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Abstract: A new three-component condensation of β-ketonitriles, 4-fluorobenzaldehyde, and sec-
ondary cyclic amines was developed. A possible reaction mechanism has been proposed including
Knoevenagel condensation followed by aromatic nucleophilic substitution. It was found that in
the case of 3-oxopropanenitrile bearing the 6-amino-1,3-dimethyluracil moiety, the reaction is not
accompanied by fluorine substitution in the Knoevenagel adduct, and the Michael addition of a
secondary amine occurs followed by oxidation.
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condensation; aromatic nucleophilic substitution

1. Introduction

The unflagging interest in the development of new multicomponent reactions is due to
a number of their significant advantages compared to two-component reactions: a reduction
in the number of synthetic stages, the simplicity and availability of reagents, simplification
of the process of isolating final compounds, reduced solvent consumption, and, as a result,
their environmental friendliness and higher efficiency. Multicomponent synthesis is often
used in the complete synthesis of complex natural compounds and various carbo- and
heterocyclic compounds. It requires a minimum set of initial substances and allows one to
obtain entire libraries of compounds that have a structure similar to the biologically active
components of drugs [1,2].

α-Arylidene-β-ketonitriles are important α,β-unsaturated compounds that are ob-
tained via the Knoevenagel condensation reaction between β-ketonitriles (α-cyanoketones)
and aryl aldehydes. So far, a broad range of works on the biological and pharmaceu-
tical activities of β-carbonyl substituted nitriles has been published. For example, they
have been recognized as anti-hyperglycemic (compound I) [3] and anti-tuberculosis (com-
pound II) [4] agents; entacapone (compound III) [5] is a medication commonly used in
combination with other medications for the treatment of Parkinson’s disease. Furthermore,
among α-arylidene-β-ketonitriles, a large number of potential cytotoxic agents (for instance,
compounds IV–VI) have been identified (Figure 1) [6–8].

We were particularly interested in the synthesis of α-arylidene-β-ketonitriles due
to their ability to be further functionalized. A high degree of polarization of the double
carbon–carbon bond makes compounds of this type sensitive to both 1,3-dienes (Diels–
Alder reaction) and nucleophiles (Michael reaction) [9–11]. α-Arylidene-β-ketonitriles
are important building blocks that are used in the synthesis of various heterocycles [12]
such as condensed 4H-pyrans [13,14], 2H-pyrans [15], and 3,4-dihydro-2H-pyrans [16];
2,3-dihydrofurans [17,18] and furans [19]; 5,6-dihydro-4H-oxocines [20], dihydropyrim-
idines [21]; and pyridine derivatives [22] for the synthesis of quinolones, chromenes [23],
functionalized 2,3-dihidroixazoles [24], 1H-pyrazolo[3,4-b]pyridines [25], and others, which
are frequently found in pharmaceuticals and biologically active compounds. Therefore, the
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development of new and more efficient methodologies for the synthesis of a wide variety
of α-arylidene-β-ketonitriles has attracted a great deal of interest from synthetic organic
chemists in past decades.
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Figure 1. Representative examples of pharmacologically active β-carbonyl substituted α-arylidenenitriles.

2. Materials and Methods
2.1. Materials and Instrumentation

FTIR spectra were taken on a Shimadzu IR Affinity-1 spectrophotometer with a
single-reflection ATR accessory and are reported in cm–1. 1H, 13C, 19F NMR (400, 100, and
376 MHz, respectively) as well as DEPT-135 spectra were registered on a JEOL JNM-ECX400
spectrometer in DMSO-d6 or CDCl3, with the residual solvent signals (DMSO-d6: 2.50 ppm
for 1H nuclei, 39.5 ppm for 13C nuclei; CDCl3: 7.26 ppm for 1H nuclei, 77.2 ppm for 13C
nuclei) or CFCl3 (0.0 ppm for 19F nuclei) serving as the internal standard. Chemical shifts
and coupling constants were recorded in units of parts per million and hertz, respectively.
High-resolution mass spectra (HRMS) were recorded on an Agilent 6230 TOF using an
electrospray (ESI) ionization source. Melting points were determined by the capillary
method on an SRS OptiMelt MPA100 apparatus. Monitoring of the reaction progress and
assessment of the purity of synthesized compounds were conducted by TLC on Merck silica
gel 60 F254 plates, visualization under UV light and in I2 vapor. All of the reactions were
carried out in open air. Chemicals were purchased from the suppliers and used without
further purification. Commercially unavailable β-ketonitriles 1 were prepared according to
the procedure reported [26].

2.2. General Procedure for Preparation of α-Arylidenenitriles 4a–c,e–o and Products 7a,b, 9

A mixture of the nitrile 1, 5, or 8 (1 mmol), 4-fluorobenzaldehyde 2 (124 mg, 1 mmol),
and cyclic secondary amine 3 (2 mmol) in 3 mL of acetonitrile was heated at boiling
and stirring for 6 h. The reaction mixture was cooled to –30 ◦C, the precipitate formed
was filtered off and washed with ice-cold methanol. In the cases where there was no
precipitation, the reaction mixture was concentrated under reduced pressure and the
residue was purified by recrystallization.

2.3. Spectroscopic Characterization

(E)-2-Benzoyl-3-[4-(pyrrolidin-1-yl)phenyl]acrylonitrile (4a): 223 mg (74% yield). Or-
ange crystals, mp 156–157 ◦C. IR (ATR, cm−1): 2955, 2924, 2866, 2191, 1643, 1605, 1551,
1504, 1447, 1404, 1366, 1346, 1277, 1231, 1180, 1165, 1115, 1057, 1034, 964, 934, 860, 822, 795,
710, 694. 1H NMR (CDCl3): 2.04–2.08 (m, 4H, 2CH2), 3.40–3.44 (m, 4H, 2CH2N), 6.59 (d,
2H, J = 8.9 Hz, Ar), 7.45–7.49 (m, 2H, Ar), 7.53–7.57 (m, 1H, Ar), 7.82 (d, 2H, J = 8.9 Hz,
Ar), 7.96–8.00 (m, 3H, Ar, CH=CCN). 13C NMR (CDCl3): 25.4 (2CH2), 48.0 (2CH2), 101.0
(CCN), 112.3 (2CH), 119.5 (C), 119.7 (C), 128.4 (2CH), 129.0 (2CH), 132.2 (CH), 134.9 (2CH),
137.6 (C), 151.8 (C–N), 155.9 (CH=CCN), 190.3 (C=O). HRMS (ESI) m/z: [M + H]+ calcd. for
C20H19N2O: 303.1497, found 303.1496.

All of the spectral data of other compounds can be found in the Supplementary Materials.
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3. Results and Discussion

In the context of our general interest in the development of new multicomponent
reactions [27–33], we investigated three-component condensation of β-ketonitriles 1, 4-
fluorobenzaldehyde 2, and secondary cyclic amines 3 (in a ratio of 1:1:2) (Scheme 1). All
reactions were conducted in acetonitrile at reflux temperature for 6 h. As methylene active
nitriles, acetonitriles containing benzoyl, pivaloyl, and 1-adamantanoyl groups were used.
In each case, smooth reactions occurred to generate desired products 4a–i in good yields
(63–75%). The practicality of this approach was demonstrated in the relatively large-scale
synthesis of 4a from 10 mmol of benzoylacetonitrile, which was obtained in 76% yield
compared to a 74% yield for 1 mmol of nitrile. Furthermore, nitriles with heteroaromatic
substituents at the carbonyl group such as pyrrol-2-yl and indol-3-yl were also investigated,
affording α-arylidene-β-ketonitriles 4j–m in 79–90% yields. As secondary cyclic amines,
we utilized pyrrolidine, morpholine, piperazine, ethyl piperazine-1-carboxylate, and 6-
methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole. In order to establish the generality of
this three-component reaction, we extended the above method to β-carbonyl substituted
nitriles with 2,3,4,9-tetrahydro-1H-carbazole and 2-nitroaniline fragments. To our satis-
faction, these reactions proceeded efficiently to access the α-arylidenenitriles 4n,o bearing
amide functional group. Products can be easily purified from impurities by single recrys-
tallization, and chromatographic purification is not usually required. However, we failed
to introduce 2-fluoro-, 4-chloro-, and 4-bromobenzaldehydes into the reaction. In boiling
acetonitrile, for example, the reaction of 1-adamantanoylacetonitrile or benzoylacetonitrile
with 2-fluorobenzaldehyde and pyrrolidine did not proceed. Apparently, this is due to
steric difficulties in the formation of intermediate Meisenheimer complex.
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The structures of the prepared compounds were confirmed by their IR, 1H, and 13C
NMR spectral data and high-resolution mass spectra. In the IR spectra of β-ketonitriles
4a–m, the absorption band of the cyano group appears at 2191–2207 cm–1. In the 13C
NMR spectra of compounds 4a–m, the carbon atom of the C=O group resonated in the
175.6–199.1 ppm range, and the carbon atom of the CN group was observed at 118.6–121.7
ppm. The strong polarization of the exocyclic C=C bond, the push–pull nature of which is
due to the presence of a strong electron-donating (4-R2NC6H4) and electron-withdrawing
(CO, CN) groups at both carbon atoms of the C=C bond, is noteworthy. The signal of
the carbon atom bonded to the electron-withdrawing group was detected at 98.0–104.0
ppm while the signal of the neighboring carbon atom bound to the aryl group appeared
in the region of 153.5–156.4 ppm. In the 1H NMR spectra of compounds 4a–m, protons
of the CH group bonded to the aryl fragment appear as singlets at 7.94–8.25 ppm. The
number of protons that were directly linked to 13C atoms, inferred from DEPT spectra, was
in accordance with the presented structures. The most characteristic signals in the 1H and
13C NMR spectra of compounds 4a–m are shown in Figure 2.
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The (E) geometry of the double bonds was determined by comparison with known
compounds [34–36]. Furthermore, we were able to confirm the configuration of the double
bond of the α-arylidene-β-ketonitriles by measuring the carbon–proton coupling constants.
For example, in the proton coupled 13C NMR spectrum of the compound 4f, the nitrile
carbon atom appeared as a doublet at 120.6 ppm with the carbon–proton coupling constant
3JCH = 12.8 Hz corresponding to H,CN coupling. 3JCH could also be determined by
conducting the HMBC experiment. In the HMBC spectrum of 4f, the 1H δ/13C δ crosspeak
at 8.13/120.6 ppm corresponded to H,CN coupling (3JCH = 12.8 Hz) (Figure 3). This is
consistent with the trans 3JCH couplings reported in the literature [36,37]. The 3JCH for a cis
relationship was approximately 8.5 Hz.

For the proposed three-component reaction, two main reaction pathways are possi-
ble. In the first route, the Knoevenagel condensation proceeds first and is followed by
the aromatic nucleophilic substitution of the fluorine atom, which proceeds through the
Meisenheimer complex. Alternatively, the SNAr process occurs prior to the Knoevenagel
condensation [38]. An additional experiment showed that the substitution of the fluorine
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atom in 4-fluorobenzaldehyde in boiling acetonitrile proceeded much more slowly than
the condensation with β-ketonitrile. Therefore, when heating 4-fluorobenzaldehyde with
2 equiv. of pyrrolidine for 15 h, 4-pyrrolidinobenzaldehyde described in the literature
was isolated only in 30% yield. Therefore, the first reaction pathway is more likely. The
presumable reason for the Knoevenagel condensation and then subsequent SNAr process is
that the Knoevenagel condensation product is more reactive than 4-fluorobenzaldehyde
for the SNAr substitution due to its strong electron-withdrawing ability in addition to the
resonance effect. At the same time, neither the bromine nor chlorine atoms are sufficiently
activated to the SNAr process.
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In order to broaden the scope of this process, we extended the study to the substate 5
bearing the 6-amino-1,3-dimethyluracil moiety. However, it turned out that in the reaction
of β-ketonitrile 5 with 4-fluorobenzaldehyde and pyrrolidine or morpholine, instead of the
expected products 6 of the cascade transformation including Knoevenagel condensation
and aromatic nucleophilic substitution, α-arylidene-β-ketonitriles 7a,b containing a fluorine
atom were formed (Scheme 2). Apparently, in this case, the Knoevenagel condensation
also occurred first, followed by the conjugated addition of a secondary amine, and the
oxidation of the Michael adduct with atmospheric oxygen. In the 13C NMR spectra of
the enaminonitriles 7a,b, the carbon atoms of the benzene ring appeared as doublets due
to splitting on the fluorine atom. In the 19F NMR spectra, signals of fluorine atoms were
detected at −111.5 ppm.

To further expand the scope of the substrates, we tried to introduce 3-(dicyanomethylidene)
indan-1-one 8, which is easily available from indane-1,3-dione and malononitrile [39], into
the three-component condensation with 4-fluorobenzaldehyde and pyrrolidine. However,
in this case, the nucleophilic substitution of the fluorine atom also did not occur. According
to the spectral data, the isolated product was the 9H-indeno[2,1-c]pyridin-9-one derivative
9. In the 19F NMR spectrum, the fluorine atom appeared at –109.8 ppm. In the 13C NMR
spectrum, the characteristic signal at 114.6 ppm referred to the carbon atom of the nitrile
group. The carbonyl carbon atom resonated at 188.0 ppm and the carbon atom bound to
fluorine appeared as a doublet signal at 164.4 ppm (1JCF = 248.9 Hz). We assumed that
the product formation started with a normal Knoevenagel reaction between indanone 8
and 4-fluorobenzaldehyde 2, followed by a nucleophilic attack of pyrrolidine at the CN
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group. It is an open question whether the thus generated zwitterionic imidide A is trapped
in a concerted manner by the present enone part to form the zwitterionic enolate B, which
then yields 1,9a-dihydro-9H-indeno[2,1-c]pyridin-9-one C by the intermolecular H+ shift,
or whether the imidide A has a certain life-time, so that it can undergo intermolecular H+

shift to the neutral 1-azahexatriene intermediate D, which then experiences an electrocyclic
disrotatory ring closure to 1,9a-dihydro-9H-indeno[2,1-c]pyridin-9-one C [40]. In any case,
subsequent aerobic oxidation of the intermediate C resulted in a [5+1]-cyclocondensation
product 9 in 68% yield (Scheme 3).
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Scheme 2. 3-(6-Amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-3-oxopropanenitrile
5 in the three-component reaction.
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Having established a strategy for the synthesis of 4-aminobenzylidene derivatives of
β-ketonitriles, the applicability of these structures was studied. We have shown that the
interaction of α-arylidene-β-ketonitriles 4g,i with malononitrile and ethyl cyanoacetate in
the presence of catalytic amounts of piperidine in refluxing ethanol results in a rapid formal
substitution of the β-ketonitrile fragment for the residues of the methylene active nitriles
used. The mechanism of the reaction involves consecutive carbo- and retro-carbo-Michael
reactions (Scheme 4).
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The reaction of equimolar amounts of pyridinium salt 11 and ketonitrile 4b in the
presence of triethylamine (1 equiv) led to the formation of 5-(4-methoxybenzoyl)-2-phenyl-
4-[4-(piperidin-1-yl)phenyl]-4,5-dihydrofuran-3-carbonitrile 12 as individual trans-isomers
in 76% yield (Scheme 5). The reaction was carried out in MeCN under reflux under an
argon atmosphere for 5 h.
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ficiency. All of the reactants were taken in their stoichiometric ratio. The good yields of
4-aminobenzylidene derivatives of β-ketonitriles clearly exemplify the potential of the
reported methodology. The reaction can also be extended to α-cyanoamides. Taking into
account the high importance of α-arylidene-β-ketonitriles, our method might be beneficial
to prepare these compounds in a convenient way in synthetic and medicinal chemistry. Fur-
thermore, the developed method can be used in the synthesis of more complex compounds
including those used as intermediates in the pharmaceutical industry.
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