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Abstract: Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and
C–X Bonds. These methods have provided access to varied portfolio of synthetically important
γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimi-
dazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good
yields and under mild conditions. Moreover, we have successfully discussed the construction through
visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration
and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond acti-
vation from well-known building blocks through cyclization, elimination and aromatization. The
potential use of a wide portfolio of simple ketones and available primary amines has made this
transformation very attractive.

Keywords: photoredox reactions; C–H/N–H bonds; aerobic bond activation; biologically
active transformation

1. Introduction

As a new benign environment and effective catalytic strategy, visible light-induced
photoredox catalysis has been well applied to modern organic synthesis. In this review,
the recent advances in light-induced C-H and C-X bond activations and the accompanied
reaction mechanisms are discussed in detail. Light energy is pollution-free, cheap, green
and inexhaustible with potential industrial and medical applications (Figure 1). Therefore,
an efficient and effective utilization of light has become one of the most active research
topics. In fact, the connection between the use of light and environmental sustainability has
been reported since the early 20th century, when the famous Italian organic photo-chemist
Ciamician pointed out that the future of industrial chemical synthesis is low-maintenance,
green and energy rate efficient [1–3]. The low-energy photochemical reactions will replace
the traditional environment-friendly high-energy synthesis processes. Former scientists
understood the mystery of photosynthesis to make better use of sunlight [4]. In the
early 20th century, photochemists discovered that a light source can be involved in organic
chemical reactions as an inexhaustible source of clean energy. Classic organic photochemical
reactions usually use high-energy ultraviolet light to initiate the reactions. However, the
content of ultraviolet light in sunlight is low. In addition, the UV generator generally uses
high-pressure xenon lamps or mercury lamps, which are relatively expensive. Scaling up
of the reaction is difficult due to the constraints with the light source limiting the industrial
applicability of photo catalytic organic synthesis. Therefore, for the full use of visible light
from sunlight (about 46%), efficient visible light catalyzed organic photochemical reactions
widely used in industrial synthesis have been developed in recent years. This is the most
effective way to solve the problem of industrial organic photosynthesis [2].

In recent years, the development of metal coordination chemistry has resulted in new
advances in visible light-catalyzed chemical reactions. In this research field, the complexes
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of bipyridyl-based ruthenium and iridium displayed interesting characteristics, chemical
stability and special photoredox properties (Scheme 1) [5–10].
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Scheme 1. Typical bipyridyl complexes of ruthenium and iridium. 

For example, a Ru(bpy)32+ complex showed a strong absorption in the visible wave-
length range with an absorption maxima at 452 nm. In addition, the central metal ion in 
the ground state (S0) divalent ruthenium complex belongs to the d6 system (Scheme 2) [7]. 
When the metal center absorbs light, metal to ligand charge transfer (MLCT) reaches its 
excited singlet (S1), which usually excites singlet complexes, has a short lifetime (100–300 
fs) and is not enough to promote an effective chemical conversion. The excited triplet state 
(T1) and the complex lifetime of the excited triplet state can be extended to 1100 ns. In the 
survival time, the complex in the excited state has high activity, which can, through an 
electron transfer, return to the ground state. As a result, the organic molecules are acti-
vated and trigger the chemical reactions. This innovation overcomes common problems 
such as the substrate limitations, as most organic molecules cannot be activated by con-
ventional complexes under visible light. As a result, ruthenium bipyridyl complexes and 
their analogues are gradually being applied to organic synthesis. 
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Scheme 1. Typical bipyridyl complexes of ruthenium and iridium.

For example, a Ru(bpy)3
2+ complex showed a strong absorption in the visible wave-

length range with an absorption maxima at 452 nm. In addition, the central metal ion in
the ground state (S0) divalent ruthenium complex belongs to the d6 system (Scheme 2) [7].
When the metal center absorbs light, metal to ligand charge transfer (MLCT) reaches its
excited singlet (S1), which usually excites singlet complexes, has a short lifetime (100–300 fs)
and is not enough to promote an effective chemical conversion. The excited triplet state
(T1) and the complex lifetime of the excited triplet state can be extended to 1100 ns. In the
survival time, the complex in the excited state has high activity, which can, through an
electron transfer, return to the ground state. As a result, the organic molecules are activated
and trigger the chemical reactions. This innovation overcomes common problems such
as the substrate limitations, as most organic molecules cannot be activated by conven-
tional complexes under visible light. As a result, ruthenium bipyridyl complexes and their
analogues are gradually being applied to organic synthesis.

In 2008, in the early stages, Nicewicz and MacMillan et al. promoted the development
of this field and used Ru(bpy)3Cl2 as a visible light catalyst for the asymmetric alkylation
of aldehydes [11]. Ischey et al. [12] and Narayanam et al. [13] also reported the use of
Ru(bpy)3Cl2 as a visible light catalyst and made progress in photo-catalysis and succeeded
in a series of visible light catalyzed organic transformations.
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Scheme 2. Strong absorption of a Ru(bpy)3
2+ complex in the visible wavelength range.

Nowadays, visible light catalyzed organic reactions have become the focus of mod-
ern organic chemistry [14–26]. There are three methods of visible light photocatalytic
transformations: oxidation quenching, reduction quenching and energy transfer. With a
Ru(bpy)3Cl2 catalyst illuminated upon visible light, Ru(bpy)3 excitation occurs from the
ground state transition of (2+) of a metal center to Ru (bpy)3 in the excited state 2+ * through
a metal to ligand charge transfer (MLCT) (Scheme 3, path A). Ru (bpy)3 is reduced to a low
energy state complex via a reductive quenching pathway (A). The metal complex in the
excited state can interact with organic molecules. Similarly, the Ru (bpy)3 is oxidized to
a high valence state by a single electron transfer to form a (3+) complex via an oxidative
quenching path (B). Herein, organic molecules with electron gain or loss are called an oxida-
tion quencher or reduction quencher. After gaining and losing electrons, organic molecules
can undergo a series of transformations. At the same time, the excited state Ru(bpy)3

2+ * is
also a good energy donor, which directly transfers energy to organic molecules through an
energy transfer, leading to a chemical transformation (path C) (Scheme 3) [27].

Following these findings, it was concluded that the occurrence of organic chemical
reactions is mainly through electron transfer and energy transfer pathways. If there were
an additional electron acceptor in the reaction system, then the electron transfer reaction
is further divided into: (1) a net oxidation reaction, (2) a net reduction reaction, and (3) a
redox neutral reaction. For visible light photocatalytic reactions, ruthenium and iridium
bipyridine complexes are commonly used as a photocatalyst [28].
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2. Visible Light Catalyzed Net Oxidation

A visible light catalyzed net oxidation usually refers to the addition of stoichiometric
electron acceptors such as oxygen, high valence iodide, persulfide and other oxidizing
substances to the reaction system with a photocatalyst. In the reaction cycle, the reaction
substrate is activated, and the active intermediate produces participates in the subsequent
chemical transformation.

2.1. Oxidative Production of Imine Ion Intermediates

Some amines are usually electron-rich and, therefore, they can be oxidized by a
photocatalytic strategy. The study of imine ion intermediates is one of the mature fields
in photocatalytic oxidation. The intermediate of an imine ion is produced by a chemical
reaction wherein the organic amine molecule loses its electrons. Such reactions are initiated
by the catalyst, and it is usually characterized by a reduction quenching process. For
example, [Ru(bpy)3

2+] can promote the oxidation of electron rich organic molecules such as
amines. During the course of the reaction, the photocatalyst can be reduced to a low valence
complex (Ru(bpy)3

1+), resulting in the formation of a free radical cation intermediate 2.
Similarly, Ru(bpy)3

2+ was generated by the action of oxygen [O].- species. Consequently, the
iminium ion 4, formed from a radical intermediate 2, is further oxidated. The formed imine
positive ions can react with various nucleophiles, introduce new amines at the α-position of
amines and generate the corresponding target products [28,29]. The low valence complex
needs the loss of electrons and to return to the initial valence state [Ru(bpy)3

2+], which
requires the addition of stoichiometric electron acceptors (oxygen, high valence iodine,
persulfides and other oxidizing substances) to perform the recycling and regeneration of
photocatalysts (Scheme 4) [28,29].

At the present stage, the research in this field is mainly focused on the following
aspects: (1) exploration of a variety of nucleophiles, (2) expanding the application of
the constructed products and looking for new chemical reactions and (3) developing
new photocatalysts, chemical agents or catalytic systems. Firstly, from the perspective of
nucleophiles, N-aryl-substituted tetrahydroisoquinoline was used as the model substrate
to find various nucleophiles to directly construct new chemical bonds at the α-position of
amines for the functionalization of its adjacent C-H bond. In 2010, Condie et al. described
an ortho C-H bond functionalization in a visible light-catalyzed oxidation of organic amines
(Scheme 5) [30] using Ru(bpy)3Cl2 or Ir(PPy)2(dtbbpy)PF6 as a photocatalyst and N-aryl-
substituted tetrahydroisoquinoline 4 as a model substrate. The substrate was oxidized to
the corresponding iminium ion intermediate under light. As a nucleophilic reagent, the
C-H containing alkane attacks the intermediate of the iminium ion leading to the formation
of a series of aza Henry products in high yields. In addition, the author conducted a
series of control experiments, such as without light or a photocatalyst, and the reaction
hardly occured. Oxygen is also necessary in the reaction system. Under the anaerobic
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conditions, the conversion rate of the reaction is significantly reduced. Fluorescence
quenching experiments showed that the substrate can quench the fluorescence product by
the excited photocatalyst.
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Scheme 5. Visible light catalyzed aza Henry reactions.

The experimental results showed that this is a typical visible light catalytic reaction
process, in order to avoid the amide and dimer by-products from α-amino radical and
improve the slow catalyst turnover with O2 in the reaction system. Later, the team used
trichlorobromomethane instead of oxygen as an oxidant. The reaction was attempted again,
avoiding the production of amide by-products with good results [31].

In 2011, Rueping et al. proposed a series of synergistic catalytic modes combining a
photocatalyst and a Lewis base catalyst to realize the photocatalytic Mannich reaction 9
(Scheme 6) [32]. Similar work was also reported by Zhao et al., wherein a comparative study
of nucleophiles was performed. The formation of by-products was effectively avoided
using enol silicone ethers as the nucleophilic reagents [33]. In the same year, 2011, Rueping
et al. reported other typical nucleophiles facilitating the construction of C-C and C-P
bonds [34,35]. They also reported the first case of photocatalysis and transition metal
catalysis for the study of an alkynylation reaction (product 12) of N-substituted tetrahy-
droisoquinoline derivatives [36].
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Recently, the Zhu group reported the difluoromethylation of nitrophenyl substituted
tetrahydroisoquinoline derivatives. The difluoro-substituted enol compounds formed in
situ are used as nucleophilic reagents, and carbon tetrachloride was added as the reactive
oxidant [37]. Firstly, the iminium ion intermediates were formed under photocatalytic
conditions, and then organic compounds were added. The difluoromethylation of tetrahy-
droisoquinoline was accomplished by the addition of CH3CN/CCl4 and nucleophilic
precursors (Scheme 7).
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Scheme 7. Study of a nucleophilic addition to tetrahydroisoquinoline derivatives.

In addition to the development of different nucleophiles for the addition reaction to
iminium ions, a comparative study of the reaction substrates was also made. The Xiao
team used the above strategy to realize an intramolecular nucleophilic reaction of nitrogen
aryl substituted tetrahydroisoquinolines used for the synthesis of oxazine and pyrimidine
derivatives (Scheme 8) [38].
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Scheme 8. Photocatalytic intramolecular cyclic reaction.

In 2011, Xiao et al. converted substituted nitrogen aryl tetrahydroisoquinoline sub-
strates to nitrogen alkyl substituted tetrahydroquinoline and hydroisoquinoline derivatives
to further expand the application of this reaction by adding electron poor olefin com-
pounds through an [3 + 2] addition [39,40]. They reported cycloaddition and oxidative
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aromatization reactions for the synthesis of complex derivatives of pyrrolisoquinoline
(Scheme 9). Importantly, there is a requirement of 1.1 equivalents of NBS to fulfill the
oxidative aromatization reaction.
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Later, Rueping et al. published a report leading to the synthesis of nitrogen-containing
quaternary ring skeleton compounds by employing photocatalytic oxidative conditions [41].
In addition to the above tetrahydroisoquinoline derivatives as reaction substrates, various
types of tertiary amines participate in the photooxidation.

In 2011, Xuan et al. synthesized polysubstituted tetrahydroimidazole derivatives 25
by a visible light catalysis. In addition, the alkali plays a role in improving the diastereose-
lectivity of the reaction system (Scheme 10) [42].
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In 2012, Cai et al. used tetramethylethylenediamine as a raw material in the reaction
(Scheme 11). It is a cationic intermediate of the nitrogen free radical which was produced
by a photocatalytic oxidation under light conditions [43]. According to the structural
characteristics, the intermediate further breaks the ortho C-C bond to form a free bond
at the same time, but also a group intermediate and an iminium ion intermediate. The
iminium ion intermediate is the main part of the reaction and is accepted in the system.
The nucleophilic reagent nitroalkane attacks the iminium ion to generate the corresponding
target product 28. Control experiments for the C-C cleavage of nitrogen radical cationic
intermediates and photopolymerization reaction by amino radicals are also proved [43].
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In comparison to tertiary amines, there were relatively few reports on the photocat-
alytic transformation of secondary and primary amines. As their oxidation potential is
high, they are not prone to oxidative reactions. Li et al. showed that the α-secondary
amine substrate 29 can be oxidized to imines upon heating and light conditions, which
is subsequently captured by indole derivatives to obtain carbonyl α-indole substituted
amines [44]. Thereafter, Rueping et al. studied the combination of visible light and a PC
photocatalyst for a α-secondary amine substrate 29. The addition of zinc acetate resulted in
the activation of the imine intermediate formed in situ, which was conducted to the next
nucleophilic addition (Scheme 12) [45].
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In addition, in 2012, Rueping et al. reported the oxidation of a primary amine, ben-
zylamine, under light [46]. Moreover, a self-condensation can occur to produce imine
intermediates, and the further subsequent reaction is not complicated. However, this
reaction makes possible the conversion of primary amines under photocatalytic conditions
(Scheme 13) [46].
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In addition to the above organic dye photocatalysts, metal complexes have also been
reported. The development of these complexes has further expanded the scope of metal
photocatalysts and solved the problem of transmission, and some traditional metal photo-
catalysts are shown in Scheme 14.
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Furthermore, as the core of the catalytic reaction, the development of new catalysts
and catalytic systems is very important for the performance of reverse reactions. These
efficient transformations play a vital role, and many groups have made in-depth research in
relevant fields. Organic dye compounds have the advantages of a low price and easy access.
They have similar physicochemical properties and light absorption properties, so organic
dyes are widely used by organic chemists. Ravelli et al. used green and environmentally
friendly common organic dye catalysts, as shown in Scheme 18, namely, Eosin Y, TBA Eosin
Y and Rose Bengal [47–50].

Xue et al. successfully applied a gold pyridine complex as a photocatalyst for visible
light oxidation (Scheme 15) [51]. Compared to previous works, various simple ketones and
some simple organic amines can participate well in the reaction. The scope of substrates
has been widely expanded with good to excellent yields (Scheme 15).
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Scheme 15. Au complex photocatalytic oxidative functionalization.

At the same time, To et al. used a Pd complex (PdF20TPP) formed by a highly ac-
tive metal palladium and porphyrin as a catalyst upon the addition of the visible light
catalyst [52]. Various types of nucleophiles and N-phenyl substituted tetrahydroiso-
quinoline derivatives were used. The iminium ion intermediates produced by the oxi-
dation of 4 underwent an intermolecular reaction, and the corresponding products were
generated smoothly.

In addition, Zhong et al. synthesized metal platinum pyridine complexes by analyzing
their optical properties. It was found that a variety of nucleophiles (including electron
rich indole) produced the corresponding products (Scheme 16). The functionalization
of N-phenyltetrahydroisoquinoline at the α-position by indole, dimethyl malonate or
nitromethane is shown in Scheme 17 [53]. It is worth noting that the addition of two
equivalents of ferrous sulfate can effectively inhibit the reaction and generate by-products
(amide compounds).

In 2022, Jiang et al. reported an oxidation of sulfides into sulfoxides using visible
light under clean conditions [54]. In the same period, Zhang et al. synthesized hydrogen
peroxide by advance oxidation processes (AOPs) through visible light photocatalyst [55].

In 2011, Hari and König et al. applied an organic dye (Eosin Y) to the catalytic
reaction, using visible light for heteroaryl groups and oxidized various substrates with
good results [56]. The metal palladium complex has the advantage of a high reaction
efficiency and can be used with a very small amount of catalyst (Scheme 18) [57].
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Moreover, other similar organic dye compounds such as rose red and TBA Eosin Y [58]
were successfully applied to the study of these photocatalytic reactions (Scheme 19).
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Scheme 19. Oxidative functionalization catalyzed by organic dye catalysts.

At the same time, Li et al. used rose Bengal as a photocatalyst to oxidize tetram-
ethylenediamine and introduced an aldehyde group at the indole 3-position. It should
be pointed out that the reaction proceeds with a dual photocatalytic amine oxidation
(Scheme 20) [59].
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Scheme 20. Oxidative functionalization catalyzed by organic dye catalysts.

Fu et al. used alkyne-containing nucleophiles for the photocatalytic trifluoromethyla-
tion and alkynylation with a dye (rose Bengal). This alkynylation reaction of aryl substituted
tetrahydroisoquinoline substrates was achieved in good to excellent yields (Scheme 21) [60].
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2.2. Free Radical Intermediates Produced by Oxidation

As seen above, a visible light catalyzed oxidation of organic amines produces iminium
ion intermediates, which are then subjected to be attacked by various nucleophiles for the
synthesis of various products. Moreover, a series of chemical transformations has been
widely studied. In fact, a photocatalytic strip can generate an amino radical cation 2 by SET
(Single Electron Transfer). Acidity is also greatly enhanced, which can lead to the loss of a
proton to obtain an α-amino radical intermediate 3. The radical can be stabilized by the
adjacent nitrogen atom and then captured by other suitable organic molecules, resulting in
the corresponding chemical conversion (Scheme 4).

Ju et al. reported a visible light-catalyzed [4 + 2] radical cycloaddition reaction from a
tertiary amine 45 [61]. Starting from the maleimide 46, the polysubstituted tetrahydroiso-
quinoline derivative 47 was efficiently synthesized (Scheme 22). The mechanism was
started by an oxidation under a visible light catalysis of an α-amino radical intermedi-
ate, followed by an addition to maleimide derivatives, and then the final product 47 was
obtained through an intramolecular cyclization.
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Inspired by free radical cycloaddition reactions, Zhu et al. reported a reversible
reaction in an oxygen atmosphere [62]. Photocatalytic reactions between various substituted
tertiary aromatic amines and electron deficient olefins through an intermolecular free
radical addition are shown in Scheme 23. The target compound 50 was obtained by an
intramolecular cyclization via a series of reactions (Scheme 24) [62].
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Douglas et al. used a photocatalytic oxidation for the C-H functionalization of amino
ortho radicals with heterocycles (Scheme 24), a chemical reaction used for the synthesis
of drug molecule [63]. Thus, photocatalytic strategies are widely used for the synthesis
of medicines.

In addition, Bordwell et al. reported the addition reaction between mercaptan and
olefin by a photocatalytic oxidation (Scheme 25) [64]. Upon oxidative light illumination,
mercaptan generates mercaptan radical cations 57. After losing a proton, the mercaptan
free radical 58 was generated, and the olefin in the reaction system captured the mercaptan
free radical to form a free radical intermediate 59, then the free radical intermediate 59 and
mercaptan were quenched by an electron transfer and, finally, sulfur-containing compounds
were obtained.
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2.3. Oxidation Reaction of Other Functional Groups

In addition to the oxidation of organic molecules with the aforementioned functional
groups, the oxidation of other functional groups has also been improved and has developed
rapidly. Yelo and Deronzier et al. studied this type of reaction in the early stages of develop-
ment. The oxidation strategy was applied to the oxidation of benzyl alcohol derivatives and
for the synthesis of aryl aldehydes under visible light catalysis (Scheme 26) [65]. The author
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did not need to add additional oxidants and oxygen as an oxidant. The photo-oxidation of
benzyl alcohol occurred under mild light conditions to aryl aldehydes or ketones.
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Jiao et al. reported that a series of α-brominated esters or α-chlorinated esters
was directly oxidized by a photocatalytic method to form α-ketoacid ester derivatives
(Scheme 27) [66]. The authors used 4-methoxypyridine in a catalytic amount to activate
the carbon bromine bond of the substrate. Oxygen was used as the oxidant in the system.
Based on a series of control experiments, a reaction mechanism was proposed. The possible
mechanism is: Firstly, 4-methoxypyridine reacts with α-bromoester to form a quaternary
ammonium salt. The ammonium salt activates the carbon bromine bond of halogenated
hydrocarbon, but also can be used as the initiator of the reaction to trigger the whole
reaction. With the production of benzyl radicals, the free radical intermediate produced by
benzyl radical reacts with the oxygen active species. Finally, the oxidative carbonylation
reaction of bromo ester or chloro ester was realized to generate the corresponding oxidation
product 63.
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Scheme 27. Photo-oxidation reaction for a C-X bond breakage.

In 2011, Zou et al. successfully synthesized arylboric acid derivatives using a photocat-
alytic oxidative strategy. Phenolic compounds were prepared by oxidative hydroxylation
of the arylboric acid (Scheme 28) [67]. In addition, arylborate substrates are also suitable for
this reaction, and the team determined the oxygen atom in the reaction product (phenol)
through a series of controlled experiments. DFT (Density Functional Theory) calculations
confirmed the possibility of the reaction process.

Cheng et al. performed the activation of a C-S bond of thiobenzoamide derivatives by
means of a photo-oxidative quenching [68]. It was used in the synthesis of benzothiazole
derivatives. In the reaction process, oxygen was used as an oxidative quencher, and alkali
(DBU) was used in the reaction process. It is necessary to remove protons from the substrate
69 in the first step to form a more stable negative ion intermediate 71. After one electron
oxidation, a free radical species 72 was formed, and then an intramolecular cyclization
reaction occured by losing one electron. The targeted compound 70 was finally generated
from hydrogen radical species. As a result of the oxidation reaction, the substrate 69
is completely converted. Removal of two electrons generated the corresponding target
compound (70) (Scheme 29) [68]. Recently, Yong et al. efficiently synthesized unsaturated
N-heteroarenes using a photo catalyst with excellent tolerance of functional groups [69].
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2.4. Other Types of Oxidation Reactions

In addition to the aforementioned reactions, another important research direction
is the discovery of new methods of photo-oxidative catalysis. Recently, Bergonzini et al.
made a perfect combination of visible light catalyst and a chiral thiourea catalyst OC.
They synergistically activated the substrate molecules and small molecular catalysts in the
reaction process. The interaction of hydrogen bonds forms chiral ion pairs, which then
induces chirality in the process of a nucleophilic addition. The authors used an asymmetric
Mannich reaction of nitroaryl substituted tetrahydroisoquinoline substrates with carbon
tetrachloride as an oxidant (Scheme 30) [70].



Reactions 2023, 4 203

Reactions 2023, 4, FOR PEER REVIEW 15 
 

 
Scheme 29. Photo-oxidation of C ̶ S bond of thiobenzoamide derivatives 

2.4. Other Types of Oxidation Reactions 
In addition to the aforementioned reactions, another important research direction is 

the discovery of new methods of photo-oxidative catalysis. Recently, Bergonzini et al. 
made a perfect combination of visible light catalyst and a chiral thiourea catalyst OC. They 
synergistically activated the substrate molecules and small molecular catalysts in the re-
action process. The interaction of hydrogen bonds forms chiral ion pairs, which then in-
duces chirality in the process of a nucleophilic addition. The authors used an asymmetric 
Mannich reaction of nitroaryl substituted tetrahydroisoquinoline substrates with carbon 
tetrachloride as an oxidant (Scheme 30) [70]. 

 

Scheme 30. Photocatalytic asymmetric reaction of tetrahydroisoquinolines. 

DiRocco and Rovis et al. studied the visible light oxidation with nitrogen heterocyclic 
carbine (NHC) synergistic catalysis amine for an asymmetry α-acylation (Scheme 31) [71]. 
In this process, dinitrobenzene was used as an oxidant through this oxidation process. The 
corresponding iminium ion intermediate was formed as an electrophilic reagent. At the 
same time, the nitrogen heterocyclic carbene (NHC) catalyst induced a polarity reversal 

Scheme 30. Photocatalytic asymmetric reaction of tetrahydroisoquinolines.

DiRocco and Rovis et al. studied the visible light oxidation with nitrogen heterocyclic
carbine (NHC) synergistic catalysis amine for an asymmetry α-acylation (Scheme 31) [71].
In this process, dinitrobenzene was used as an oxidant through this oxidation process. The
corresponding iminium ion intermediate was formed as an electrophilic reagent. At the
same time, the nitrogen heterocyclic carbene (NHC) catalyst induced a polarity reversal of
aldehyde to form an acyl anion or enol intermediates with strong nucleophilic properties
and led to an intermolecular nucleophilic reaction. Feng et al. and Perephichka et al. have
contributed to the growth of this field [72,73].
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In addition, many other types of visible light-catalyzed net oxidation reactions have
been reported in the literature. Tucker et al. used a photo-oxidation reaction to solve the de-
oxidation of p-methoxybenzyl protective groups under the photocatalytic conditions [74].
An, Ding et al. accomplished the oxidative amination reaction and an oxidative hemipinacol
rearrangement reaction of indole derivatives [75,76]. Moreover, the Yoon group elaborated
on a photocatalytic cycloaddition reaction involving oxygen [77,78]. The Lei group re-
ported the decarboxylation/amination of photocatalytic oxidation of β-keto acids [79].
A photocatalytic net oxidation reaction includes the oxidative ring opening reaction of
azacyclopropane [80], oxidative diaryl coupling reaction [81] and ether α-arylation [82].

3. Visible Light Catalyzed Net Reduction Reactions

Visible light-catalyzed net reduction reactions usually refer to the addition of a sto-
ichiometric electron donor into the reaction system. The photocatalyst is a solid in the
catalytic cycle. The active intermediates produced by activating the reaction substrate
participate in the subsequent chemical transformation.
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3.1. Reduction in Electron Deficient Olefins

As early as 1981, Pac et al. reported the visible light-catalyzed reduction in electron
deficient olefins [83]. The authors used Ru(bpy)3Cl2 as a photocatalyst and 1-benzyl-1,4-
dihydronicotinamide (BNAH) as a substrate. Dimethyl maleate was reduced to dimethyl
succinate, and the reduction system was applied to electron deficient aromatics. Good
results were obtained with olefin series (Scheme 32). Moreover, Miller et al. reported a
strategy for the reductive hydrodifluoroalkylation of alkenes using triethylamine as the
terminal reductant [84]. Recently, Willis et al. studied sulfonamides to convert sulfonyl
radical intermediates. This method exploits a photocatalytic approach to access the radical,
which is harnessed by relating pharmaceutically sulfonamides with a range of olefine
fragments [85].
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3.2. Reductive Dehalogenation Reactions

The dehalogenation reaction widely exists in organic chemical transformations, wherein
a free radical dehalogenation is an effective strategy and method. This kind of reaction
system usually needs an addition of organotin reagents or it is initiated by a free radical ini-
tiator, with disadvantages of harsh reaction conditions and an unfriendly environment [86].
As early as the 1980s and 1990s, new methods, such as a photocatalytic reductions and
dehalogenation, were reported [87,88]. However, for various reasons, they have not been
further studied. Recently, visible light catalysis has attracted the attention of scientists with a
need for mild and efficient catalysis [89]. The reductive dehalogenation method has become
a research hotspot for scientists. Kellogg and Willner, et al. used Ru(bpy)3Cl2 as a photocat-
alyst and organic base diisopropyl ethyl carbamate as a reducing quencher. The carbon
bromine or carbon chlorine bonds of carbonyl and benzyl sites were systematically studied,
except for the inactive aryl groups. Besides alkenyl halides, other organic compounds
were also dehalogenated in high yields and with good selectivities (Scheme 33) [90–92].
Regarding the mechanism, firstly, under the light excitation, the excited divalent ruthenium
catalyst Ru [II]* was reduced with iPr2NEt to form a low valence state Ru(I), and then
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the substrate was activated by a low valence state catalyst. The free radical intermediate
92 was formed by an electron transfer from Ru (I), and then the intermediate grabbed a
hydrogen from 93. The dehalogenation product was generated from the base. The labeling
experiments proved that both iPr2NEt and HCOOH are the hydrogen sources. Again,
Neumann et al. used the organic dye Eosin Y as the photoreduction catalyst and Hantzsch
ester as the reduction quencher. The reaction was also studied further, with promising
results, in combination with a continuous flow chemistry technology for the conversion.
The reaction time is greatly shortened, and an efficient conversion of the reaction was
realized [93].
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In addition, Goren and Willner reported earlier that 1,2-dibromo biphenyl ethane was
separated into two phases under photocatalytic conditions with the successful synthesis of
stilbene [94]. Some research groups have also explored this aspect in depth. Their research
mainly focuses on a diversity of substrates as well as on improving the efficiency of the
reaction conditions. In 2011, Maji et al. successfully used a visible light catalytic reduction
method for the dehalogenation of 1,2-dibromoaromatic compounds. A series of unsaturated
ketones, esters and amides was successfully synthesized using 1,5-dimethoxynaphthalene
as a reducing quencher [95]. In 2014, Mc Tieman et al. used organic small molecule
catalysts to transfer electrons under light conditions. This strategy enabled the synthesis of
dehalogenated compounds (Scheme 34) [96].

To expand the applicability of a dehalogenation reaction, Nguyen et al. used fac-
Ir(PPy)3 as the photocatalyst, tributylamine as the reducing and quenching agent and
Hantzsch ester or formic acid as an additive, and used them for the activation of iodinated
compounds. Reduced and deiodinated products were obtained in a high yield under
the optimized conditions (Scheme 35) [97]. In addition, when the molecule contains
unsaturated chemical bonds, such as carbon–carbon double bonds, alkyl or alkenyl groups,
the reductive dehalogenation of iodine compounds produces free radical intermediates,
and then the intramolecular free radical cyclization reaction occurred, leading to the
corresponding cyclized products.
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In addition, the Okada team reported a photocatalytic deprotection of phthalimide
protected ester compounds [98–100]. The ester compound 127 produced a free radical anion
129 under photocatalytic conditions. The free radical anion was unstable, was converted
and released CO2 to form a free radical intermediate 128 accompanied by a Phthaloyl
production of amine 126. The free radical intermediate 128 was captured by coupling
reagents to form the corresponding compound (Scheme 36).

Many other research groups have also worked on a reductive deiodination reaction.
Kim and Lee completed the de-iodination and de-iodination cyclization of similar com-
pounds using iridium catalysts with the reaction products in a good yield [101]. Wang
et al. applied this method for the reduction and de-oxidation of some iodized sugars [102].
Recently, Pillegrin et al. also demonstrated photocatalyzed dehalogenation by homoleptic
Cu(I) complexes under ambient conditions [103].
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3.3. Deductive Desulfonation of Benzene Sulfonyl and Other Sulfur Salts

Hantzsch esters are often used as reducing agents in organic reactions to provide a
hydrogen source for the synthesis of C-S bonds. In the early stages, Nakamura et al. studied
C-S bonds in compounds containing sulfonyl groups at the ortho position of carbonyl
groups. The visible light photocatalytic cleavage process was studied, and various carbonyl
compounds were obtained in a high yield [104]. In the experiment, bipyridine ruthenium
was used as a photocatalyst, and Hantzsch ester was used as a reducing quencher [104].
Similarly, Yang et al. have successfully reduced these compounds using cheap and easily
available organic photo dye catalysts (Scheme 37) [105].
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Recently, Xuan et al. used Hantzsch ester as a hydrogen source to realize the produc-
tion of hydrogen through visible light-catalyzed reactions in the deprotection process of
tosyl-protected amide compounds (Scheme 38). This process occurs under mild reaction
conditions and for a wide range of substrates. It has good functional group compatibility
and provides a new method for the removal of benzene sulfonyl protective groups [106].
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However, the basic concept for the reaction of visible light-catalyzed desulfurization
was also reported by the Kellogg group in 1978 [107]. The reduction and fracture pro-
cess of C-S bonds of benzoyl sulfonium salts under visible light catalysis was studied
(Scheme 39) [108]. In this work, the author proposed that the reducing agent Hantzsch
ester salt may directly absorb light to produce a radical intermediate, which was confirmed
by controlled experiments. The free radical intermediate 122 is involved in the reduction
process of the catalyst and then reacts with the free radical 120. The possible photocat-
alytic reaction mechanism was proposed. In 2019, the Wenger group reported a visible
light photocatalyst for dehalogenation by producing a reductive electron source for the
decomposition of quaternary ammonium that converts trifluoromethyl to difluoromethyl
groups. In this method, detoxification can be achieved for chlorinated compounds with
200 turnover numbers [109].
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3.4. Reductive Deprotection

In 2011, Zlotorzynska and Sammis reported a visible light catalyzed reduction in
benzyl alcohols protected by phthalimide [110]. In this work, the bipyridine ruthenium
complex was used as a photocatalyst, and diisopropyl ethylamine was used as a reduction
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quencher. The deprotection of these compounds is thus realized, and aldehydes and
phthalimide are obtained. Controlled experiments showed that the reaction is a visible
light-catalyzed process (Scheme 40) [110].
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3.5. Reductive Ring Opening of Azacyclopropane

In 2011, the Ollivier group realized the photocatalytic ring opening reaction of oxo
or aza cyclopropane compounds adjacent to a carbonyl group (Scheme 41) [111]. In this
reaction, Hantzsch ester was used as both a reducing quencher and a hydrogen donor. As a
hydrogen donor, it is used for the reduction in a free radical intermediate 142 produced by
a photocatalytic reaction, and the formed intermediate vanished. It can grab a hydrogen
to produce the reductive product 138. In addition, it can also interact with suitable free
radical receptors, such as the allyl sulfonate 143.
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In addition to the types of aforementioned reductive reactions, other types of visible
light-catalyzed net reduction reactions have also been extensively studied. For example, Hi-
ronaka et al. performed the reduction of benzyl bromide by a photocatalytic reductive reac-
tion [112]. Ru(bpy)3Cl2 was used as a photocatalyst, and 1-benzyl-1,4-dihydronicotinamide
(BNAH) was used as a reducing agent. The Kern and the Sauvage teams developed a
new copper complex photocatalyst for the reduction in benzyl bromide compounds, and
similar results were obtained [113]. In addition, a visible light photocatalytic reduction
was also applied to nitro and azide compounds. The reduction in hydrazine produced
the corresponding amine compounds. The reaction conditions were mild, efficient and
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have a wide range of potential applications [114–117]. In 2022, the Yamaguchi group
made progress in this field and performed catalytic reductive ring opening of epoxides by
photocatalysis [118]. In addition, the Oda et al. reported a photocatalytic deprotection of
phthalimide-protected ester compounds [119]. The ester compound 127 produced a free
radical anion 129 under photocatalytic conditions. The free radical anion was unstable,
was converted and released CO2 to form a free radical intermediate 128 accompanied by
a Phthaloyl production of amine 126. The free radical intermediate 128 was captured by
coupling reagents to form the corresponding compound (Scheme 42).
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4. Visible Light-Catalyzed Redox Neutral Reaction

Visible light-catalyzed redox neutral reaction usually refers to the reaction system
without the addition of additional stoichiometric electrons. The acceptor or donor uses
the reaction substrate itself and the intermediate obtained by the reaction as the electron
acceptor or donor for the cycle of the whole photocatalytic reaction.

4.1. Atom Transfer Radical Addition Reaction

As a kind of redox neutral reaction, the visible light-catalyzed atom transfer radical
addition reaction can be explained by the following Scheme 41.

In Scheme 43, the substrate 144 receives foreign electrons from a metal catalyst to
form free radicals 145 and negative ions X. The unsaturated nature of the species helped to
react with the compound 146 and to form more stable free radical species 147, which are
then transformed with the loss of an electron. At the same time, the free radical species
themselves formed positive ions and interacted with the system X (usually X is halogen)
to form a new compound 148. For the occurrence of the reaction, there is no need to add
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any electric field. The substrate acceptor or donor can realize the catalytic cycle, and the
substrate itself has a free radical addition reaction (Scheme 43).
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Scheme 43. Photo-catalyzed atom transfer radical addition reaction.

In 1994, Barton et al. was the first to report a visible light catalytic strip. The free
radical addition reaction of the atom transfer between p-toluenesulfonic acid selenium
compounds and alkenyl ethers was carried out to obtain the target compound in high
yields (Scheme 44) [120].

Reactions 2023, 4, FOR PEER REVIEW 25 
 

 
Scheme 43. Photo-catalyzed atom transfer radical addition reaction. 

In 1994, Barton et al. was the first to report a visible light catalytic strip. The free 
radical addition reaction of the atom transfer between p-toluenesulfonic acid selenium 
compounds and alkenyl ethers was carried out to obtain the target compound in high 
yields (Scheme 44) [120]. 

 
Scheme 44. Reaction of p-toluenesulfonic acid selenium and alkenyl ethers. 

In 2011, Nguyen et al. reported an example of visible light-catalyzed atomic oxidation 
based on a transfer radical addition reaction (Scheme 45) [121]. They expanded the use of 
substrates to a wider range, such as active halogenates: α-carbonyl halide, trifluoro-
methane iodide, p-methylbenzene sulfonyl chloride and carbon tetrachloride. The mech-
anistic scheme is described as the following: upon illumination, the catalyst absorbs visi-
ble light to form an excited state. The electron transfer between Ir(III)* oxidized to a high 
valence state Ir(IV), accompanied by the free radicals’ formation 152. Then, the free radical 
intermediate facilitates an intermolecular reaction on the unsaturated substrates to pro-
duce a new free radical intermediate 154 and then participates in the reduction of a metal 
catalyst to complete the photocatalytic cycle. The intermediate 154 lost electrons to form 
a new carbocationic intermediate 155. A subsequent attack of a halogen anion yielded the 
olefin addition product 156 (Scheme 45) [121]. The Reiser et al. used metal copper com-
plexes as a photocatalyst, and the reaction was studied under light conditions [122].  
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In 2011, Nguyen et al. reported an example of visible light-catalyzed atomic oxidation
based on a transfer radical addition reaction (Scheme 45) [121]. They expanded the use of
substrates to a wider range, such as active halogenates: α-carbonyl halide, trifluoromethane
iodide, p-methylbenzene sulfonyl chloride and carbon tetrachloride. The mechanistic
scheme is described as the following: upon illumination, the catalyst absorbs visible light to
form an excited state. The electron transfer between Ir(III)* oxidized to a high valence state
Ir(IV), accompanied by the free radicals’ formation 152. Then, the free radical intermediate
facilitates an intermolecular reaction on the unsaturated substrates to produce a new
free radical intermediate 154 and then participates in the reduction of a metal catalyst
to complete the photocatalytic cycle. The intermediate 154 lost electrons to form a new
carbocationic intermediate 155. A subsequent attack of a halogen anion yielded the olefin
addition product 156 (Scheme 45) [121]. The Reiser et al. used metal copper complexes as a
photocatalyst, and the reaction was studied under light conditions [122].
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Scheme 45. Radical transfer addition reaction.

4.2. Combination of Visible Light Catalysis and Asymmetric Catalysis

Yao et al. used a 2-iodine visible light-catalyzed redox reaction with methylcyclo-
propane as the substrate, owing to the instability of a ternary ring structure [123]. After the
ring opening rearrangement reaction, the free radical species produced and reacted with
unsaturated olefins or alkynes. Intermolecular free radical [3 + 2] cycloaddition reaction
and the subsequent transformation produce the target compound (Scheme 46). The ad-
dition of stoichiometric amounts of zinc greatly promoted the reaction. In addition, the
authors adopted the same method for the visible light-catalyzed intramolecular cyclization
reaction [124].
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In 2010, Macmillan et al. successfully combined visible light catalysis with molecule
catalysis to achieve α-Site asymmetric alkylation reactions with aldehydes (Scheme 47) [125].
In the reaction process, two catalysts cooperated during the reaction process. First, the
α-bromocarbonyl compound 163 was converted into a free radical intermediate 165 under
light conditions with a Ru(bpy)3 photocatalyst. Then, the free radical 165 reacted with the
enamine intermediate 166 in an intermolecular free radical addition reaction.
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Scheme 47. Aldehydes’ α-site asymmetric alkylation reaction.

The α-amino radical intermediate 167 was created in the process of a radical addition,
and then the free radical intermediate 167 transferred one electron to the catalyst for a self
oxidation. Similarly, the iminium ion intermediate 168 was hydrolyzed to produce the
product with a catalytic regeneration.

Later, they expanded the application and realized an α-reverse benzylation, trifluo-
romethylation reactions [126] and ammoniation reactions [127]. At the same time, many
research groups were focused on carbonyl compounds, and a series of studies has been
carried out on the functionalization at the α-position [128–130]. Recently, the combination
of chiral primary amine catalysts and photocatalysis developed by the Luo group has
been successfully employed for the reaction of 1,3-di asymmetric alkylations of carbonyl
compounds [131]. The reaction conditions are mild, with high yields and high enantios-
electivities. The construction of a quaternary carbon center was realized in the product
(Scheme 48). Aldehydes or ketones were synthesized with the above α-alkylation reactions.
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Scheme 48. Ru-catalyzed asymmetric alkylation of carbonyl compounds.

Recently, Ooi et al. combined visible light and a chiral Brønsted acid catalyst for a free
radical addition reaction between arylmethylamine and methylsulfonyl substituted imines
(Scheme 49) [132].
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In addition, Huo et al. developed a new chiral metal iridium complex as a photocata-
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of a new type of asymmetric reactions. For example, they applied it to carbonyl com-
pounds containing imidazole moieties for an asymmetric alkylation. The new complex 
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genated hydrocarbon 177 and produces a free radical intermediate 179. Finally, the active 
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In addition, Huo et al. developed a new chiral metal iridium complex as a pho-
tocatalyst. The asymmetric complex combines with the photocatalyst, resulting in the
formation of a new type of asymmetric reactions. For example, they applied it to car-
bonyl compounds containing imidazole moieties for an asymmetric alkylation. The new
complex formed by the coordination with the catalyst acts as a photocatalyst to activate
the halogenated hydrocarbon 177 and produces a free radical intermediate 179. Finally,
the active intermediate 181 can form an alkylated product in high yields with excellent
enantioselectivities (Scheme 50) [133]. This emerging catalyst leads to a new process for
the development of new reactions. In 2021, Gong et al. highlighted visible light-promoted
asymmetric catalysis by chiral complexes [134]; a combination of transition metal catalysts
with chiral ligands [135–142] was reported. Moreover, various methods are reported in
literature to induce the chirality with chiral transition metals such as Cr, Co, Ni and Cu
complexes [143–146].
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4.3. Combination of Visible Light Catalysis and Transition Metal Catalysis

In addition to the combination of photocatalysis and asymmetric catalysis, visible
light catalysis and transition metal catalysis were combined, and their cooperative study
has also been reported. A series of transition metal catalysts, such as Pd, Cu, Au and Ni,
was applied to expand the scope of the reactions. In 2011, Kalyani et al. reported the
combination of visible light and a palladium catalyst for the first time at room tempera-
ture, and good results were obtained for a carbon–hydrogen bond activation of aromatic
compounds (Scheme 51) [147]. The corresponding reaction mechanism is also mentioned
in Scheme 52.[148] Firstly, the palladium catalyst was used with the guiding group in the
pyridine fragment of the substrate 184 and produced an intermediate 187. At the same
time, the diazonium salt 185 and an aryl radical intermediate were formed under the action
of a photocatalyst. Moreover, the radical is added to the intermediate 187 to form a new
palladium intermediate 188. Then, the palladium intermediate transfers electrons to the
high valence Ru[III] catalyst. After completing the photocatalytic cycle, it was oxidized to
tetravalent species to form an intermediate 189 by a reduction. The arylation product 186
was obtained by the elimination step with the release of the palladium catalyst.
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The report on the organic catalytic transformation via the combination of a transition
metal catalyst and visible light catalysis provides the possibility of, and important perspec-
tives for, the formation of diverse sustainable products. Simultaneously, Tunge et al. and
Xiao et al. reported an organic catalytic reaction by the combination of a transition metal
and visible light catalysis. They studied a palladium-catalyzed allylation under visible
light [149,150]. Moreover, they solved the problem with the traditional palladium catalyzed
allylation, which proceeds through harsh reaction conditions. However, their reactions can
proceed smoothly under mild conditions (Scheme 52).

Based on preliminary work, Ye et al. combined a photocatalyst with a cheap copper
catalyst. An arylboric acid derivative reacted with trifluoromethylation in good yields
(Scheme 53) [151].
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Scheme 53. Photocatalysis and palladium catalyzed arylation of C-H bonds.

As a metal catalyst, Au is usually used for the activation of unsaturated double bonds-
or triple bonds-containing compounds and their subsequent chemical transformations. In
2013, Glorius et al. reported the reaction of alkenyl alcohols and aryl compounds by a
combination of visible light and an Au catalysis. Based on the study of an intermolecular
addition ring-closing reaction of nitrogen salts, substituted oxygen-containing heterocyclic
compounds were successfully constructed (Scheme 54) [152].

The combination of visible light catalysis and a transition metal catalyst such as
Ni is one of the most rapidly developing research directions in this field. Macmillan
et al. used the double catalytic reaction of a photocatalyst and a nickel catalyst for the
functionalization of ortho sp3 carbons of amino acids, and the benzylic C-H bond of
dimethylaniline also works well (Scheme 55) [153]. However, the aryl halide substrate is
limited to aryl iodide and bromide. At the same time, Tellis et al. carried out a pioneering
work in the research of photocatalytic coupling reactions involving an organic boron reagent
and an aryl halide [154]. Since then, the field of photocatalysis has led to a broad range of
photo and metal catalysts.
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4.4. Free Radical Addition Reaction to π-System Species

Aromatic or heteroaromatic compounds as one of the species of the π-system have been
widely used in the field of photocatalysis. For the research in this direction, we summarized
the cycle mechanism, as shown in Scheme 56. Firstly, the substrate 210 underwent a radical
intermediate 211 with the combined action of a photocatalyst and visible light. Then, the
aromatic ring compound 212 was molecularly synthesized by free radical intermediates.
The meta addition reaction forms an aryl radical intermediate 213, and the newly generated
radical intermediate continues to participate in the photo-polymerization. The catalytic
cycle forms a free radical cation 214 and completes the regeneration of the metal catalyst.
Lastly, the free cation 214 generated the corresponding aromatization product 215 by losing
a proton.
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Moreover, Yelo and Deronzier widely used diazonium salts in photocatalytic reactions
as aryl radical precursors [155]. The study was on C-H activation using visible light-
catalyzed electron rich aromatization with an organic dye, Eosin Y, as a photocatalyst under
mild conditions (Scheme 57) [156]. Later, Xue et al. used Ru(bpy)3Cl2 as a photocatalyst
and water as the reaction solvent, until completion of the reaction, with a scope including
a wide range of substrates and applications, including electron deficient heterocyclic
compounds [157]. In addition, Wang et al. have also applied diaryl iodine compounds to
the study of this kind of reaction, and good results have been obtained [158]. The Cheng
group turned their research direction towards aryl halogenation, which is cheaper and
easier. The reaction can proceed smoothly under heating conditions, but the reaction
conditions are relatively harsh [159].

Fluorinated compounds are a hot spot and a new research direction in the field of
organic chemistry. Many scientists have targeted the synthesis of fluorinated compounds
catalyzed by visible light. In 2011, Macmillan et al. used trifluoromethyl sulfonyl chlo-
ride as the source of trifluoromethyl radicals to complete the reverse trifluoromethylation
of aromatic compounds (Scheme 58) [160]. It was also applied to the synthesis of drug
molecules. Later, Choi et al. reported the use of trifluoromethyliodomethane as a triflu-
oromethyl source which was successfully attached to the aromatic compounds through
a photochemical reaction [161]. Then, the Zhu group used the commercial Togni reagent
as the precursor of trifluoromethyl radicals, and the corresponding fragment units were
successfully introduced into aromatic amines [162].
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In addition, compounds containing difluoromethyl radicals have also been employed
for further aromatic ring functionalizations through a photocatalytic reaction (Scheme 59).
For example, the Liu group used difluorobromomethyl phosphate [163] and difluorobro-
momethylamide for the difluoromethylation of aromatic compounds [164]. The Wang
group reported the use of iododifluoromethylsulfonic acid with good results [165]. The
Cho group used ethyl difluorobromoacetate as a fluorine-containing agent as a radical
source and completed a series of difluoroalkylation reactions of aromatic compounds [166].
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In addition, there are relevant literature reports on the amination of heterocyclic com-
pounds catalyzed by visible light. Nitrogen-containing compounds are used as nitrogen-
containing radical sources, such as phthalimide compounds and their derivatives [167,168].
In addition to the above aromatic compounds, other π-system compounds, such as carbon–
carbon double and triple bond compounds, are also widely used in the study of photoredox
reactions. In this research field, Yasu et al. [169–173] and Iqbal et al. [174,175] and other
research groups have made systematic progress in this field. They used different trifluo-
romethylation reagents to treat unsaturated carbon–carbon double bonds or carbon–carbon
triple bonds. Grandjean and Nicewiz successively reported C-H chlorination and C-H
amination reactions under visible light catalysis, as shown in Scheme 60 [176–180]. This
organic dye with a strong oxidation ability is used as an organic photocatalyst. Olefin
compounds were oxidized into free radical cationic intermediates and then attacked by
different nucleophiles [181–185]. A lot of research work has been conducted on radical
addition reactions, and very systematic research results have been obtained. Ischay and
Miyake et al. completed an intramolecular [2 + 2] cycloaddition reaction of unsaturated
ketones induced by visible light [12,186]. A series of polysubstituted cyclobutanes was
synthesized. The addition of lithium tetrafluoroborate greatly promoted the reaction. The
main reason is that lithium salt can coordinate with carbonyls to activate substrates but
also can stabilize the reverse reaction. The authors have successively completed a variety
of unsaturated ketones for the study of an intramolecular cycloaddition reaction [187]. In
addition, other research groups have also made relevant reports on this work, such as the
production of α-amino self-oxidation by an amine oxidation. The addition reaction of a
sulfur radical and olefin is produced by the addition reaction of mercaptan [188,189] and
the oxidation of mercaptan [190,191].
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Scheme 60. Nicewicz’s work on N-Me-9-mesityl acridinium.

5. Visible Light Catalyzed Energy Transfer Reaction

The Xiao group reported azide styrene derivatives under light conditions to synthesize
indole derivatives without substituents on nitrogen through an energy transfer reaction
(Scheme 61) [192,193].
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Scheme 61. Synthesis of azide styrene derivatives by a fluorescent bulb.

Lu and Yoon made relevant studies on this work. They have successively carried out
photocatalytic energy transfer reactions. Moreover, the [2 + 2] cycloaddition reaction of
olefins and the intramolecular cyclization of alkenylazide were used for the synthesis of
pyrrole compounds (Scheme 62) [194,195].
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Scheme 62. Cycloaddition of olefins and intramolecular cyclization of alkenylazide derivatives.

In addition to initiate chemical reactions between the photocatalyst and organic
molecules through electron transfer, the photocatalyst in an excited state (Ru (bpy)3

2 + *,
e = 2.12 eV) is also a good energy donor, which can transfer energy directly to organic
molecules, thereby initiating subsequent chemical conversion in the reaction process
(Scheme 63). The description is as follows: First, the catalyst absorbs visible light and
is excited to the excited singlet state (S1). The instability of the excited triplet state jumps to
a more stable excited triplet state (T1) through the inter-system crossing.
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reports have been presented in the literature for photo-catalyzed reactions and C-H and 
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the research requirements. 

6. Conclusions 
In this review, we have discussed novel access to various synthetically important γ-

ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted 
benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-ar-
ylquinolines with mechanistic studies in good yields and under mild conditions. These 
efficient visible light-induced photoredox reactions of C-H/N-H and C-X bonds made this 
transformation very attractive. These reactions proceed through visible light-induced 
cover intermolecular radical additions, de-aromative cyclizations, aryl migrations and 
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(T1) transfers energy to the substrate receptor, and this activated substrate has an active
nature involved in the subsequent chemical reaction. Compared with the previous reports,
there are relatively few literature reports on this work. For example, Xiao et al. reported a
cycloaddition reaction of indole [2 + 2] by a 3-alkenyl oxidation via a photocatalytic process
with good yields and high selectivities (Scheme 64).
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Fan and Li reported a synthesis of enaminones through an energy transfer between
a catalyst and oxygen and a photocatalytic acetyl migration reaction, and they proposed
a possible reaction mechanism through controlled experiments [196]. Recently, various
reports have been presented in the literature for photo-catalyzed reactions and C-H and
N-H bond activations [197–207].

These advances highlight various kinds of reactions such as cycloaddition, oxidative
aromatization and migration reactions. Moreover, these methodologies can be used for the
construction of synthetically important drugs and industrial products and may fulfill the
research requirements.

6. Conclusions

In this review, we have discussed novel access to various synthetically important γ-
ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted ben-
zimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and
2-arylquinolines with mechanistic studies in good yields and under mild conditions. These
efficient visible light-induced photoredox reactions of C-H/N-H and C-X bonds made
this transformation very attractive. These reactions proceed through visible light-induced
cover intermolecular radical additions, de-aromative cyclizations, aryl migrations and
desulfonylations. Similarly, we also mentioned a visible light-catalyzed aerobic C–N bond
activation through cyclization, elimination and aromatization.
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