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Abstract: The gas-phase reactivity of vanadium-containing dianions, NaV309%~ and its hydrated
form HyNaV30192~, were probed towards sulphur dioxide at room temperature by ion-molecule
reaction (IMR) experiments in the collision cell of an ion trap mass spectrometer. The sequential
addition of two SO, molecules to the NaV3092~ dianion leads to the breakage of the stable V309
backbone, resulting in a charge separation process with the formation of new V-O and S-O bonds.
On the contrary, the H,NaV30;¢2~ hydroxide species reacts with SO,, promoting regioselective
hydrolysis and bond-forming processes, the latter similar to that observed for the N aV3092~ reactant
anion. Kinetic analysis shows that these reactions are fast and efficient with rate constants of the
1072 (£30) cm® s~ molecule ! order of magnitude.

Keywords: vanadium oxide reactivity; sulphur dioxide; mass spectrometry; ion-molecule reactions;
bond-forming reactions; hydrolysis reactions

1. Introduction

Vanadium-based compounds find several applications in a wide range of research
fields. For example, supported vanadium oxides are largely employed in the metallurgic
industry as heterogeneous catalysts for the manufacture of important chemicals [1]. Among
these, sulphuric acid is considered an excellent indicator of the “industrial strength” of a
nation, being one of the most produced chemicals worldwide [2]. More recently, vanadium
hydroxides have also attracted interest as secondary electrode materials in the design of
Li-ion and redox flow batteries [3-6].

Considering the significant potential of vanadium species, the chemical features of
these compounds have been extensively investigated both in the solution and in the gas-
phase environments. The latter represents a designable arena in which a variety of different
experiments performed by means of mass spectrometric techniques allow one to elucidate
structural and thermochemical features of ionic clusters. The refined control of the cluster
size, charge, and stoichiometry in the absence of perturbing effects can indeed contribute to
assessing the elementary steps of a complex process at a strictly molecular level, obtaining
detailed mechanistic information [7-13]. Accordingly, the reactivity of vanadium oxide
mono-cations and anions was probed towards selected hydrocarbons, water, and SO, by
ion-molecule reaction (IMR) experiments [14-31]. In particular, it has been reported that the
vanadium-oxide kernel of the V4O1p~ anion can effectively incorporate SO;, leading to a
[V4019-SOz]~ complex with a square pyramidal structure [29], whereas neutral vanadium
oxides only give association intermediates or oxidation and reduction products by the
reaction with SO, [32,33].

Although many studies in the literature describe the gas-phase reactivity of mono-
charged vanadium oxide ions, the chemistry of the corresponding multi-charged species
has been only partially explored. These ions can be generated by electrospray ionization
(ESI) processes by the direct transfer of charged species formed in solution under mild
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conditions into the gas-phase environment [34]. In particular, we refer both to small doubly-
charged species (e.g., VO**, VOH?*, VOH?") stabilized as water adducts [35] and large
multiply-charged polyoxovanadates in which vanadium can assume different oxidation
states and a variety of intriguing geometries [36].

The typical gas-phase reactions of dications are the so-called bond-forming processes
where the simultaneous breakage and formation of chemical bonds lead to two singly-
charged ions and/or a new doubly-charged species [37—44]. On the contrary, dianions
are commonly involved in proton-transfer and substitution/elimination reactions always
resulting in the incorporation of the intact dianion in the final product scaffold [45-47].
Recently, we reported the unprecedented bond-forming reactivity of doubly-charged vana-
dium hydroxoanions in the gas phase studied by IMR experiments and theoretical cal-
culations [48,49]. H,V,0,%2~ and HNaV,01,2™ react with SO,, leading to H,VO,~ and
VO350;7, and to NaV401;~ and HOSO, ™, respectively [48]. These singly-charged prod-
ucts are formed through the action of SO,, which effectively favors the breakage of the stable
V,07 kernel of HyV,0,%~ and the terminal V-OH bond of HNaV;0;,2~ dianions. Fur-
thermore, a cooperative effect was evidenced in complexes of the V5062~ and HV30;2~
formula with SO, in favoring a hydrolysis reaction, giving rise to the charge separation of
the dianion along with the formation of the HOSO, ™ bisulfite anion [49].

Continuing with our studies focused on the gas-phase activation of SO, [50-56], here
we report on the reactivity of two polyoxovanadate dianions, namely NaV3092~ and
H,NaV30;0%~, towards SO, by using IMR mass spectrometry. The reactions are very
fast and efficient and lead to singly charged products that do not contain the reactants
in the molecular scaffold. Cooperative effects and regioselectivity were demonstrated
when addressing different reaction outcomes, providing new interesting examples of
bond-forming and hydrolysis reactions in the gas phase.

2. Materials and Methods
2.1. Materials

The research-grade chemicals and solvents employed in this study were purchased
from Sigma-Aldrich and used without further purification. The stated purities of the
chemicals, as reported by the vendor, are as follows: NaVO3 (99.9%), SO, (99.9%), whereas
H,0 and CH3;CN solvents are at the HPLC grade.

Pure N; (99.995%) and He (99.995%) gases were purchased from Nippon Gases.

2.2. Mass Spectrometry

All the experiments were carried out on an LTQ XL linear ion trap mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) that was in-house modified to perform
ion-molecule reactions and study the kinetic profiles of gas-phase processes [57]. The
instrument was equipped with an electrospray ionization (ESI) source operating in negative
ion mode, under the following experimental conditions: source voltage of 2-3 kV and
capillary temperature of 275 °C. Nitrogen (N) was used as sheath and auxiliary gas at
a flow rate of 3.7 and 0.74 L min~!, respectively [58]. Capillary and tube lens voltages
were set to low values (in the range of —1 and —10 V) to maximize the formation of
multiply-charged ions at the expense of singly-charged species [48,49].

Millimolar solutions of NaVOj3 in H,O/CH3CN (1/3 v/v) were infused into the ESI
source via the on-board syringe pump at a flow rate of 5 pL. min~!, whereas neutral
sulphur dioxide (SO,) was separately introduced into the ion trap through a deactivated
fused-silica capillary that entered the vacuum chamber from a 6.25 mm hole placed in the
backside of the mass spectrometer. The pressure of the neutral gas was kept constant by a
metering valve and measured by a Granville—Phillips Series 370 Stabil Ion Vacuum Gauge.
Owing to the position of the Pirani gauge, the actual SO, pressure was estimated based
on a calibration of the pressure reading [59]. Typical pressures of SO, ranged between
1.1 x 107 and 7.6 x 10~ Torr.
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The NaV3092~ and H,NaV30;9%~ reactant ions were generated in the ESI source
and thermalized by collisions with background helium during the transfer and inside the
trap (collision frequency ~ 10°-s~!). After 0.1-0.2 s, they were mass-to-charge isolated
and reacted with SO;. The signals of the ionic reactant and products were monitored
over time as a function of the SO, concentration, and for each reaction time an average
of 10 scan acquisitions were acquired. The normalized collision energy was set to zero,
and the activation Q value was optimized to ensure stable trapping fields for all the ions
under investigation.

To measure the rate constants, logarithmic plots of the reactant species concentration vs.
time were constructed. Accordingly, all the studied reactions display a pseudo-first-order
decay. Experimental data obtained from the kinetic analysis were fitted to a mathematical
model built on the basis of the hypothesized reaction mechanism by using Dynafit 4
package [60]. Bimolecular rate constants k (cm® molecule ! s~1) were derived as a product
of the pseudo-first-order constants (s71) divided by the concentration of neutral reagent
gas. To ensure the accuracy of the k values, ca. 10-15 independent measurements for
each precursor ion were performed on different days. All rates were measured over a
7-fold SO, pressure range, showing a linear correlation with the neutral density and a
standard deviation <15%. Nevertheless, a conservative error of 30% was given, due to
the uncertainties of the neutral pressure measurements. The reaction efficiencies were
expressed as the ratio of the bimolecular rate constants k to the collision rates that were
calculated according to the average dipole orientation (ADO) theory [61].

Collision-induced dissociation (CID) experiments were carried out with the MS"
function of the LTQ XL mass spectrometer. Helium was used as the collision gas at a
pressure of ca. 3 X 1073 Torr. Typical normalized collision energies (NCE) were in the
range of 10% and 50%, depending on the isolated ion, whereas the activation time and
Q value were set to 30 ms and 0.250, respectively.

All spectra were recorded and elaborated using the Xcalibur software (version 2.0.6,
Thermo Fisher Scientific, Bremen, Germany) supplied with the instrument.

3. Results and Discussion
3.1. The NaV309%~ and H,NaV3019%>~ Reactant Dianions

Trimeric species of NaV30¢%~ and H,NaV30;%~ general formula were generated
in the gas phase by electrospraying aqueous solutions of sodium metavanadate. The
speciation of this salt was deeply investigated both in solution [62,63] and in the gas
phase [64-67], highlighting the formation of discrete multi-charged anions containing
several vanadium atoms organized in higher structures (e.g., dimer, trimer, tetramer).

Before introducing SO; into the trap, both NaV3092~ and H;NaV30;92~ reactant ions
were mass-fo-charge selected and exposed to helium buffer gas over long activation times
(maximum a. t. = 10 s). Since no remarkable signal loss occurred as a result of the isolation
and subsequent accumulation, these doubly-charged species can be considered stable to-
wards spontaneous dissociation in the gas phase. Hence, CID experiments were performed
to obtain salient structural information that was interpreted in the light of our previous
calculations on similar dianionic species [48,49]. In particular, the NaV30¢2~ dianion can
be associated with the analogous HV309?~ hydroxovanadate species characterized by a
V,04 four-membered ring connected to a VO3 moiety [49]. Indeed, pentavalent vanadium
derivatives form polyoxovanadates showing repetitive units of VO3 revealed at m/z 99 by
mass spectrometry [67]. Accordingly, the NaV3092~ parent ion at n1/z 160 dissociates into
two singly-charged fragments at m1/z 221 and 99 that are respectively consistent with the
anions of the general formula: NaV,0¢~ and VO3~ (Figure 1).
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Figure 1. IT CID mass spectrum of the NaV3092~ reactant ion at n/z 160.

We can thus suppose that the VO3 moiety is released as a consequence of a V-O cleav-
age induced by the collision of the parent species with the background helium gas forming
a NaV;04 ™ counterpart. NaV,Og ™ maintains a V,Og-closed structure in agreement with
the CID mass spectrum of the similar HV;0¢2~ species, which dissociates into VO3~ and
HV,0¢7, as theoretically described elsewhere [49].

Passing to the HyNaV3010?~ ion at m/z 169, it dissociates either by breaking into
two singly-charged fragments, respectively corresponding to HyVO4~ (m/z = 117) and
NaV;04~ (m/z = 221) anions, or by losing an HyO molecule with the formation of the
doubly-charged daughter species at m/z 160 (Figure 2a).
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Figure 2. IT CID mass spectra of (a) the H2NaV30102— reactant ion at 71/z 169 and (b) the NaV309?~
daughter ion at m/z 160 isolated from the MS3 sequence 169—160.

The latter was, in turn, isolated through the sequence 169 — 160 and submitted to
MS? dissociation, giving rise to the same fragmentation pattern already observed for the
NaV3092~ dianion (Figure 2b vs. Figure 1), thus pointing to the same structure.

The doubly-charged species at m/z 169 could be thus composed of a mixture of
H,NaV30;0%~ and the isomeric hydrated electrostatic complex ion [NaV3Oqg H,O]*".
However, the loss of a water molecule forming a daughter ion with a V,04%~ four-
membered ring scaffold was also observed for the covalent open-chain pirovanadate
dianion, H,V,072~. The theoretical structure predicted for this species is characterized by
two vicinal OH groups that are involved in the H,O release resulting from a fast proton
transfer reaction [48]. In addition, when exposed to H,O in the trap, a naked NaV;0¢2~
dianion proved, even for the longest possible time, to be unreactive towards the addition
of a water molecule.

In light of this experimental evidence and always keeping a +5 oxidation state for the
vanadium atoms, we propose that the H2NaV3010?~ parent ion at n1/z 169, presumably
formed in solution by a hydrolysis reaction at the expense of the NaV3092— dianion,
may be characterized by an open structure, showing an H2VO4 terminal moiety which is
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released as the mono-anion of the vanadic acid (H2VO*™) through an intracluster rearrange-
ment, according to Scheme 1. The singly charged vanadate, H2VO*~, is indeed a stable and
deeply characterized species, previously obtained as a product of an ion-molecule reaction
between the H2V2072~ dianions and SO, [48].
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Scheme 1. CID mechanism of the HyNaV301¢2~ reactant ion at m/z 169.

3.2. Reactivity ofNaV3092’ and HyNaV3019%>~ Dianions towards SO,

In the presence of sulphur dioxide in the ion trap, a thermal NaV30q?~ dianion binds
an SO, molecule, giving the ligated [NaV309-SO,]?~ addition product (Equation (1)). It
in turn reacts with a second SO,, forming two singly-charged product ions according
to Equation (2).

NaV309%~ + SO, — [NaV309-50,]*~ )

[NaV309-SO,]%>~ + SO, — [NaV,04-S0,]~ + VO350, )

The reaction sequence was confirmed by the kinetic analysis reported in Figure 3
showing both the reactivity of the NaV3Og2~ parent ion (Figure 3a) and that of its lig-
ated product, [NaV30q -50,]%~, obtained by the direct addition of the first SO, molecule
(Figure 3b).
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100

[NaV,0,-SO,]- + VO,S0,-
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W
B
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Figure 3. Kinetic plot and best fit lines of the reactions of thermal (a) NaV3092~ ions with SO,
P(SO;) = 2.1 x 1077 torr, R? (NaV30927) = 0.9991, R? (NaV309-SO»27) = 0.9980, RZ (NaV,04-50,~
+ VO350,7) = 0.9992 and (b) [NaV309-SO,]%~ ions with SO, P(SO,) = 2.2 x 107 torr, R2
(NaV309-50,27) = 0.9997, R? (NaV,04-SO,~ + VO350, ) = 0.9989.

The rate constants of the two reactions at 298 K, as measured from the kinetic plots,
amount to k; = 1.40 x 1072 and ky = 0.39 x 1072 (+30%) cm® s~! molec™!, whereas the
reactions’ efficiencies are estimated to be slightly > 100% and 34.5%, respectively.

A possible reaction mechanism can be postulated based on the borderline acid nature
of the SO; neutral reagent and on the heteronuclear four-membered stable structure pre-
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dicted for the VO3SO, ™ product ion [48]. According to Scheme 2, in fact, after the addition
of an SO, molecule, the attack of the second SO, to the opposite side of the dianionic
species triggers the breaking of a V-O bond containing a bridged oxygen atom and the
formation of new V-O and S-O bonds, eventually leading to two singly charged products,
[NaV704-SO;]~ and VO350,~. Hence, two SO, molecules are needed to activate the
bond-forming reaction, one of which only plays a spectator role, remaining non-covalently
attached to the NaV,04~ anion and forming the [NaV,04-SO;]~ product ion. In support
of this hypothesis, an analogous [HV,04-50,] electrostatic structure was predicted for
the product of the reaction of V062~ with SO, and H,O [49].
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Scheme 2. Plausible reaction mechanism of NaV3Og2~ jons with SO, based on the corresponding
kinetic plot.

When moving on to the reactivity of the H,NaV30;¢2~ dianionic species to sulphur
dioxide, two parallel reaction channels were highlighted: an OH anion transfer to SO,
leading to HOSO,™ and HNaV30O9~ product ions (Equation (3a)), and a V-O cleavage
process assisted by the SO, molecule (Equation (3b)), forming [NaV,0¢-50,]~ and the
H,VO,~ vanadate anion.

HzNaV30102_ + S0, - HOSO,~ + HNaV3;0q (3a)

HzNaV30102_ + SO, — [NaV;704-SO5]” + HoVO, ™ (3b)

As shown in the kinetic plot of Figure 4, the whole process is fast and efficient, showing
aks =1.15 x 1072 (30%) cm? s~ molec™! and an efficiency of 100%. The OH™ transfer
(Equation (3a)) predominates over the V-O cleavage, as demonstrated by the branching
ratio between the two reaction channels (Equation (3a) vs. Equation (3b)), amounting to 3.7.
The high rate constant of reaction 3.1, very close to that observed for a similar system [48],
seems to confirm our previous experimental evidence of a hydroxide structure for the
H,NaV3010%~ dianion, rather than a hydrated one. Hydrolysis reactions, in fact, occur at a
much slower rate [49].

Interestingly, reaction 3 is a regioselective process, the outcome of which depends
on where the SO, molecule approaches the HyNaV3010%~ dianion (Scheme 3). If sulphur
dioxide coordinates the O-H bond, then pathway (a) of Scheme 3 takes place (Equation (3a)).
Hence, the H,NaV30;92~ parent ion behaves as an effective HO™ donor, forming the
bisulfite ionic species HOSO, ™ and a second product, HNaV30g~, reasonably consisting
of a V,0¢ four-membered ring connected to a VO3 moiety, as in the case of the similar
H,V309~ dianion obtained by the reaction of the HV3092~ species with SO, and HyO [49].
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Figure 4. Kinetic plot and best fit lines of the reaction of thermal H,NaV3012~ ions with SOy,
P(S05) = 2.1 x 107 torr, RZ (H,NaV30192) = 0.9998, RZ (H, VO~ + NaV,04-S05 ) = 0.9652, R2
(HOSO,~ + HNaV;0g ) = 0.9964.
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Scheme 3. Plausible reaction mechanism of HyNaV30102~ ions with SO, based on the corresponding
kinetic plot.

Conversely, when the SO, molecule attacks the H;NaV30;0%~ dianion on the opposite
side, or at least far from the -OH groups, we observe the bond-forming reaction illustrated
in Scheme 3b (Equation (3b)). Accordingly, the stable V301 kernel is broken with the
formation of two singly charged products, the H,VO,~ vanadate and the [NaV,0g4-5O,]~
anions, the latter being also formed in Equation (2) (Scheme 2).

The asymmetric structure of the H,NaV30192~ reactant ion may reasonably explain
the occurrence of the regioselective process, as the SO, molecule can approach the dianion
from two chemically different extremities. Similar reactions have already been observed in
the gas phase, where a plethora of different factors (e.g., thermodynamic, kinetic, electronic,
steric, and orbital) can act by affecting the branching ratios of alternative reaction prod-
ucts [68-70]. As to the reactivity of the OH terminal of H,NaV3040%~, it is worth recalling
that hydroxylation of acidic sites of vanadium-oxide-based materials, due to the reaction of
the ubiquitous water, is known to change the electronic properties and the structure of the
catalytic active sites of such materials [71].
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Moreover, the open HyNaV301¢?~ dianion is substantially less constrained compared
to the other NaV3092~ reactant species characterized by a V,04 four-membered ring.
Hence, when SO, coordinates the HyNaV301¢%~ dianion from the VOj side, a free terminal
O~ can play a nucleophilic attack on the vicinal vanadium atom, driving the formation of
the two mono-charged products (Scheme 3, pathway (b)).

4. Conclusions

Fast and efficient reactions between polyvanadate dianions and sulphur dioxide have
been reported in this study. Two SO, molecules, once sequentially added to the doubly
charged vanadium oxide anion, NaV309%~, lead to the breakage of the stable V30g kernel.

Otherwise, the hydroxide H,NaV;0;0%~ dianion reacts with sulphur dioxide in a
regioselective process by following two different pathways according to which an SO,
molecule can promote either the breakage of a terminal V-OH bond or the V301 kernel.

All these reactions are associated with charge separation processes that result in two
singly charged product ions by the formation of new V-O and S-O bonds. The charge
separation occurs exclusively as a result of the chemical reaction with sulfur dioxide, in
which the dipole moment plays a crucial role in promoting the ion-neutral bonding.
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