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Abstract: A simple synthetic way to obtain a decachloro derivative of cobalt bis(dicarbollide) has
been found. The reaction of cesium salt of cobalt bis(dicarbollide) anion with aluminum chloride in
chloroform under reflux conditions results in Cs[3,3′-Co(4,7,8,9,12-Cl5-1,2-C2B9H6)2] of high purity
and good yield.
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1. Introduction

Cobalt bis(dicarbollide) anion [3,3′-Co(1,2-C2B9H11)2]− is the most important repre-
sentative of the sandwiched metallacarboranes [1,2]. The synthesis of this complex was
first reported as early as 1965 [3,4], and the intensive study of its chemistry continues to
this day. Nowadays, cobalt bis(dicarbollide) and its derivatives find applications in many
different fields from medicine [5–14] to material science [15–21].

An important field of using cobalt bis(dicarbollide) and its derivatives is the solvent
extraction of radionuclides. Since the first publication of alkali metals extraction by
polyhedral borate anions [22] up to now, more than a hundred articles and patents
have been published on this subject (see [1] and references therein). The approach is
based on the extremely hydrophobic properties of cobalt bis(dicarbollide) anion, which
enters the organic phase of moderate polarity as an ion pair with the least hydrated
cations (first of all, Cs+ and Sr2+). In order to increase the chemical stability of cobalt
bis(dicarbollide) in strong acidic media [23], which is used in the process, the hydrogen
atoms at the most reactive BH-vertexes (positions 8,8′ and 9,9′,12,12′) are substituted
to other groups, such as, for example, halogens. The hexachloro derivative of cobalt
bis(dicarbollide) anion [3,3′-Co(8,9,12-Cl3-1,2-C2B9H8)2]− is well known by its high
affinity and selectivity for Cs+ in nuclear application (see, for example, [24,25]) and is
also used as one of the components of synergistic extraction mixture in the Universal
Solvent Extraction (UNEX) process [26].

For many years, the hexachloro derivative was known as the derivative with the high-
est substitution degree; however, very recently it was reported that the reaction of cobalt
bis(dicarbollide) with sulfuryl chloride in the presence of AlCl3, depending on the amount
of reagents and reaction time, results in the formation of octa-, deca-, and dodecachloro
derivatives of cobalt bis(dicarbollide) [27]. In this contribution, we describe a simple and
convenient method for obtaining decachloro cobalt bis(dicarbollide) Cs[3,3′-Co(4,7,8,9,12-
Cl5-1,2-C2B9H6)2] without using toxic, corrosive, and lachrymatory sulfuryl chloride.

2. Materials and Methods
2.1. General Methods

Cesium salt of cobalt bis(dicarbollide) was obtained using standard literature methods [3].
Chloroform, 99.85% was purchased from Component-Reaktiv (water content < 0.05%, HCl
content < 0.001%). Aluminum chloride was purchased from ABCR and used without
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additional purification. The NMR spectra at 1H (400.1 MHz), 11B (128.4 MHz), and 13C
(100.0 MHz) were recorded with a Varian Inova 400 spectrometer. Me4Si was taken as the
internal standard for 1H and 13C NMR spectra. BF3

.Et2O was used as an external stan-
dard for 11B NMR spectra. Infrared spectra were collected on an FSM-2201 (INFRASPEC)
instrument. UV/Vis spectra in chloroform were recorded with an SF-2000 spectropho-
tometer (OKB SPECTR LLC) using 1 cm cuvettes. Mass spectra (MS) were measured
using a Shimadzu LCMS-2020 instrument with DUIS ionization. The measurements
were performed in a negative ion mode with mass range from m/z 50 to m/z 2000. Isotope
distribution was calculated using Isotope Distribution Calculator and Mass Spec Plotter
(https://www.sisweb.com/mstools/isotope.htm, accessed on 26 December 2022).

2.2. Synthesis of Cs[3,3′-Co(4,7,8,9,12-Cl5-1,2-C2B9H6)2]

To a suspension of cesium salt of cobalt bis(dicarbollide) (0.50 g, 1.10 mmol) in chloro-
form (25 mL), anhydrous AlCl3 (0.20 g, 1.50 mmol) was added by one portion. The reaction
mixture was heated under reflux for 4 h, cooled to room temperature, and concentrated
under reduced pressure. The crude product was washed with water, filtered, and dried on
air to give 0.81 g (92% yield) of Cs[3,3′-Co(4,7,8,9,12-Cl5-1,2-C2B9H6)2] as orange crystals.
1H NMR (acetone-d6, ppm): δ 5.45 (2H, br s, CHcarb), 4.24 (2H, br s, CHcarb), 3.7 ÷ 0.8 (8H,
br m, BH). 13C NMR (acetone-d6, ppm): δ 49.0 (CHcarb), 46.9(CHcarb). 11B NMR (acetone-d6,
ppm): δ 11.2 (2B, s), 6.0 (2B, s), 5.0 (2B, s), 4.0 (2B, s), 0.3 (2B, s), –1.0 (2B, d), –15.6 (2B, d,
J = 170 Hz), –18.5 (2B, d, J = 155 Hz), –29.1 (2B, d, J = 167 Hz). IR (film, cm−1): 3066 (νC-H),
3046 (νC-H), 2617 (br, νB-H), 2591 (br, νB-H). UV (acetone, nm): λ 277, 239. MS (DUIS) for
C4H12B18Cl10Co: calcd. m/z 668 [M]−, obsd. m/z 668 [M]−. The spectral data are in good
agreement with those described in the literature [27].

3. Results and Discussion

There are two main approaches for obtaining chloro derivatives of cobalt bis(dicarbollide)
anion. The first approach includes the preliminary chlorination of closo-carborane, followed
by its conversion to nido-carborane and the subsequent insertion of cobalt by the reaction
with cobalt salts (typically with CoCl2 or CoBr2) [28,29]. Another method is based on the
direct chlorination of cobalt bis(dicarbollide) anion [28,30–32]. The combination of these
two approaches is also possible [29]. Most of these methods make it possible to introduce
from one to six chlorine atoms to the cobalt bis(dicarbollide) anion.

It has recently been demonstrated that the reaction of the cobalt bis(dicarbollide) anion
with sulfuryl chloride in the presence of AlCl3 in an Ace pressure tube, depending on the
amount of reagents and reaction time, results in the formation of chlorinated derivatives
with a higher degree of substitution, such as Cl-8, Cl-10, and Cl-12 derivatives [27]. This
work is the first example of the synthesis of pure chloro derivatives with a high degree of
halogenation, in contrast to the previously described preparation of inseparable mixtures of
chlorinated derivatives of cobalt bis(dicarbollide) (up to Cl-9) [33]. However, the proposed
approach requires the use of dangerous sulfuryl chloride as well as special equipment for
synthesis under pressure. In this contribution, we present a simple method for obtaining a
decachloro derivative of cobalt bis(dicarbollide) that does not require the use of sulfuryl
chloride, nor any special devices or inert atmosphere.

We found that the reaction of cesium salt of cobalt bis(dicarbollide) anion with excess
AlCl3 in chloroform solution under reflux condition for 4 h results in the formation of
Cs[3,3′-Co(4,7,8,9,12-Cl5-1,2-C2B9H6)2] as a single product (Scheme 1).

The isolation of the target product was carried out by concentrating the reaction
mixture under vacuum and washing the dry residue with water to remove the unreacted
aluminum chloride. According to NMR spectra and other analytical data, the main product
of the reaction represents the decachloro derivative of cobalt bis(dicarbollide). However,
trace amounts of Cl-9, Cl-11, and Cl-12 derivatives can also be detected in the mass spectrum
of the compound.

https://www.sisweb.com/mstools/isotope.htm
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The 11B{1H} and 11B NMR spectra (Figure 1) of the prepared complex consist of nine
groups of signals in the range 11.2 ÷ (−29.1) ppm, which corresponds to the spectral
region of cobalt bis(dicarbollide) derivatives and indicates the presence of symmetry in the
molecule. Five signals at 11.2, 6.2, 5.0, 4.0, and 0.3 ppm represent singlets and correspond
to the signals of boron atoms substituted with chlorine (positions 4,4′; 7,7′; 8,8′; 9,9′; and
12,12′). Five other signals appear as doublets and represent signals from unsubstituted
boron atoms.
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Despite the fact that the obtained complex is substituted symmetrically, the signals
from four CH groups in its 1H NMR spectrum appear as two separate broad singlets at
5.45 and 4.24 ppm, whereas it was expected that they should be equivalent. Similarly,
13C NMR spectrum consists of two signals from CH groups at 49.0 and 46.9 ppm (see
Figure S1 and Figure S2, respectively, in the Supplementary Materials). These spectral
data indicate that the complex is a gauche rotamer, which can also be confirmed by X-ray
structural data obtained for NMe4[3,3′-Co(4,7,8,9,12-Cl5-1,2-C2B9H6)2] earlier [27].

To understand the possible mechanism of cobalt bis(dicarbollide) chlorination by
AlCl3 in chloroform solution, it is necessary to consider some similar processes. In the
middle of the 20th century, the ionization of polychloromethanes by aluminum chloride
at low temperatures had been described [34]. The thermodynamic stability of the CCl3

+

cations as opposed to the CH3
+ cation is explained by the efficient p-n interaction

between the nonbonded electron pairs of the halogens and the positively charged carbon
atom [35,36]. Therefore, the trichloromethyl cation itself should not be a highly reactive
electrophile. This made it possible to isolate and structurally characterize their salts
with weakly coordinating anions [37,38]. However, it was found that CCl4/AlCl3 is an
extremely reactive hydride abstracting and ionic chlorinating system for adamantane [39]
and carboranes [40].

The combinations of polyhalomethanes with aluminum halides (CBr4·nAlBr3,
CHBr3·nAlBr3, CCl4·nAlBr3, CHCl3·nAlBr3, and CH2Br2·nAlBr3) are considered to be
organic superacids, which catalyze efficiently the cracking, isomerization, and oligomer-
ization of alkanes and cycloalkanes under mild conditions [41,42]. It was shown that the
reactivity of chloromethyl cations in hydride abstraction reactions with hydrocarbons in
superacid media decreased in the order CCl3+ > CHCl2+ >> CH2Cl+ [43]. This could not
be expected, since the stability of the chloromethyl cations decreases in the same order as
the number of 3p-donor chlorine atoms decreases. Based on this, CCl3+ should be the least
reactive species among other in the series. To explain this unusual behavior, protosolvation
or superelectrophilic activation [44–46] of chlorine atoms in a superacid was proposed. Pro-
tosolvation should enhance the electrophilic character of the carbon in the corresponding
halomethyl ion, resulting in a higher reactivity in the hydride abstraction.

Since the dichloromethane cation CHCl2
+ is less stable and less reactive than the

trichloromethane one, reactions involving it are much less studied. It is known that
reactions of CHCl3 with aromatics in the presence of AlCl3 proceed according to the
electrophilic substitution mechanism through the formation of the [CHCl2]+[AlCl4]−

complex at the first stage [47]. At the same time, the reaction with carboranes under
similar conditions, due to the hydride nature of the hydrogen atoms, proceeds accord-
ing to the mechanism of electrophilic-catalyzed nucleophilic substitution, leading to
halogen derivatives [40].

Summarizing the above, we believe that the reaction mechanism involves at the
first stage the chloride abstraction by AlCl3 from chloroform with the formation of
[CHCl2]+[AlCl4]−. The resulting CHCl2

+ carbocation removes the most hydridic hydro-
gen atoms from cobalt bis(dicarbollide). The quasi-borinium cation formed upon the
removal of the hydride from cobalt bis(dicarbollide) is a very strong Lewis acid [48],
capable of abstracting the chloride ion from AlCl4

−. The first steps of this process are
shown in Figure 2. To confirm our suggestion, it should be noted that in the 1H NMR
spectrum of the reaction mixture, there is the signal from CH2Cl2 that is formed in
the reaction.
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