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Abstract: A systematic study of the Diels–Alder reaction of α-nitrocinnamate was performed. The
reaction of p-substituted α-nitrocinnamate with 2,3-dimethyl-1,3-butadienes smoothly proceeded
regardless of the p-substituent, which was either an electron-donating or -withdrawing group. A
control reaction revealed that α-nitrocinnamate isomerized during the reaction. Danishefsly’s diene
(1-methoxy-3-trimethylsiloxy-1,3-butadiene) facilitated cycloaddition under mild conditions to afford
a cycloadduct without the alternation of the diastereomeric ratio. Moreover, the desilylation of the
cycloadduct furnished multiple functionalized cyclohexanones.
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1. Introduction

Nitroalkenes are one of the important building blocks for multiple functionalized
compounds. The electron-withdrawing effect of the nitro group enhances the electron
acceptability of the alkene moiety, which facilitates conjugate addition [1,2], the Diels–
Alder reaction [1,3,4] and 1,3-dipolar cycloaddition [5]. Further chemical conversions
of the conjugate adducts and cycloadducts can furnish amines [6], alkenes [1,7], and
carbonyl compounds (Nef reaction) [8] via reduction, denitration, and hydrolysis, respec-
tively. The introduction of an electron-withdrawing group such as a carbonyl function-
ality at the α position of nitroalkenes enhances electron acceptability [9]. For instance,
α-nitrocinnamate 1 facilitates conjugate addition by hetero-aromatic compounds, which
are less nucleophilic species [10,11]. α-carbonylated nitroalkenes should also be suitable for
the Diels–Alder reaction as dienophiles because the carbonyl group decreases the LUMO
level of the nitroalkenes. However, there have been few examples of the Diels–Alder
reaction using α-carbonylated nitroalkenes [12–19] despite abundant studies on that using
α-unsubstituted nitroalkenes [1,3,4]. However, related studies of heterocyclic compounds
such as coumarin [20,21], quinolone [22–24], pyridone [24] and pyridazine [25] possessing
an α-carbonylated nitroalkene moiety as a partial structure have been reported. Accord-
ingly, systematic studies using α-carbonylated nitroalkene can help expand the synthetic
utility of the Diels–Alder reaction. In the present work, a series of α-nitrocinnamates 1
were reacted with dienes, and their reactivity and regioselectivity were investigated.

2. Results and Discussion

When a toluene solution of ethyl α-nitrocinnamate 1a was heated with 1,3-butadiene
2 at 150 ◦C under microwave irradiation, product 3a was isolated in a 13% yield (Table 1,
Entry 1). In the 1H NMR of 3a, two singlet signals were inequivalently observed at around
1.7 ppm, indicating that symmetrical butadiene was converted into an unsymmetrical
structure. Other spectral data also supported the idea that difunctionalized cyclohexene
3a was successfully obtained. To increase the yield of 3a, several solvents were tested,
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and acetonitrile was found to be the most suitable (Entries 1–4). Though six hours were
necessary to consume 1a at 150 ◦C (Entry 5), the reaction was completed within two hours
when the reaction temperature was elevated to 180 ◦C (Entry 6).

Table 1. Optimal conditions of the Diels–Alder reaction with ethyl α-nitrocinnamate 1a and 2,3-
dimethyl-1,3-butadiene (2).
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1 toluene 150 1.5 13(13) 3 86
2 THF 150 1.5 29 61
3 CHCl3 150 1.5 57 40
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isolated yield.

The optimal conditions were applied to several ethyl α-nitrocinnamates 1b–f pos-
sessing different substituent at the para position (Scheme 1). Each reaction used two
diastereomeric products with different positions of the nitro and ethoxycarbonyl groups
at the 3 position. Reactions efficiently proceeded, with substrates substituting either the
electron-donating or -withdrawing group to afford the corresponding products 3b–e; how-
ever, the reaction of nitro-substituted substrate 1f was complicated due to overreactions
such as the elimination of a nitrous acid and subsequent oxidation. This disadvantage was
overcome by reducing the reaction temperature to 150 ◦C, and cycloadduct 3f was quanti-
tatively obtained. Among substrates 1a–f, methoxy- and bromo-substituted cinnamates 1b
and 1d were the least reactive, which was presumably due to the electron-donating reso-
nance effect that increased the single bond character of the double-bond moiety. Systematic
studies showed that the diastereomeric ratio of products 3a–f was about 60/40 even when
only a Z isomer was used as a starting material, which means that isomerization occurred
during the reaction. To reveal this phenomenon, only the Z isomer of 1a was heated at
180 ◦C, which afforded a Z/E mixture of 1a with a 60/40 ratio (Scheme 2). This result
indicated that the isomerization of 1 occurred under reaction conditions and not during the
Diels–Alder reaction.

Next, α-cyano and α-acetylcinnamates 4 and 5 were employed as dienophiles instead
of α-nitro derivative 1 (Scheme 3). Even when the nitro group was replaced with less
electron-withdrawing acetyl groups, the cycloaddition proceeded to furnish the corre-
sponding cycloadduct 6 with a 87/13 diastereomeric ratio. In the case of substrate 5 with a
less hindered cyano group, cycloadduct 7 was quantitatively produced as a single isomer
because the E isomer was not converted into an unstable Z isomer, even under conditions
of progressive isomerization. When cyclopenta-1,3-diene 8 was subjected to the reaction
with 1a, cycloadduct 9 was obtained in a 81% yield as a mixture of four diastereomers.
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Scheme 1. Diels–Alder reactions of ethyl α-nitrocinnamates possessing a para-substituent.
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Scheme 2. Isomerization of 1a at 180 ◦C.
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Scheme 3. Diels–Alder reactions using other dienophiles and diene.

So far, nitrocinnamate 1 was found to serve as an excellent dienophile that could
efficiently undergo the Diels–Alder reaction, which led to multiple substituted cyclohexene
3 products. Our next challenge was focused on the synthesis of more densely functionalized
cyclohexenes. For this purpose, 1-methoxy-3-trimethylsiloxy-1,3-butadiene (Danishefsky’s
diene, CAS No. 54125-02-9) 10 was employed because its silyl enol ether moiety can be
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converted into a carbonyl group upon desilylation and two electron-donating groups can
improve its reactivity. The Diels–Alder reaction of 1a with diene 10 efficiently proceeded
without heating to yield cycloadduct 11 regardless of the Z/E ratio of 1a (Scheme 4).
The diastereomeric ratio of 11 was consistent with the Z/E ratio of 1a, and close to a
single isomer (95/5) was obtained when only the Z form of 1a was used. Cycloadduct
11 easily underwent desilylation to afford cyclohexanone 12 in air or during treatment
with chromatography on silica gel. The formation of 12 was confirmed by NMR and
IR measurements. In the 1H NMR spectra, a doublet at 5.2 ppm assigned to an alkenyl
proton of 11 disappeared, and the absorption of a carbonyl group newly appeared in
the IR spectrum.
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Scheme 4. Diels–Alder reaction of ethyl α-nitrocinnamate 1a with Danishefsky’s diene 10.

Since cyclohexanone 12 is an oil, it was converted into solid hydrazone 13 to determine
its stereochemistry with single X-ray crystallography. A single diastereomer of cyclohex-
anone 12 obtained from the Z isomer of 1a was reacted with 2,4-dinitrophylhydrazine
in ethanol in the presence of hydrochloric acid, which afforded hydrazone 13 without
any stereochemical isomerization. During the reaction, methanol was eliminated. The
recrystallization of 13 from toluene–hexane successfully yielded orange needles as a single
crystal, and X-ray crystallography revealed that the nitro group and 4-methylphenyl group
were substituted in the cis form, which was the same relationship as the Z form in 1a
(Figure 1, Supplementary Materials). These results confirmed that the Diels–Alder reaction
concertedly proceeded.
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follows: carbon, gray; nitrogen, blue; oxygen, red. Triclinic, P-1, Z = 2, GOF = 1.062, R1[I > 2σ(I)] = 0.0369,
wR2 (all data) = 0.1055.

3. Conclusions

A systematic study of the Diels–Alder reactions of α-nitrocinnamate 1 was performed.
Cinnamate 1 efficiently reacted with 2,3-dimethyl-1,3-butadiene 2 to afford cyclohexene 3
in high yields. This reaction was not influenced by the p-substituent of the phenyl group.
Cycloadduct 3 was obtained as a mixture of stereoisomers, which was found to be due to
E/Z isomerization at high temperatures. In the case of the more electron-rich Danishefsly’s
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diene 10, cycloaddition efficiently proceeded under mild conditions, which furnished
highly functionalized cyclohexene 11. Multiple functionalized cyclohexanones 12 were
obtained via the subsequent desilylation of 11. The insights obtained in this study are
surely valuable in the field of organic synthesis.

4. Experimental Section

All reagents were purchased from commercial sources and used without further
purification. 1H and 13C NMR spectra were recorded with Bruker DPX-400 and JEOL JMN-
ECZ400S spectrometers (400 MHz and 100 MHz, respectively) using TMS as an internal
standard. The assignments of the 13C NMR spectra were performed with DEPT experiments.
IR spectra were recorded with a JASCO FT/IR-4200 spectrometer equipped with an ATM
detector. High-resolution mass spectra were obtained with an AB SCEIX Triplet TOF 4600
mass spectrometer. Microwave heating was performed with an Anton Paar Microwave
300 (850 W, 2455 MHz) and an Anton Paar Microwave 400 (850 W, 2450 MHz) using a
10 mL glass vessel. Diffraction data were collected at 93 K under a cold N2 gas stream
with a Rigaku XtaLAB Synergy-S/Mo system (λ = 0.71073 Å (Mo-Kα)). The integrated
data were analyzed by using a Yadokari-XG software package. The structures were solved
with the ShelXT structure solution program using intrinsic phasing and refined with the
ShelXL refinement package using least-squares minimization. Anisotropic refinement
was performed for all non-hydrogen atoms, and all the hydrogen atoms were put in
calculated positions.

Synthesis of α-nitrocinnamate 1a. α-Nitrocinnamate 1 was synthesized using a
somewhat modified method previously described in the literature. Aniline (0.91 mL,
10.0 mmol) and magnesium sulfate (400 mg) were added to a solution of
4-methylbenzaldehyde (10.0 mmol) in THF (5 mL), and the mixture was stirred at room
temperature for 5 h. After filtrations of magnesium sulfate, the filtrate was concentrated
under reduced pressure to afford imine (2.0 g, 9.7 mmol, 97%) as a brown solid, which was
used for the next step without further purification. A solution of imine (2.0 g, 9.7 mmol) and
nitroacetate (1.08 mL, 9.7 mmol, CAS No. 626-35-7) in acetic anhydride (5 mL) was heated
at 60 ◦C for 18 h. The reaction mixture was poured into water (100 mL) and extracted with
dichloromethane (50 mL × 3). Organic layers were dried over magnesium sulfate, filtered,
and concentrated under reduced pressure. The residue was treated with flash column
chromatography on silica gel (hexane/ethyl acetate = 9/1) to afford α-nitrocinnamate 1a
(1520 mg, 6.5 mmol, 65%) as a yellow oil. When the aldehyde could not be completely sepa-
rated, distillation was performed to remove it. The recrystallization of the product using
hexane/chloroform afforded (Z) isomer. Other cinnamates 1b–f, 4, and 5 were synthesized
in the same way.

Ethyl 3-(4-methylphenyl)-2-nitropropenoate (1a) [26]. Yellow plates. 1H NMR
(400 MHz, CDCl3) δ 7.50 (s, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 4.37
(q, J = 7.3 Hz, 2H), 2.39 (s, 3H) 1.36 (t, J = 7.3 Hz, 3H).

Ethyl 3-(4-methylphenyl)-2-nitropropenoate (1b) [27]. Brown plates. 1H NMR
(400 MHz, CDCl3) δ 7.46 (s, 1H), 7.39 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.2 Hz, 2H), 4.36
(q, J = 7.3 Hz, 2H), 3.85 (s, 3H), 1.36 (t, J = 7.3 Hz, 3H).

Ethyl 2-nitro-3-phenylpropenoate (1c) [26]. Yellow plates. 1H NMR (400 MHz,
CDCl3) δ 7.59 (s, 1H), 7.40–7.51 (m, 5H), 4.39 (q, J = 6.9 Hz, 2H), 1.37 (t, J = 6.9 Hz, 3H).

Ethyl 3-(4-bromophenyl)-2-nitropropenoate (1d) [26]. Yellow plates. 1H NMR
(400 MHz, CDCl3) δ 7.57 (d, J = 8.5 Hz, 2H), 7.47 (s, 1H), 7.28 (d, J = 8.5 Hz, 2H), 4.29
(q, J = 7.3 Hz, 2H), 1.37 (t, J = 7.3 Hz, 3H).

Ethyl 3-[(4-trifluoromethyl)phenyl]-2-nitropropenoate (1e) [26]. Yellow plates. 1H
NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.3 Hz, 2H), 7.50 (s, 1H), 7.53 (d, J = 8.3 Hz, 2H), 4.05
(q, J = 7.0 Hz, 2H), 1.38 (t, J = 7.0 Hz, 3H).

Ethyl 2-nitro-3-(4-nitrophenyl)propenoate (1f) [27]. White solid. 1H NMR (400 MHz,
CDCl3) δ 8.28 (d, J = 8.7 Hz, 2H), 7.60 (s, 1H), 7.59 (d, J = 8.7 Hz, 2H), 4.42 (q, J = 6.9 Hz,
2H), 1.39 (t, J = 6.9 Hz, 3H).
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Ethyl 2-ethanoyl-3-(4-methylphenyl)propenoate (4) [28]. Colorless plates. 1H NMR
(400 MHz, CDCl3) δ 7.63 (s, 1H), 7.29 (d, J = 8.3 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 4.29 (q,
J = 7.0 Hz, 2H), 2.36 (s, 3H), 2.35 (s, 3H), 1.32 (t, J = 7.0 Hz, 3H).

Ethyl 2-cyano-3-(4-methylphenyl)propenoate (5) [29]. Colorless needles. 1H NMR
(400 MHz, CDCl3) δ 8.23 (s, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.93 (s, 3H),
2.44 (s, 3H).

Diels–Alder reaction of α-nitrocinnamate. 2,3-dimethyl-1,3-butadiene 2 (0.28 mL,
2.5 mmol) was added to a solution of α-nitrocinnamate 1a (117 mg, 0.5 mmol) in MeCN (1
mL), and the resultant solution was heated at 180 ◦C for 2 h under microwave irradiation.
After the removal of the solvent under reduced pressure, the residue was subjected to flash
column chromatography on silica gel (hexane/ethyl acetate = 95/5) to afford cycloadduct
3a (151 mg, 0.475 mmol, 95%) as a pale-yellow oil. When other substrates were used or
conditions were changed, the reaction was conducted in the same way.

4-Ethoxycarbonyl-1,2-dimethyl-5-(4-methylphenyl)-4-nitrocyclohexene (3a). Pale-
yellow oil (dr = 56/44). Major isomer: 1H NMR (400 MHz, CDCl3) δ 6.9–7.9 (m, 4H),
4.07 (q, J = 7.2 Hz, 2H), 4.05 (d, J = 8.0 Hz, 1H), 2.7–3.0 (m, 3H), 2.30 (s, 3H), 2.28 (br d,
J = 18.8 Hz, 1H), 1.72 (s, 3H), 1.68 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz,
CDCl3) δ 165.9 (C), 137.6 (C), 137.1 (C), 129.5 (CH), 128.4 (CH), 125.7 (C), 121.2 (C), 95.7 (C),
62.7 (CH2), 42.8 (CH), 36.2 (CH2), 34.0 (CH2), 21.2 (CH3), 19.2 (CH3), 18.6 (CH3), 13.8 (CH3).
Minor isomer: 1H NMR (400 MHz, CDCl3) δ 6.9–7.9 (m, 4H), 4.24 (dq, J = 7.2, 14.4 Hz, 1H),
4.21 (dq, J = 7.2, 14.4 Hz, 1H), 3.95 (d, J = 7.6 Hz, 1H), 2.7–3.0 (m, 3H), 2.39 (br d, J = 17.2 Hz,
1H), 2.30 (s, 3H), 1.74 (s, 3H), 1.69 (s, 3H), 1.22 (dd, J = 7.2, 7.2 Hz, 3H); 13C NMR (101 MHz,
CDCl3) δ 166.2 (C), 137.6 (C), 136.5 (C), 129.4 (CH), 128.4 (CH), 126.4 (C), 121.2 (C), 95.3 (C),
62.8 (CH2), 43.8 (CH), 37.7 (CH2), 33.9 (CH2), 21.2 (CH3), 19.4 (CH3), 18.4 (CH3), 13.8 (CH3).
IR (KBr/cm−1) 1753, 1553; HRMS (ESI/TOF) calculated for (M + H+) C18H24NO4: 318.1700,
found: 318.1696.

4-Ethoxycarbonyl-5-(4-methoxyphenyl)-1,2-dimethyl-4-nitrocyclohexene (3b). Pale-
yellow oil (dr = 70/30). Major isomer: 1H NMR (400 MHz, CDCl3) δ 7.07 (d, J = 8.8 Hz, 2H),
6.79 (d, J = 8.8 Hz, 2H), 4.11 (q, J = 7.2 Hz, 2H), 4.05 (d, J = 7.6 Hz, 1H), 3.77 (s, 3H), 2.7–3.1
(m, 3H), 2.27 (br d, J = 18.4 Hz, 1H), 1.72 (s, 3H), 1.67 (s, 3H), 1.56 (t, J = 7.2 Hz, 3H); 13C
NMR (101 MHz, CDCl3) δ 165.9 (C), 159.2 (C), 132.1 (C), 129.6 (CH), 125.7 (C), 121.2 (C),
114.2 (CH), 95.6 (C), 62.7 (CH2), 55.3 (CH3), 42.4 (CH), 36.3 (CH2), 34.0 (CH2), 19.2 (CH3),
18.6 (CH3), 13.9 (CH3). Minor isomer: 1H NMR (400 MHz, CDCl3) δ 7.02 (d, J = 8.8 Hz, 2H),
6.79 (d, J = 8.8 Hz, 2H), 4.23 (dq, J = 7.2, 14.4 Hz, 1H),4.22 (dq, J = 7.2, 14.4 Hz, 1H), 3.93 (d,
J = 7.2 Hz, 1H), 3.77 (s, 3H), 2.7–3.1 (m, 3H), 2.27 (br d, J = 17.2 Hz, 1H), 1.72 (s, 3H), 1.67 (s,
3H), 1.22 (dd, J = 7.2, 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 166.2 (C), 159.2 (C), 131.5
(C), 129.6 (CH), 125.7 (C), 121.2 (C), 114.0 (CH), 95.3 (C), 62.7 (CH2), 55.3 (CH3), 43.5 (CH),
37.8 (CH2), 34.0 (CH2), 19.4 (CH3), 18.4 (CH3), 13.9 (CH3); HRMS (ESI/TOF) calculated for
(M + H+) C18H24NO5: 334.1649, found: 334.1648.

4-Ethoxycarbonyl-1,2-dimethyl-4-nitro-5-phenylcyclohexene (3c). Pale-yellow oil
(dr = 62/38). Major isomer: 1H NMR (400 MHz, CDCl3) δ 7.28–7.10 (m, 5H), 4.08 (br
d, J = 7.3 Hz, 1H), 4.05 (q, J = 7.3 Hz, 2H), 2.72–3.00 (m, 3H), 2.30 (br d, J = 18.3 Hz, 1H),
1.68 (s, 3H), 1.72 (s, 3H), 1.12 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 165.9 (C),
140.2 (C), 128.8 (CH), 128.5 (CH), 127.9 (CH), 125.7 (C), 121.3 (C), 95.6 (C), 62.7 (CH2), 43.1
(CH), 36.1 (CH2), 33.9 (CH2), 19.3 (CH3), 18.6 (CH3), 13.8 (CH3). Minor isomer: 1H NMR
(400 MHz, CDCl3) δ 7.28–7.10 (m, 5H), 4.22 (dq, J = 7.3, 10.6 Hz, 1H), 4.21 (dq, J = 7.3, 10.6
Hz, 1H), 3.97 (br dd, J = 7.8, 2.3 Hz, 1H), 2.72–3.00 (m, 3H), 2.41 (br d, J = 17.4 Hz, 1H),
1.73 (s, 3H), 1.69 (s, 3H), 1.12 (dd, J = 7.3, 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 166.2
(C), 139.5 (C), 128.7 (CH), 128.5 (CH), 127.9 (CH), 126.4 (C), 121.2 (C), 95.2 (C), 62.9 (CH2),
44.2 (CH), 37.6 (CH2), 34.0 (CH2), 19.5 (CH3), 18.4 (CH3), 13.8 (CH3); HRMS (ESI/TOF)
calculated for (M + H+) C17H22NO4: 304.1543, found: 304.1540.

5-(4-Bromophenyl)-4-ethoxycarbonyl-1,2-dimethyl-4-nitrocyclohexene (3d). Pale-
yellow solid (dr = 52/48). Major isomer: 1H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.4 Hz,
2H), 7.00 (d, J = 8.4 Hz, 2H), 4.23 (dq, J = 7.2, 10.8 Hz, 1H), 4.20 (dq, J = 7.2, 10.8 Hz, 1H),
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3.94 (d, J = 7.2 Hz,1H), 2.7–3.1 (m, 3H), 2.36 (br d, J = 18.0 Hz, 1H), 1.72 (s, 3H), 1.68 (s, 3H),
1.21 (dd, J = 7.2, 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 165.9 (C), 138.5 (C), 131.8 (CH),
130.3 (CH), 126.1 (C), 122.0 (C), 121.4 (C), 94.9 (C), 63.0 (CH2), 43.6 (CH), 37.3 (CH2), 34.1
(CH2), 19.4 (CH3), 18.4 (CH3), 13.8 (CH3). Minor isomer: 1H NMR (400 MHz, CDCl3) δ 7.39
(d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2H), 4.08 (q, J = 7.2 Hz, 2H), 4.03 (br d, J = 7.6 Hz,
1H), 2.7–3.1 (m, 3H), 2.26 (br d, J = 19.2 Hz, 1H), 1.72 (s, 3H), 1.67 (s, 3H), 1.56 (t, J = 7.2 Hz,
3H); 13C NMR (101 MHz, CDCl3) δ 165.6 (C) 139.1 (C), 131.9 (CH), 130.3 (CH), 125.5 (C),
122.0 (C), 121.4 (C), 95.2 (C), 62.8 (CH2), 42.8 (CH), 35.9 (CH2), 34.1 (CH2), 19.2 (CH3), 18.5
(CH3), 13.8 (CH3). IR (KBr/cm−1) 1752, 1554; HRMS (ESI/TOF) calculated for (M + H+)
C17H20BrNO4: 382.0649, found: 382.0644.

4-Ethoxycarbonyl-5-[4-(trifluoromethyl)phenyl]-1,2-dimethyl-4-nitrocyclohexene (3e).
Pale-yellow oil (dr = 62/38). Major isomer: 1H NMR (400 MHz, CDCl3) δ 7.54 (d,
J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 4.15 (d, J = 7.2 Hz, 1H), 4.08 (q, J = 7.2 Hz,
2H), 2.6–3.1 (m, 3H), 2.31 (d, J = 18.4 Hz, 1H), 1.74 (s, 3H), 1.69 (s, 3H), 1.13 (t, J = 7.2 Hz,
3H); 13C NMR (101 MHz, CDCl3) δ 165.6 (C), 144.2 (C), 130.2 (C, q, J = 33 Hz), 129.1 (CH),
125.7 (CH, q, J = 4 Hz), 125.5 (C), 124.1 (C, q, J = 270 Hz), 121.6 (C), 95.1 (C), 62.9 (CH2),
43.2 (CH), 35.9 (CH2), 34.1 (CH2), 19.2 (CH3), 18.5 (CH3), 13.7 (CH3). Minor isomer: 1H
NMR (400 MHz, CDCl3) δ 7.32 (d, J = 7.6 Hz, 2H), 7.27 (d, J = 7.6 Hz, 2H), 4.25 (dq, J = 7.2,
10.8 Hz, 1H), 4.21 (dq, J = 7.2, 10.8 Hz, 1H), 4.04 (dd, J = 2.8, 7.2 Hz, 1H), 2.6–3.1 (m, 3H),
2.41 (d, J = 18.8 Hz, 1H), 1.74 (s, 3H), 1.69 (s, 3H), 1.21 (dd, J = 7.2, 7.2 Hz, 3H); 13C NMR
(101 MHz, CDCl3) δ 165.8 (C), 144.2 (C), 130.2 (C, q, J = 32 Hz), 129.1 (CH), 126.1 (C), 125.6
(CH, q, J = 4 Hz), 124.1 (C, q, J = 271 Hz), 121.5 (C), 94.8 (C), 63.1 (CH2), 44.0 (CH), 37.2
(CH2), 33.9 (CH2), 19.4 (CH3), 18.4 (CH3), 13.8 (CH3); IR (KBr/cm−1) 1753, 1556, 1167, 1326;
HRMS (ESI/TOF) calculated for (M + Na+) C18H19NO4F3Na: 394.1237, found: 339.1237.

4-Ethoxycarbonyl-1,2-dimethyl-4-nitro-5-[4-nitrophenyl]cyclohexene (3f). Pale-
yellow oil (dr = 65/35). Major isomer: 1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 8.7 Hz,
2H), 7.37 (d, J = 8.7 Hz, 2H), 4.18 (d, J = 7.3 Hz, 1H), 4.10 (q, J = 7.3 Hz, 2H), 2.80–3.09 (m,
3H), 2.33 (d, J = 17.8 Hz, 1H), 1.75 (s, 3H), 1.70 (s, 3H), 1.22 (t, J = 7.3 Hz, 3H); 13C NMR (101
MHz, CDCl3) δ 165.3 (C), 147.6 (C), 147.4 (C), 129.7 (CH), 125.4 (C), 124.0 (CH), 121.7 (C),
94.8 (C), 63.1 (CH2), 43.3 (CH), 35.8 (CH2), 34.3 (CH2), 19.2 (CH3), 18.6 (CH3), 13.9 (CH3).
Minor isomer: 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.7 Hz, 2H), 7.32 (d, J = 8.7 Hz,
2H), 4.25 (dq, J = 7.3, 10.5 Hz, 1H), 4.22 (dq, J = 7.3, 10.5 Hz, 1H), 2.80–3.09 (m, 3H), 2.40 (d,
J = 18.3 Hz, 1H), 1.76 (s, 3H), 1.71 (s, 3H), 1.22 (dd, J = 7.3, 7.3 Hz, 3H), One signal could not
be observed presumably due to overlapping; 13C NMR (101 MHz, CDCl3) δ 165.6 (C), 147.6
(C), 146.8 (C), 129.7 (CH), 125.9 (C), 123.8 (CH), 121.6 (C), 94.6 (C), 63.3 (CH2), 43.9 (CH),
37.0 (CH2), 34.2 (CH2), 19.4 (CH3), 18.4 (CH3), 13.9 (CH3); HRMS (ESI/TOF) calculated for
(M + Na+) C17H20N2O6Na: 371.1214, found: 371.1210.

4-Ethanoyl-4-ethoxycarbonyl-5-(4-methylphenyl)-1,2-dimethylcyclohexene (6). Pale-
yellow oil (dr = 58/42). Major isomer: 1H NMR (400 MHz, CDCl3) δ 7.04–6.99 (m, 4H),
4.01 (dq, J = 7.3, 10.6 Hz, 1H), 4.06 (dq, J = 7.3, 10.6 Hz, 1H), 3.77 (br d, J = 7.3 Hz, 1H),
2.87–2.43 (m, 3H), 2.29 (s, 3H), 2.17–2.10 (m, 1H), 2.08 (s, 3H), 1.74 (s, 3H), 1.64 (s, 3H), 1.18
(dd, 7.3, 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 204.0 (C), 170.5 (C), 140.0 (C), 136.4 (C),
129.0 (CH), 128.5 (CH), 126.7 (C), 122.5 (C), 64.1 (C), 61.3 (CH2), 41.7 (CH), 36.4 (CH2), 32.4
(CH2), 26.5 (CH3), 21.1 (CH3), 19.6 (CH3), 18.7 (CH3), 14.1 (CH3). Minor isomer: 1H NMR
(400 MHz, CDCl3) δ 7.04–6.99 (m, 4H), 4.18 (dq, J = 7.3, 10.6 Hz, 1H), 4.14 (dq, J = 7.3, 10.6
Hz, 1H), 3.77 (br d, J = 7.3 Hz, 1H), 2.87–2.43 (m, 3H), 2.28 (s, 3H), 2.17–2.10 (m, 1H), 1.95 (s,
3H), 1.74 (s, 3H), 1.65 (s, 3H), 1.19 (dd, 7.3, 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 205.4
(C), 171.7 (C), 139.3 (C), 136.5 (C), 129.1 (CH), 128.4 (CH), 125.6 (C), 123.3 (C), 64.2 (C), 61.4
(CH2), 42.7 (CH), 37.0 (CH2), 32.4 (CH2), 27.4 (CH3), 21.1 (CH3), 19.5 (CH3), 18.7 (CH3), 14.1
(CH3); HRMS (ESI/TOF) calculated for (M + Na+) C20H26O3Na: 337.1774, found: 337.1774.

4-Cyano-4-methoxycarbonyl-1,2-dimethyl-5-(4-methylphenyl)cyclohexene (7). Pale-
yellow oil (dr = 100/0). 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 7.6 Hz, 2H), 7.12
(d, J = 7.6 Hz, 2H), 3.49 (s, 3H), 3.22 (dd, J = 7.2, 12.0 Hz, 1H), 2.92 (br d, J = 16.8 Hz,
1H), 2.73 (br dd, J = 17.6, 12.0 Hz, 1H), 2.46 (d, J = 16.8 Hz, 1H), 2.32 (s, 3H), 2.23 (dd,
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J = 7.2, 17.6 Hz, 1H), 1.71 (br s, 6H); 13C NMR (101 MHz, CDCl3) δ 169.4 (C), 137.7 (C), 136.1
(C), 129.4 (CH), 127.9 (CH), 126.5 (C), 121.0 (C), 118.7 (C), 53.2 (CH3), 50.6 (C), 45.9 (CH),
41.0 (CH2), 36.3 (CH2), 21.2 (CH3), 18.9 (CH3), 18.6 (CH3); IR (KBr/cm−1) 1740; HRMS
(ESI/TOF) calculated for (M + H+) C18H22NO2: 284.1645, found: 284.1645.

5-Ethoxycarbonyl-6-(4-methylphenyl)-5-nitrobicyclo [2.2.1]hept-2-ene (9). Yellow
oil (dr = 59/25/15/1). 1H NMR (400 MHz, CDCl3) Major isomer: δ 7.20 (d, J = 8.2 Hz,
2H), 7.09 (d, J = 8.2 Hz, 2H), 6.66 (dd, J = 3.2, 5.5 Hz, 1H), 6.07 (dd, J = 2.7, 5.5 Hz, 1H),
4.04 (d, J = 2.7 Hz, 1H), 3.76 (d, J = 2.7 Hz, 1H), 3.73 (dq, J = 7.3, 10.5 Hz, 1H), 3.61
(dq, J = 7.3, 10.5 Hz, 1H), 3.16 (br s, 1H), 2.72 (d, J = 9.6 Hz, 1H), 2.30 (s, 3H), 1.95 (d,
J = 9.6 Hz, 1H), 0.82 (dd, J = 7.3, 7.3 Hz, 3H); Minor isomer 1: δ 7.02 (d, J = 8.2 Hz, 2H), 6.98 (d,
J = 8.2 Hz, 2H), 6.66–6.69 (m, 1H), 6.49 (dd, J = 3.2, 5.5 Hz, 1H), 4.58 (d, J = 3.2 Hz, 1H), 4.30 (q,
J = 6.9 Hz, 2H), 3.62–3.64 (m, 1H), 3.10–3.15 (m, 1H), 2.27 (s, 3H), 1.62–1.70 (m, 2H), 1.28
(t, J = 6.9 Hz, 3H); Minor isomer 2: δ 7.02–7.07 (m, 4H), 6.62–6.65 (m, 1H), 6.47 (dd, J = 2.7,
5.5 Hz, 1H), 4.74 (d, J = 3.2 Hz, 1H), 3.80–3.83 (m, 1H), 3.58–3.79 (m, 2H), 3.11–3.14 (m, 1H),
2.28 (s, 3H), 1.62–1.70 (m, 2H), 0.69 (t, J = 7.3 Hz, 3H); HRMS (ESI/TOF) calculated for
(M + H+) C17H19NO4: 324.1206, found: 324.1196.

4-Ethoxycarbonyl-3-methoxy-5-(4-methylphenyl)-1-(trimethylsiloxy)-4-nitrocyclohexene
(11). Pale-yellow oil (dr = 86/14). 1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 8.0 Hz, 2H), 7.08
(d, J = 8.0 Hz, 2H), 5.17 (d, J = 4.0 Hz, 1H), 4.54 (d, J = 4.0 Hz, 1H), 4.24 (dq, J = 7.2, 10.8 Hz,
1H), 4.16 (dq, J = 7.2, 10.8 Hz, 1H), 3.94 (dd, J = 6.4, 8.0 Hz, 1H), 3.41 (s, 3H), 2.38 (dd, J = 6.4,
18.0 Hz, 1H), 2.39 (dd, J = 8.0, 18.0 Hz, 1H), 2.32 (s, 3H), 1.23 (dd, J = 7.2, 7.2 Hz, 3H), 0.26
(s, 9H); 13C NMR (101 MHz, CDCl3) δ 164.5 (C), 153.5 (C), 137.7 (C), 135.3 (C), 129.4 (CH),
128.9 (CH), 100.3 (CH), 96.2 (C), 76.4 (CH), 62.3 (CH2), 57.4 (CH3), 42.7 (CH), 35.3 (CH2),
21.2 (CH3), 14.0 (CH3), 0.4 (CH3); IR (KBr/cm−1) 1766, 1733, 1549, 1244, 1220, 1084, 849;
HRMS (ESI/TOF) calculated for (M + Na+) C20H29NO6SiNa: 430.1656, found: 430.1651.

4-Ethoxycarbonyl-3-methoxy-5-(4-methylphenyl)-4-nitrocyclohexanone (12). Pale-
yellow oil (dr = 95/5). 1H NMR (400 MHz, CD3Cl) δ 7.06 (s, 4H), 4.49 (dd, J = 4.1, 4.1 Hz,
1H), 4.27 (dq, J = 7.3, 11.0 Hz, 1H), 4.21 (dd, J = 5.5, 11.4 Hz, 1H), 4.20 (dq, J = 7.3, 11.0 Hz,
1H), 3.39 (dd, J = 4.1, 15.6 Hz, 1H), 3.35 (3H, s), 2.90 (dd, J = 11.4, 15.6 Hz, 1H), 2.81 (ddd,
J = 1.8, 4.1, 15.6 Hz, 1H), 2.72 (ddd, J = 1.8, 5.5, 15.6 Hz, 1H), 2.28 (s, 3H), 1.23 (dd, J = 7.3,
7.3 Hz, 3H); 13C NMR (101 MHz) δ 205.5 (C), 163.9 (C), 137.9 (C), 134.0 (C), 128.9 (CH), 128.6
(CH), 95.5 (C), 79.4 (CH), 62.6 (CH2), 57.6 (CH), 43.9 (CH3), 43.5 (CH2), 41.1 (CH2), 20.9
(CH3), 13.7 (CH3); IR (KBr/cm−1) 1766, 1729, 1548, 1243, 1083; HRMS (ESI/TOF) calculated
for (M + H+) C17H22NO6: 336.1442, found: 336.1443.

3-Ethoxycarbonyl-4-(4-methylphenyl)-3-nitro-6-[(2,4dinitrophenyl)hydrazino)]cyclohexene
(13). Orange needles, m.p. 110–111 ◦C. 1H NMR (400 MHz, CD3Cl) δ 11.24 (br s, 1H), 9.11
(d, J = 2.4 Hz, 1H), 8.37 (dd, J = 2.4, 9.6 Hz, 1H), 8.06 (d, J = 9.6 Hz, 1H), 7.05 (s, 4H), 6.83
(d, J = 9.2 Hz, 1H), 6.65 (dd, J = 0.9, 9.2 Hz, 1H), 4.42 (dq, J = 7.3, 10.1 Hz, 1H), 4.42 (ddd,
J = 0.9, 2.7, 6.9 Hz, 1H), 4.30 (dq, J = 7.3, 10.1 Hz, 1H), 3.42 (dd, J = 6.9, 17.4 Hz, 1H), 3.04
(dd, J = 2.7, 17.4 Hz, 1H), 2.27 (s, 3H), 1.29 (dd, J = 7.3, 7.3 Hz, 3H); 13C NMR (101 MHz,
CD3Cl) δ 164.8 (C), 148.1 (C), 144.4 (C), 139.2(C), 138.7 (C), 134.4 (C), 132.1 (CH), 130.5 (C),
130.3 (CH), 129.8 (CH), 128.3 (CH), 127.1 (CH), 123.4 (CH), 116.8 (CH), 93.8 (C), 63.9 (CH2),
43.3 (CH), 28.9 (CH2), 21.2 (CH3), 13.9 (CH3); IR (KBr/cm−1) 1750, 1616, 1337, 771; HRMS
(ESI/TOF) calculated for (M + H+) C22H22NO2: 484.1463, found: 484.1453.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/reactions3040041/s1. Copies of the NMR and HRMS spectra of
compounds 1, 3, 6, 7, 9, and 11–13, as well as the crystallographic data of 13.
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