case
of the Knoevenagel condensation of furan-2-carbaldehyde and ethyl azidoacetate, the
undesired ester hydrolysis product of the azido alcohol intermediate (2-azido-3-hydroxy-
3-(furan-2-yl)propanoic acid) 6 has been identified as a side product in yields as high as
40%. In this particular case, this acidic by-product did not undergo dehydration to afford
2-azido-3-(furan-2-yl)acrylic acid (Figure 4) [36].
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Figure 4. Chemical structure of the by-product of Knoevenagel condensation between furan-2-
carbaldehyde and ethylazidoacetate [36].

The third step of the Hemetsberger–Knittel reaction is the thermolysis of the 2-azido-3-
arylacrylate 5 in an intramolecular cyclisation to form a fused pyrrole skeleton (Scheme 1).
The typical solvents that are used are toluene [18], xylenes [28] or mesitylene [38].

2.3. Mechanism of the Hemetsberger–Knittel Synthesis

The mechanism [40] of the Hemetsberger–Knittel reaction proceeds via an azirene
intermediate 8. The first step is the thermal degradation of 2-azido-3-arylacrylate 5, gener-
ating molecular nitrogen and nitrene 7. Nitrene 7 is believed to be in equilibrium with the
azirine intermediate 8. The subsequent step is the insertion of the nitrene into the cyclic ring
followed by a final [1,5] hydrogen shift that is accompanied by the final re-aromatisation,
forming the pyrrole core of the fused aromatic system 1 (Scheme 2).

Reactions 2023, 4, FOR PEER REVIEW 5 
 

 
Scheme 2. Proposed mechanism of the Hemetsberger–Knittel synthesis of heteropentalenes. 

2.4. Application of the Hemetsberger–Knittel Synthesis towards a Variety of [3,2-b]HPs 
Hemetsberger and Knittel [28] also reported the synthesis of nitrogen-containing het-

eropentalenes (Hemetsberger). Furo- thieno- and 4-methyl-4H-pyrrolo [3,2-b]pyrrole-5-
carboxylates 1 were synthesised in 85–97% yields by the condensation of appropriate al-
dehyde 10 with ethyl azidoacetate 3 and the subsequent thermal cyclisation of 2-azido-3-
arylacrylate 5 in xylene (Scheme 3). The first synthesis of ethyl seleno [3,2-b]pyrrole-5-
carboxylate 12c was later accomplished with an 82% yield by Soth et al. [41].  

 
Scheme 3. Synthesis of [3,2-b]-fused heteropentalenes 12 with O, S, Se and NH/N-CH3 heteroatoms. 

2.5. Structural Modifications to [3,2-b]HPs through Subsequent Treatment 
The synthesis of various substituted furo [3,2-b]pyrrole derivatives was developed 

by Krutošíková [42,43]. Formylation, nitration, the Mannich reaction and copulation were 
accomplished. Vilsmeier formylation should preferably take place at the C-2 position of 
furo- or thieno [3,2-b]pyrrole-5-carboxylate 1, affording aldehydes 16 at an ambient or 
moderately elevated temperature (Scheme 4). 

 
Scheme 4. Vilsmeier–Haack formylation of furo [3,2-b]pyrroles. 

The reaction of the aldehydes 16 with azidoacetate 3 in the presence of sodium meth-
oxide was found to proceed smoothly to give azide 17, which upon thermolysis in boiling 
toluene gave diethyl 1,7-dihydrofuro [3,2-b:4,5-b’]dipyrrole-2,6-dicarboxylates 18 in 43 
and 45% yields, respectively [44] (Scheme 5).  

Scheme 2. Proposed mechanism of the Hemetsberger–Knittel synthesis of heteropentalenes.



Reactions 2023, 4 258

2.4. Application of the Hemetsberger–Knittel Synthesis towards a Variety of [3,2-b]HPs

Hemetsberger and Knittel [28] also reported the synthesis of nitrogen-containing
heteropentalenes (Hemetsberger). Furo- thieno- and 4-methyl-4H-pyrrolo [3,2-b]pyrrole-
5-carboxylates 1 were synthesised in 85–97% yields by the condensation of appropriate
aldehyde 10 with ethyl azidoacetate 3 and the subsequent thermal cyclisation of 2-azido-
3-arylacrylate 5 in xylene (Scheme 3). The first synthesis of ethyl seleno [3,2-b]pyrrole-5-
carboxylate 12c was later accomplished with an 82% yield by Soth et al. [41].
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2.5. Structural Modifications to [3,2-b]HPs through Subsequent Treatment

The synthesis of various substituted furo [3,2-b]pyrrole derivatives was developed
by Krutošíková [42,43]. Formylation, nitration, the Mannich reaction and copulation were
accomplished. Vilsmeier formylation should preferably take place at the C-2 position of
furo- or thieno [3,2-b]pyrrole-5-carboxylate 1, affording aldehydes 16 at an ambient or
moderately elevated temperature (Scheme 4).
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Scheme 4. Vilsmeier–Haack formylation of furo [3,2-b]pyrroles.

The reaction of the aldehydes 16 with azidoacetate 3 in the presence of sodium methox-
ide was found to proceed smoothly to give azide 17, which upon thermolysis in boiling
toluene gave diethyl 1,7-dihydrofuro [3,2-b:4,5-b’]dipyrrole-2,6-dicarboxylates 18 in 43 and
45% yields, respectively [44] (Scheme 5).
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Scheme 5. Synthesis of diethyl 1-alkyl-1,7-dihydrofuro [3,2-b:4,5-b’]dipyrrole-2,6-dicarboxylates 18.

The condensation reaction of thiophene-2,5-dicarbaldehyde 19 with ethyl azidoacetate
3 generated compound 20, which was further subjected to cyclisation by heating in toluene
to form the thienodipyrrole derivative 21 in an 85% yield (Scheme 6). Compound 21 was
used as the starting material for the synthesis of thiophene polymers [45]. Compound
21 can be oxidised with an HOF.CH3CN complex to give sulphone 22 with a 95% yield
(Scheme 6) [46].
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Scheme 6. Synthesis of diethyl 1,7-dihydrothieno [3,2-b:4,5-b’]dipyrrole-2,6-dicarboxylate 21 and
-4,4-dioxide 22.

Further applications of the Hemetsberger reaction were also reported in the 1990s [47,48].
The intermediate nitrene I was inserted into a п-deficient heterocycle. The versatility of this
approach is shown in the synthesis of pyrrolo [3,2-d]thiazoles or selenazoles 24 (Scheme 7).
The thermolysis of the 3-thiazolyl- or 3-selenazolyl-2-azidoacrylates 23 produces these
bicyclic heterocycles in high yields (85–90%).
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Scheme 7. Synthesis of fused azoles 24.

A series of substituted pyrrolo [3,2-d]imidazoles 28 were synthesised by Shaffiee and
Hadizadeh [49]. The starting imidazole 25 was converted into the appropriate aldehydes 26
in two steps—the alkylation of the thiol group, and the subsequent oxidation of alcohol with
manganese dioxide. The Knoevenagel condensation of aldehydes 26 with ethyl azidoacetate
3 produced acrylates 27, which then underwent thermal cyclisation in boiling xylene to
give pyrrolo [3,2-d]imidazoles 28. Compounds 28 were oxidised with m-chloroperbenzoic
acid (m-CPBA) to the desired sulphones 29 (Scheme 8).
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Schaffie et al. [50] later synthesised substituted pyrrolo [2,3-d]imidazole-5-carboxylates 34 and
isomeric pyrrolo [3,2-d]imidazole-5-carboxylates 35 (Scheme 9). The alkylation of 2-alkylimidazole-
4-carbaldehyde 30a (or 5-carbaldehyde 30b) with methyl 4′-bromomethylbiphenyl-2-carboxylate
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31 gave a 30:70 mixture of aldehydes 32a and 32b, respectively. Both aldehydes 32a and
32b were separated by column chromatography. Further condensation of compounds 32a
and 32b with methyl azidoacetate 3 produced acrylates 33a and 33b, and their subsequent
cyclisation into the desired compounds 34 and 35 was accomplished through heating in
xylene in 32–39% yields (Scheme 9).
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Scheme 9. Synthesis of pyrrolo [2,3-d]imidazole-5-carboxylates 34 and pyrrolo [3,2-d]imidazole-5-
carboxylates 35.

2-(Trimethylsilyl)ethoxymethyl- (SEM)-protected pyrazole-2-carbaldehyde 36 was
used for the preparation of pyrrolo [3,2-c]pyrazole 38 under Hemetsberger–Knittel condi-
tions. Knoevenagel condensation, followed by the thermal cyclisation of azidoacrylate 37,
produced 38 [22] (Scheme 10).
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Scheme 10. Synthesis of methyl 1-SEM-protected 1,4-dihydropyrrolo [3,2-c]pyrazole-5-carboxylate 38.

Recently, Sartori et al. [51] described the Hemetsberger–Knittel synthesis of various
heteropentalenes. (Scheme 11). The appropriate heterocyclic aldehydes 39 were converted
into azido derivatives 40 through the reaction with ethyl azidoacetate 3 and potassium
ethoxide in ethanol. The subsequent cyclisation of 40 occurred by refluxing in xylene.
The yields of all products 41 were reported to range from 91% to 99%, except for ethyl
1-methyl-4H-pyrrolo [3,2-b]pyrrole-5-carboxylate (54%) and ethyl 1-methyl-6H-pyrrolo
[2,3-c]pyrazole-5-carboxylate (18%).
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Scheme 11. Application of Hemetsberger–Knittel synthesis in order to produce three- and four-
heteroatom-containing heteropentalenes.

2.6. Application Potential of Seleno-, Thieno- and Pyrrolo [3,2-b]pyrroles as HP Related to
Furo[3,2-b]pyrroles

Generally, furo [3,2-b]pyrrole (V, Figure 3), as representative for the category of
(1:1), (1:2)/(2:1) heteropentalenes and their derivatives, are known as effective antimi-
crobial [23], anti-inflammatory [20] and antituberculotic agents [21]. Their thieno-and
seleno [3,2-b]pyrrole-type analogues have gained interest due to possessing antivirotic ac-
tivity [52–54], and in the field of proteomics [55,56]. In particular, the derivatives 6-[2-(N,N-
dimethylamino)ethyl]-4H-thieno [3,2-b]pyrrole (42, Figure 5) are bioisosteric analogues of
the hallucinogen and the serotonine agonists and have become leading derivatives in such
fields of medicinal research since their discovery [57].
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Thieno [3,2-b]pyrroles, beyond their biological activities, have been investigated as
the donor-moieties in a variety of organic semiconductors. Recently, the importance
of seleno [3,2-b]pyrrole-type compounds in materials chemistry has been highlighted.
In some studies, it has been proposed that through the replacement of the thieno [3,2-
b]pyrrole segment by selenophene [3,2-b]pyrrole in a particular compounds such as 43 and
44 (Figure 6), there could be an improvement in the performance of organic field effect
transistors (OFETs) [58]. However, the results are not clearly understood since some studies
explain the converse trend [59]. Contrary to this, S,N and Se,N-heteroatoms containing HPs,
and their N,N-azanalogues, have been always investigated and applied as electron-acceptor
units and chromophores in organic photovoltaic devices [59–61]. In a novel study, the deep
red emission for B/N-doped, ladder-type pyrrolo [3,2-b]pyrroles 45a/45b (Figure 7) has
been developed [62]. Such a novel type of dye underwent a fully reversible first oxidation,
located on the diphenylpyrrolo [3,2-b]pyrrole core, directly to the di(radical cation) stage.
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3. Thiazolo [5,4-d]thiazoles

Thiazolo [5,4-d]thiazole (TzTz) is a conjugated (π)-heterocyclic scaffold containing two
fused thiazole rings presenting a rigid planar structure (46, Figure 8) [63]. Unsubstituted
TzTz is a white powder containing two nitrogen, two sulphur and four carbon atoms, and
without a wide range of utilisation, but its derivatives have attracted enormous attention.
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According to ScienceDirect® 490 and Scopus®, 289 peer-reviewed papers/articles on 
TzTz compounds were published between 1959 and 2021 (Figure 9). The first papers pub-
lished by Johnson and Ketcham presented only the preparation of TzTz and provided 
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charge transfer, [79] intense absorption and strong fluorescence, [80] as well as higher sol-
ubility, is due to the lack of free positions handled mainly through the substituents at C2 
and C7 (46, Figure 8) [81]. 
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According to ScienceDirect® 490 and Scopus®, 289 peer-reviewed papers/articles
on TzTz compounds were published between 1959 and 2021 (Figure 9). The first papers
published by Johnson and Ketcham presented only the preparation of TzTz and provided
some other general information, such as UV–Vis spectra, mass spectra and IR characterisa-
tion [64]. The number of papers showed a slight increase until 2004, when the first TzTz
based donor–acceptor–donor molecules were presented [65,66]. Since 2008, the trend has
been for a rapid increase in research works focusing on intensive studies of applications
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of TzTz in organic electronics. In particular, since the first n-type thiazolo [5,4-d]thiazole-
based organic field-effect transistor (OFET) was presented [67], reports on TzTz-containing
materials have increased almost exponentially [68]. Although the applications of TzTz-type
materials in the development of OFETs [69], organic-light emitting diodes (OLEDs) [70],
optical sensors [71] and organic redox flow batteries [72] have already been described, TzTz-
based organic photovoltaics (OPVs) [73], including dye-sensitised solar cells (DSSCs) [74],
bulk heterojunction solar cells (BHJ) [75], perovskite solar cells [76], hybrid solar cells [77]
and polymer solar cells [78] with high values of power conversion efficiency (PCE), ranging
from 3% up to a maximum of 17%, have been presented in a vast number of research
works. Concerning the structure of the heterocyclic core, the functionalisation of thiazolo
[5,4-d]thiazole-based derivatives towards materials with efficient charge transfer, [79] in-
tense absorption and strong fluorescence, [80] as well as higher solubility, is due to the lack
of free positions handled mainly through the substituents at C2 and C7 (46, Figure 8) [81].
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3.1. Ketcham’s Cyclocondensation Reaction

Pioneering synthesis of TzTz-based compounds was performed by John Johnson and
Roger Ketcham, who published their work in 1960. The goal of the authors was to monitor
the condensation of dithiooxamide (48) with different aromatic carbaldehydes (47) [64]. A
condensation experiment (Scheme 12) was carried out in different solvents (benzyl chloride,
phenol, benzene and chloroform) at boiling point temperature. The most commonly used
solvents were N,N-dmiethylformamide (DMF), nitrobenzene, chlorbenzene and phenol,
or a solvent-free method was applied. The presented TzTz derivatives were formed
in moderate to good yields (7–78%). A curiosity concerning the synthesis was that the
first condensation between the aromatic aldehyde with rubeanic acid was performed
by Ephraim in 1891 [82], but in that period the structure of the products was primarily
misstated as 2,2’-diaryl-4,4’-bisthiazetine (49, Scheme 12) [83]. Later, the correct structure
of TzTz-based derivatives was confirmed.
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son [64], also showing the misstated structure of Ephraim (49) [82]. 

Ketcham cyclocondensation is the most widely utilised process for the synthesis of 
TzTz-based derivatives, mainly symmetrically substituted by aromatic and heteroaro-
matic rings (Scheme 12). On the one hand, the reaction represents a very available process 
since it represents a single step, one-pot method which does not require an inert atmos-
phere or cooling [84] and can be performed under solvent-free conditions using micro-
wave irradiation [85]. Moreover, dithiooxamide and a broad range of aldehydes are 
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of the mechanism or highlighted the formation of by-products 51 and 54 (Figure 10) re-
sulting from the process’ behaviour. In detail, according to Scheme 13 the condensation 
of two equivalents of substituted furan-2-carbaldehyde (50) produced the stable imine-
type derivative 51. Such iminie-type derivatives are formed during the early stage of the 
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Scheme 12. Representative synthesis of symmetrical thiazolo [5,4-d]thiazoles (46) by
Ketcham/Johnson [64], also showing the misstated structure of Ephraim (49) [82].

Ketcham cyclocondensation is the most widely utilised process for the synthesis of
TzTz-based derivatives, mainly symmetrically substituted by aromatic and heteroaromatic
rings (Scheme 12). On the one hand, the reaction represents a very available process since
it represents a single step, one-pot method which does not require an inert atmosphere
or cooling [84] and can be performed under solvent-free conditions using microwave
irradiation [85]. Moreover, dithiooxamide and a broad range of aldehydes are widely
affordable at good prices. Still, such an elegant synthetic approach is accompanied by a
few drawbacks, such as long reaction times, high reaction temperatures and the formation
of products in poor to average yields [86–90]. The formation of by-products, as a conse-
quence of the stepwise process, probably contributes the most to lowering the yield of the
desired products.

3.2. Mechanism of the Ketcham Reaction

In our previous work [16], we presented the completed mechanism of the Ketcham
stepwise process. The proposal was based on our experimental observation, and the
structural characterisation of the main products and by-products [16]. Our proposal was
supported by data from the literature [91,92], where the authors proposed a shortened
version of the mechanism or highlighted the formation of by-products 51 and 54 (Figure 10)
resulting from the process’ behaviour. In detail, according to Scheme 13 the condensation
of two equivalents of substituted furan-2-carbaldehyde (50) produced the stable imine-
type derivative 51. Such iminie-type derivatives are formed during the early stage of the
reaction that is followed by a ring-closing reaction, producing the non-isolable dihydro
intermediate 52. The process is completed by double intramolecular rearrangement of the
dihydro intermediates 52, 53, ending up with oxidative cyclisation to furan-substituted
TzTz 55. Some improvements to the oxidation step were presented by the use of SeO2 as an
oxidising agent [93]. This approach shows oxidation from the cyclised 2,3-dihydrothiazolo
[5,4-d]thiazole (Scheme 13, Pathway B). The free amino group of the initially formed single
thiazole ring allows condensation with another amount of aldehyde. The intermediate
bearing the -SH moiety, possibly dimerize, forms the bisthiol-type compound 54 in which
the S-S bond is subsequently cleaved. The unsaturated TzTz core is oxidised further. In
spite of that, the presented proceeding could be taken as being hypothetical, according to
two independent research works previously published in [16,93]. It has to be mentioned
that the formation, isolation and identification of intermediate bis-thiol type derivative 54
(Figure 10) was possible only if the presence of the oxygen atom of the substituent stabilised
the nitrogen of the imine bond by intramolecular effects. Such a phenomenon, nevertheless,
has not been discussed as of yet.
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3.3. Synthesis of Asymmetrical Thiazolo [5,4-d]thiazoles by Ketcham’s Reaction

It is quite surprising to achieve an asymmetrically substituted TzTz-based compound
through simple cyclocondensation. To the best of our knowledge, there have only been two
examples of such phenomenon in the literature presented until now.

The first example was presented in the literature very recently, in 2022, and it shows the
use of two different carbaldehydes, pyrene-1-carbaldehyde 55 and 4-pyridinecarboxaldehyde
56, in a ratio of 1:1 in cyclocondensation with dithiooxamide (48) towards C2-pyrene and
C7 p-pyridine-substituted thiazolo [5,4-d]thiazole 57 (Scheme 14) [94]. Interestingly, the
authors report only the sole asymmetric product; however, the character of this reaction
would possibly enable the formation of symmetrical products as well.
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3.4. Cyclopolymerisations Following Ketcham’s Reaction Protocol

Recently, a very promising way to achieve a TzTz-based oligomer or polymer directly
was offered by the simple Ketcham’s synthetic protocol. Instead of a small-molecule
thiazolo [5,4-d]thiazole-type derivative, the compound had approximately two to seven
repeating TzTz units in the final oligo- or polymer. Such types of reactions are rather
rare, but this seems to be very promising for the construction of organic materials with
enhanced π-conjugation and the required electronic properties. Reports on Ketcham-type
polycondensation have recently garnered interest. At the moment, there are on average only
ten reports [96–105] presenting the direct Ketcham reaction approach towards TzTz-based
oligomers and polymers.

1. The first report, published in 2016 [96], presented the synthesis of a 9-hexyl-9H-carbazole-
unit bearing a TzTz-based oligomer 61 with seven repeating units (Figure 11a). A similar
product geared towards the same oligomer was presented in 2021 [97].

2. The polycondensation reaction of the Ketcham-type of dithiooxamide with triethy-
lamine and carbazole-based aldehydes was published by Dabuliene at al. in 2022 [98].
GPC analysis showed the average molecular weights of triphenylamine-based com-
pounds (62) (Figure 11b) between 2980 and 3080, while in the case of carbazole
containing derivatives (63) it was from 1640 to 3290. The published GPC results
indicated that the molecules contained approximately three to seven repeating units.

3. Zhu et al. (2014) [99] demonstrated the preparation of a porous cross-linked polymer
64 (Figure 11c) containing TzTz and phenyl units. Similar phenyl-based monomers



Reactions 2023, 4 267

with three carbaldehyde groups, such as tris(4-formylphenyl)-benzene and tetra(4-
formylphenyl)-benzene, can be also condensed with dithiooxamide to give a cross-
linked copolymer with a porous structure [100].

4. The polycondensation of 1,3,5−triformylfloroglucinol with 4,4′-(thiazolo [5,4-d]
thiazole-2,5-diyl)dianiline gave a crosslinked copolymer 65 with a porous structure
(Figure 11d) [101,102].

5. Cross-linked copolymer 66 was synthesised by the condensation of dithiooxamide
with (1,3,5- tris(4-formylphenyl)-benzene) or with (2,4,6-tris(4-formylphenyl)-1,3,5-
triazine (Figure 11e) [103].

6. Finally, the structure of cross-linked polymers 67 as products of Ketcham’s type
polycondensation of dithiooxamide with different monomers containing multiple
carbaldehyde groups was described according to [104] (Figure 11f).

7. The polycondensation approach following the Ketcham procedure was successfully
used to achieve porous, cross-linked copolymer containing porphyrin-residues 68
(Scheme 16) [105].
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With the final example presented in Scheme 16, it can be concluded that the utilisation
of Ketcham’s ring-closure method significantly extends beyond its generally accepted
potential. The polycyclocondensation approach is, moreover, a novel alternative way to
achieve novel functional materials using a simple, one-step manner affecting significant
cost-reduction and enhancement of the eco-friendliness of the entire process, from design
through synthesis up to real-life application.

4. Conclusions

In combination with our several years of experience in the field of synthesis and
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