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Abstract: Climate-change-induced unpredictable weather patterns are adversely affecting global
agricultural productivity, posing a significant threat to sustainability and food security, particularly
in developing regions. Wealthier nations can invest substantially in measures to mitigate climate
change’s impact on food production, but economically disadvantaged countries face challenges due
to limited resources and heightened susceptibility to climate change. To enhance climate resilience
in agriculture, technological solutions such as the Internet of Things (IoT) are being explored. This
paper introduces a digital twin as a technological solution for monitoring and controlling temper-
atures in a greenhouse tunnel situated in Stellenbosch, South Africa. The study incorporates an
aeroponics trial within the tunnel, analysing temperature variations caused by the fan and wet wall
temperature regulatory systems. The research develops an analytical model and employs a support
vector regression algorithm as an empirical model, successfully achieving accurate predictions. The
analytical model demonstrated a root mean square error (RMSE) of 2.93 ◦C and an R2 value of 0.8,
while the empirical model outperformed it with an RMSE of 1.76 ◦C and an R2 value of 0.9 for a
one-hour-ahead simulation. Potential applications and future work using these modelling techniques
are then discussed.

Keywords: greenhouse tunnel; data-driven thermal model; analytic thermal model; digital twin;
Internet of Things; smart agriculture; climate change

1. Introduction

Thermal modelling in greenhouse tunnels is paramount for optimising agricultural
productivity. These models—the focus of this paper—simulate temperature variations,
helping farmers make informed decisions about ventilation, heating, and crop management.
By accurately predicting temperature fluctuations, growers can mitigate risks associated
with extreme weather, ensuring optimal conditions for plant growth.

Climate change significantly hampers global agricultural productivity, characterised
by erratic rainfall patterns, extreme temperatures, and prolonged droughts, posing a
substantial risk to global food security [1–6]. This challenge is particularly pronounced
in under-resourced countries where governments and private agencies face increasing
difficulties coping with climate-induced food insecurity. Africa, heavily reliant on rainfall
for irrigation, is projected to be the most adversely affected continent [7–10]. Farmers often
depend on short-term weather patterns and forecasts, exacerbating the vulnerability of the
agricultural sector to the impacts of climate change [11,12].

Recognising the imperative for transformative measures, the agricultural sector must
shift from conventional practices to technology-based solutions to meet the growing global
population’s food demand [13]. The adoption of innovative technologies can enhance food
production sustainably, addressing challenges such as hunger and malnutrition [14,15].
Countries like Japan and Abu Dhabi have successfully implemented climate-smart farming
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practices, with Abu Dhabi’s agricultural sector contributing significantly to the country’s
GDP [16,17].

Despite the potential benefits, the adoption of climate-smart farming practices in
African countries lags behind the severity of climate change impacts. The incorporation
of these technologies could not only mitigate the adverse effects on agriculture but also
uplift the socioeconomic status of those dependent on farming for survival. Given the
agricultural sector’s prominent role in African countries’ GDP, embracing climate-smart
technologies becomes crucial for fostering resilience and sustainable growth.

This paper emphasises the urgency of adopting climate-smart farming practices, draw-
ing attention to successful implementations in other regions. It highlights the economic
benefits witnessed in Abu Dhabi, showcasing the potential positive impact on GDP. The
slow adoption in African countries is underscored, urging expedited integration to effec-
tively address the challenges posed by climate change on agricultural systems and the
broader economy.

One such climate-smart farming method is precision agriculture (PA). It introduces a
dynamic relationship between sensor data and agriculture. Through feedback control sys-
tems, data can aid the growing of certain crops under specific conditions. These conditions
can be controlled by researchers through the use of actuators and different types of sensors.
The Internet of Things (IoT) has revolutionised precision agriculture by connecting sensors
to the internet for remote access and dataset creation [18].

This paper presents a piece in the PA puzzle—an empirical (data-based) and analytical
(physics-based) thermal model is presented that accurately models the ambient temperature
inside a greenhouse tunnel.

2. Related Works
2.1. Precision Agriculture Adoption

PA systems vary based on their application and the desired growing conditions.
Therefore, applications are diverse and can encompass multiple different technologies.
Eloquently described by Lowenberg-DeBoer and Erickson [19], PA is more of a toolkit
that farmers can use for their specific needs. According to Montzka et al. [20], standard
agricultural practices in the agricultural sector are responsible for 13.5% of greenhouse
gas (GHG) emissions in the world. Worryingly, two-thirds of all methane production
occurs from agriculture and the burning of fossil fuels. Through the use of fertiliser that is
rich in nitrous oxide, agriculture also contributes to large quantities of NO2 waste in the
environment due to losses when not all of the fertiliser is used. Montzka et al. [20] further
suggest that these large losses can be reduced by reducing the amount of fertiliser used.
However, as discussed by Balafoutis et al. [21], research shows that the use of PA systems
can mitigate the effects of climate change through the control of GHG emissions. PA
systems can positively contribute mainly through the management of nutrient application
(such as NO2 waste reduction) in agriculture and through direct control of resources in
crop production. Mabitsela et al. [22] used an aeroponics system in Stellenbosch, South
Africa, to prove that the use of aeroponics in an African context can yield better results
compared to traditional growing methods and provide sustainable growing methods. The
use of soilless cultivation proved successful in terms of improved yield, and also in terms
of energy and water conservation. Furthermore, the use of temperature sensors in the
study by Mabitsela et al. [22] created a climate-smart environment for the experiment to
have optimum growing conditions. Further, climate-smart agriculture (CSA) is explored
in Mizik et al. [23] with an emphasis on how small-scale farmers can adopt CSA practices.
They identify that CSA technological solutions should be developed on a case-by-case
basis due to the differing environments and necessities of the farm. CSA adoption not
only relates to technological use but also smart farming choices like crop rotations. In
Doyle et al. [24], a CSA aquaponics system is developed to simultaneously grow fish and
vegetables in East Africa. Although their system is not technologically advanced, as a
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simple water circulation system is used, there is potential for technological integration
using the IoT for prediction and control of the amount of water used in the system.

Despite the potential benefits of IoT adoption in agriculture, Sub-Saharan Africa lags
behind developed countries in embracing this technology [25]. Recognising the economic
potential, particularly in rural areas heavily dependent on agriculture, the integration of
IoT technology is crucial. An example highlighted by Nigussie et al. [26] involves a farm
in northern South Africa, where an irrigation solution was proposed to solve the use of
excessive water. A digital twin was developed using sensor data to optimise irrigation,
reducing resource consumption without adversely impacting on crop yield. This not only
leads to immediate economic gains but also ensures long-term sustainability in on-farm
practices, demonstrating the transformative potential of IoT technologies in agriculture. In
China, Zhang et al. [27] explored the optimization problem of improved agricultural output
while minimizing energy consumption. They argue for the development of an agriculture
energy internet (AEI). This involves using agricultural and renewable energy models to
develop digital twins for the aforementioned optimization problem. By utilizing multiple
different types of sensors for both agricultural and energy attributes such as temperature
and power consumption, the trade-offs of improved agricultural production and increased
energy consumption can be explored. Although this study does not focus on the electrical
energy aspect, it contributes to the development of similar digital twin solutions for yield
optimization in agriculture. An example of this comes from Fu et al. Fu and Zhou [28]
accomplished the above problem by combining electrical energy models and the modelling
of agricultural systems in a single model.

A study by Jans-Singh et al. [29] compared the performance of the static seasonal
autoregressive moving average model (SARIMA) and the dynamic linear model (DLM),
using sensor data captured by a digital twin. The SARIMA model, trained solely on
temperature data, outperformed the DLM in the morning forecast, while the DLM excelled
when LED lights were activated in the afternoon.

Similarly, Patil et al. [30] explored the autoregression model (AR), neural network
autoregressive model (NNARX), and autoregressive moving average model (ARMAX) for
predicting internal greenhouse temperature. The NNARX model, incorporating non-linear
parameters, outperformed other linear models.

In Morocco, Allouhi et al. [31] developed regression models for netted greenhouses,
comparing Gaussian predictive (GP) models with support vector regression (SVR) in linear
and quadratic forms. While the GP model achieved high accuracy, the quadratic SVR
and linear SVR also performed acceptably. Notably, models assuming non-linearity or,
specifically, modelling produced the most accurate results across these studies.

In summary, the application of digital twins in agriculture involves sophisticated
modelling techniques, with studies showcasing the superiority of non-linear algorithms in
accurately predicting variables like temperature, essential for precision farming.

2.2. Analytical Models

Thermal modelling of greenhouse tunnels involves a number of non-linearities due
to a number of factors, including: ambient air temperature outside of the tunnel, solar
radiation, wind speed, orientation, size, and especially whether or not the sides of a tunnel
are open or closed. Because of these non-linearities, even the physical characteristics
(shape, size, orientation) of the tunnel affect the internal temperatures. In [32], the authors
used Computational Fluid Dynamics (CFD) software to model a greenhouse based on
its shape (chapel or dome-shaped) and compared the effects of solar radiation and wind
on the internal temperatures. They concluded that the dome-shaped tunnel was more
aerodynamic, causing less drag during high-speed winds, and a lower difference between
the outside and inside temperatures.

Similarly, Mobtaker et al. [33] used multiple different orientations and shapes of
greenhouses to determine optimal conditions for energy saving in a greenhouse. Unlike
Nauta et al. [34], they investigated the effect that variables inside of a greenhouse have on
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one another. Using radiation networks, they [33] describe the effects that the greenhouse
cover, soil, and a brick wall they placed on the north wall of the greenhouse have on each
other. They determined that, in fact, the solar radiation incident on the top soil and front
face of the brick wall causes the largest rise in internal temperatures. In terms of the error
between their modelled values and the measured values, their model for the inside air had
an R2 value of 0.9 and an RMSE (in ◦C) of 2.82 ◦C. Despite the importance of understanding
the impact of the geometry and orientation of the greenhouse, it is also important to place
emphasis on the effect that solar radiation has on the interior temperatures. Understanding
the effect of outside temperatures on inside temperatures allows for better decision making
for farmers and researchers, rather than the effect of soil or outside walls.

In Tadj et al. [35], a study conducted in 2006, the authors explored the use of CFD
to analyse the dynamics of heating pipes in a greenhouse tunnel. Their CFD model was
presented as a 3D model. The authors argue the use of these models in this context, as
the placement of these heating pipes in greenhouse tunnels had not been explored prior
to their research. The results show that the experiment proved a previous assumption in
greenhouse tunnels that temperature distributions in tunnels are largely due to air flow
patterns within the tunnel. This is important to note as the greenhouse tunnel used in our
study uses an industrial fan and wet wall to control air flow in the tunnel and to produce a
cooling effect in the tunnel. The authors used an experimental site in Greece, which has
a Mediterranean climate like the Western Cape in South Africa. Therefore, their study is
representative of what to expect regarding the temperature dynamics of the greenhouse
tunnel being used in this paper.

Nauta et al. [34] explored the thermal modelling of an open-sided greenhouse tunnel
in Guelph, Canada. They argue that CFD models are able to predict only one operational
condition in a greenhouse tunnel, while being computationally intensive and are par-
ticularly difficult to compute without initial conditions. Their solution was to create a
one-dimensional lumped-capacitance model that separates the tunnel into multiple layers
with different heat transfer equations for each layer. Their aim was to predict the air and
soil temperature within the tunnel using this physics-based model. Their results show an
RMSE for the soil temperature to be 4.28 ◦C and 4.25 ◦C for air temperature. Although these
results were captured in Canada, a much colder region than South Africa, the results show
that using a lumped-capacitance model can accurately predict the internal conditions of a
tunnel even with a minor error. Although the present study mainly explores data-driven
modelling, the results will be able to justify the means of physics-based prediction models
in a hotter climate, and will be a good comparison against the data-driven model.

Comparatively, a computationally aided CFD model using “Ansys” was demonstrated
in Tong et al. [36]. In China, greenhouses that use solar radiation for internal heating are
named solar greenhouses and are a focus in research due to the need for large-scale food
production throughout the year. The authors argue that previous research (before 2009)
used numerical modelling and a lumped-capacitance model to model internal tempera-
tures. However, they argue that the accuracies of these models decline as the temperature
variations in these greenhouses are dynamic in space and time. The authors used extensive
heat transfer equations to numerically model the interior temperatures of this greenhouse.
They developed two models: one for during the day and one for during the night. A total
of 52 temperature sensors were placed in the greenhouse at different depths in the soil
and at various heights within the tunnel. In conjunction with a pyranometer measuring
the solar radiation, both climatic conditions were sampled every second, and after 600 s,
the average was calculated. Their final results showed a highly accurate analytical model
with a difference of 1.0 ◦C for the nighttime model, and a 1.5 ◦C difference for the daytime
model. Noteworthy findings included the temperature of the soil and plastic film of the
greenhouse being higher than that of the ambient air inside the greenhouse throughout
the day, showing that more energy is stored in these layers of the tunnel rather than the
air. It is clear that this model is highly complex and requires numerous considerations to
produce a highly accurate model. In total, 20 different equations with multiple boundary
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conditions were used in the CFD modelling software to produce the model. Although
accuracy is important for these models, it is noteworthy how relatively less equipment is
used in lumped-capacitance models, such as in Nauta et al. [34], to produce errors of about
4.25 ◦C.

In Tacarindua et al. [37], the authors used different temperature gradients varying
from 1 to 3 ◦C above ambient temperature to monitor the growth of soybeans and reported
30% yield losses at temperatures above 3 ◦C. Therefore, predicting these temperatures,
even through lumped-capacitance modelling, can still result in improvements in yield. In
the South African context, where these models are lacking, any increase in yield would be
economically and productively beneficial.

2.3. Empirical Data-Driven Models

Digital twins play a crucial role in agriculture, encompassing data collection from
sensors, control of actuators, and modelling. The latter, modelling, could be vital for
predicting outcomes, and can be analytical (based on physics and heat transfer equations)
or empirical (utilising datasets in machine learning algorithms). Linear regression models,
known for their simplicity and accuracy, assume a linear relationship between the input
and output variables, which could be risky when the physical (physics) relationship is not
known. To address this, algorithms like Generalised Regression Neural Networks, capable
of modelling non-linearities, have been developed.

Finally, we developed a neural network model for a separate study using the data
in this study, which is detailed in Jogunola et al. [38]. A Convolutional Neural Network
(CNN), Long Short-Term Memory (LSTM), and a hybrid of CNN and Bidirectional LSTM
(BLSTM) were developed to predict temperatures within the greenhouse. The results
showed an average mean squared error of 0.025 ◦C for all of the models.

2.4. Performance Metrics

In both analytical and empirical modelling in the literature, common performance
metrics are used to compare the accuracy and predictive ability of the proposed models.
These metrics include root mean square error (RMSE), R2, mean absolute error (MAE), and
mean bias error (MBE).

2.4.1. RMSE

RMSE is the average error between the predicted and actual value in a model. This is
represented by the formula:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (1)

where n is the number of predictions or available measured values, yi is the actual measured
value, and ŷi is the predicted or regressed value.

2.4.2. R2

Commonly known as the coefficient of determination, this metric is a good measure of
how well the model fits the data. Its formula is:

R2 = 1 − RSS
TSS

(2)

where RSS represents the residual sum of squares, or the sum of the error or bias term in a
regression model, and TSS represents the total sum of squares of the error between yi and
ŷi as shown in Equation (1).
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2.4.3. MAE

Similarly to RMSE, MAE is a measure of the difference between the measured and
the predicted. The main difference is that this metric is not square rooted and the absolute
error is summed and averaged from the number of observations.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3)

2.4.4. MBE

MBE represents the bias of the predicted values, as in whether a predicted value is
underpredicted or overpredicted represented by a negative or positive MBE, respectively.

MBE =
1
n

n

∑
i=1

(yi − ŷi) (4)

3. Thermal Model Development
3.1. Tunnel Parameters and Data Acquisition

This study was situated in a closed tunnel at the Welgevallen Experimental Farm,
part of Stellenbosch University in South Africa. Data were collected from 18 November to
30 December 2022, spanning a period of 42 days. The tunnel has a dome-shaped structure
with dimensions of 28 m in length, 9 m in width, and 3 m in height. Three sensors
were strategically placed at twelve-meter intervals, starting from the tunnel entrance and
extending to the wet wall. The extraction fan makes up one-third of the wall space adjacent
to the tunnel entrance. Figure 1a,b depict the tunnel during an experimental trial and
illustrate its layout, respectively.

(a)

FAN

WET WALL

28m

9m

3m
5.9m

1.7m

12m

12m

Temperature and Humidity Sensors

(b)

Figure 1. The tunnel is arranged as shown in these figures, with the placement of each temperature
and humidity sensor shown in relation to the climate control (comprising a fan and wet wall). (a) The
tunnel is approximately 28 m in length and has a wet wall on the one end, and an extraction fan on
opposite ends, with no other openings. (b) Tunnel layout with sensor positions [39].

The tunnel layout, as depicted in Figure 1b, consists of a fan facing east and a wet wall
facing west. The fan side of the tunnel, therefore, receives the majority of the sunlight in the
morning and afternoon, while the wet wall side receives its sunlight mainly in the afternoon.
The aeroponics system is on the fan side of the tunnel closest to the front temperature and
humidity sensor as seen in Figure 1b. The ground is covered in a PVC covering to prevent water
drainage affecting the trestle tables on which the aeroponics system stands. The setup is tailored
to collect data from sensors in three segments of the 28 m tunnel (Figure 1a). Temperature
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and humidity were measured with DHT22 sensors. They have a temperature range of −40
to 80 ◦C and humidity range of 0 to 100%, and accuracies of ±0.5 ◦C for temperature and 5%
for humidity. We used a Raspberry Pi Model 3B to aggregate sensor data, provide internet
connectivity, save a local CSV file on the device, interface with the actuator control mechanisms,
and support potential expansions.

Each sensor recorded humidity and temperature readings every minute for a five-
minute duration. Thereafter, averages were calculated and stored in the local CSV file. In
addition to temperature and humidity data, the timestamps and a binary value (0 or 1)
were stored, indicating whether the fan and wet wall were active. At the end of each day,
the CSV file was uploaded to the cloud for off-site access.

The temperature in the tunnel was regulated by concurrent control of the extraction
fan and wet wall. The middle sensor (Figure 1b), which is approximately 12 m from the
fan and 16 m from the wet wall, was used to affect the control. To reduce the potential
for spurious readings resulting in erroneous control, the controlling temperature sensor
was read 10 times per min, and the median value used to control the fan and wet wall.
We empirically determined a hysteresis band for temperature control: below 22 ◦C, the
climate control turned off, and above 30 ◦C, it turned on. A Solid State Relay (SSR) was
used to control the fan and wet wall pump through contactors connected to these actuators.
We only used the middle sensor’s temperature readings to develop the analytical and
empirical model studied in this paper. Although this reduces the spatial resolution of the
data by focusing on a single area of the tunnel, we identified in preliminary results that the
biasing from the sides of the tunnel, the fan, and the wet wall produced skewed results.
These models therefore focus on giving agricultural researchers and farmers the ability
to characterise their greenhouse tunnel in a general sense as to aid decision making as to
which crops can and cannot be grown.

3.2. Analytical Thermal Model Development

A physics-based, analytical model is developed with the aim of predicting the internal
temperature in the greenhouse tunnel. Kittas et al. [40,41] developed heat transfer equations
for evaporative cooling systems similar to that of the greenhouse tunnel studied in this pa-
per. Evaporative cooling is caused by water flowing over cooling pads of a certain material;
thereafter, an extraction fan pulls water vapour from these pads into the greenhouse, which
causes evaporation, leaving cooler temperatures throughout the tunnel. Kittas et al. [40,41]
argue that the internal temperature is affected mainly by six factors: the heat loss coefficient
of the tunnel cover, shading inside the tunnel, ventilation rate, water evaporation from
the wet wall, plant transpiration, and soil evaporation. However, the last factor is largely
neglected in this model. Instead of a time-based model, they developed a model that is
dependent on the airflow path in the tunnel, which is longitudinally from the wet wall.
The data captured in this present study form a time series, meaning this model can then
determine the temperature in the current instant without temporal dependencies assuming
a steady state is reached. Furthermore, the data are recorded in five-minute intervals,
leading to a reasonable assumption that sudden changes in temperature would reach a
steady state in that time interval. Using time series data in this way has the added benefit
of using forecasted data (namely for solar radiation and ambient temperature) to describe
the internal temperatures of the tunnel. The heat balance equation from Kittas et al. [40,41]
is stated as:

VρCpdTin = [τ(1 − α)Rg − βes,in]dx − KcP[Tin(x)− To]dx (5)

Equation (5) is corrected for the erroneous exclusion of ρ, the air density ( kg
m3 ), which

is written as a subscript of the variable V, the ventilation rate ( m3

s ), in Kittas et al. [41]. A
list of variables, their units, and their assumed values are described in Table 1.
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Through numerous simplifications and assumptions, including the assumption that
solar radiation has the largest effect on the internal temperature as compared to the evapo-
transpiration process in the plants and soil, the final model equation becomes:

Tin(x) = To + [−η(To − To,w)− A1]e(−A2x) + A1 (6)

where:

A1 =
[τ(1 − α)Rg]L

KcP
(7)

and:
A2 =

KcP
VρCp

(8)

A1 and A2 were erroneous in Kittas et al. [41] compared to their original derivation in
Kittas et al. [40] and were corrected for their mistake in Equations (7) and (8).

In Kittas et al. [40,41], the parameters chosen for their model were optimised to best
fit their measured data and their greenhouse. However, their greenhouse had a different
orientation and size and could not be used for the parameters in this model. Therefore, the
results from the parameter optimisation for the model in this paper were relatively close to
those seen in Kittas et al. The transmissivity of the greenhouse cover, τ, was expected to be
higher as the greenhouse’s internal temperatures were heavily influenced by solar radiation. A
large portion of the solar radiation, however, is potentially absorbed by the greenhouse cover,
or is reflected back into the surrounding space. α, the plant transpiration coefficient, was much
higher than that in [41], which may be due to the black containers in the aeroponics system
and various control crops used in the trial inside the tunnel. For V, the ventilation rate, the
optimisation found 2 m3/s to be the best choice for the model, which is close to the 2.4 m3 s
based on the fan’s advertised ventilation rate [42]. The heat loss coefficient, Kc, was 3 W/m2

◦C, whereas the value used in [41] was 4.2 W/m2 ◦C. This is expected as a different covering
to that in Kittas et al. was used [41]. Finally, η, the cooling efficiency of the wet wall, was
unexpectedly 0.3 compared to the 0.8 that Kittas et al. used. This inefficiency may be due to the
age of the wet wall that led to a lower cooling efficiency.

Table 1. List of all variables and constants used in the development of the analytical thermal model.

Name Represents Constant? Value Units

Tin(x) Current temperature at position x from the wet wall N * ◦C
To Outside temperature N * ◦C
To,w Wet bulb temperature N * ◦C
α Plant transpiration rate Y 0.8 Dimensionless
τ Transmissivity of the greenhouse cover Y 0.35 Dimensionless
Rg Solar radiation outside the tunnel N * W/m2

L Greenhouse width Y 9 m
P Roof perimeter Y 28.2 m
V Ventilation rate Y 2 m3/s
Cp Specific heat capacity of air Y 1005 J

kg◦C

ρ Air density Y 1.14 kg
m3

Kc Heat loss coefficient of greenhouse cover Y 3 W/m2 ◦C
η Cooling efficiency Y 0.3 Dimensionless

* Time-variant variables.

Due to the model being dependent on the fan state, a simulation was run using the
analytical model’s energy balance equation and model parameters to predict the fan state.
This is due to the ventilation rate of the tunnel reducing to 0 m3/s when the fan is off,
which directly affects the model. The simulation process is as follows:

1. Take the current time step’s outside temperature and solar radiation, with the first
recorded instance of the fan state to predict the inside temperature.
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2. Use this prediction with the previous fan state to simulate the fan being on or off.
3. Predict the next inside temperature.
4. Store the simulated fan state and predicted temperature in an array to be exported at

a later stage.

3.3. Empirical Data-Driven Model Development (Support Vector Regression)

A data-driven model was developed using the measured data. The measured data
were augmented with irradiation (W/m2) and ambient temperature, both sampled hourly,
from MeteoBlue© [43] for the town. To account for the fact that the measured data were
in five minute intervals, and those of MeteoBlue© were hourly, the hourly data were
linearly interpolated into five minute intervals for better training with the other input
features that were also in five minute intervals.

Finally, since the two sensors at the entrance and rear of the tunnel are influenced by
their proximity to the fan or the wet wall, the model to predict the ambient temperature
inside the tunnel was developed using only the middle sensor. This sensor is also adequate
for model development as the majority of the crops are in the area of this sensor.

The regression model served dual purposes: first, it was employed to generate pre-
dictions for the next five minutes, and second, the anticipated temperature was used as
an input for the model to simulate conditions within the tunnel. An SVR was developed
to predict internal temperatures and the fan and wet wall state. The input features for
these models were previous inside temperature (T[n − 1]), previous outside temperature
(T[n − 1]), solar radiation (W/m2), and climate control (fan and wet wall) status (on or off).
The dataset used an 80:20 split to train and test the model, with model parameters being
optimised using the training set only. The results, as shown in the results section below, are
only the test set results of both the analytical and empirical model. We published the data,
including the models’ outputs in Hull et al. [44].

Support Vector Regression (SVR) is an efficient choice for regression owing to its swift com-
putation and the assumption that data are non-linear. The algorithm establishes a hyperplane,
separating input data into two groups by projecting them into a higher-dimensional space.
An ϵ-sensitive tube outlines an acceptable error band around predicted values. Additionally,
the regularisation parameter C balances maximising this error margin and minimising errors
within it. Equation (9) outlines SVR’s general form, resembling linear regression with x as the
input vector, w as the weighting vector, and b as the bias or error term.

f (x) = wTx + b (9)

The prediction error, ϵ, is calculated by:

ϵi = yi − f (xi) (10)

where yi represents the actual output of the ith training output. Importantly, SVR is a dual
optimization problem where there is a minimisation function and a maximisation function.

minimize
1
2
∥ w ∥2 +C

N

∑
i=1

(ξi + ξ∗i ) (11)

subject to:
ϵi − ξi ≤ yi − f (xi) ≤ ϵi + ξi where ξi, ξ∗i ≥ 0 (12)

Equation (12) shows that the error is bounded by ϵ and the slack variables ξ and ξ∗.
Accounting for the dual optimisation problem, the maximisation function is then:

maximise
N

∑
i=1

αi −
1
2

N

∑
i,j=1

αiαjyiyjK(xi, xj) (13)
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subject to:
0 ≤ αi, α∗j ≤ C (14)

N

∑
i=1

(αi − α∗i ) = 0 (15)

In Equation (13), αi and α∗i represent the Lagrange multipliers, and K(xi, xj) represents
the kernel function used to project input data to a higher-dimensional space. From this, to
solve the dual optimisation problem:

w =
N

∑
i=1

(αi − α∗i )yixi (16)

b =
1
N

N

∑
i=1

(yi − ϵi − ξi) (17)

Therefore, substituting w and b into Equation (9):

f (x) =
N

∑
i=1

(αi − α∗i )K(xi, x) +
1
N

N

∑
1
(yi − ϵi − ξi) (18)

In this paper, a Gaussian kernel function (radial basis function) was used:

K(xi, x) = e−γ|x−xi |2 (19)

Four parameters can be manipulated to improve the solution given by Equations (18)
and (19): the regularisation term (C), the kernel function (K), gamma (γ), and the error margin
(ϵ). C affects which extent errors are rewarded/punished: a smaller C is more forgiving.
If the the kernel function is changed, it affects the data’s projection to higher-dimensional
spaces (e.g., whether it uses a quadratic or linear transformation). Changing γ affects the
decision boundary’s shape. Changing ϵ affects the error margin.

SVR is highly sensitive to the model’s parameters, and it is therefore important to
optimise these parameters. A Grid Search Cross-Validation (GSCV) algorithm was used to
optimise the kernel function, C, γ, and ϵ by using the simulation algorithm on a day in the
test set and choosing the best parameter value based on the R2 value. The values determined
as optimal for the model were: the radial basis function for the kernel, 7.63157894736842 for
C, 1.3526315789473684 for γ, and 0.02894736842105263 for ϵ. The simulation process entails:

1. Forecasting the subsequent 5 min internal temperature using the present time step’s
input vector.

2. Forecasting the subsequent 5 min internal temperature, incorporating it into the input
vector for forecasting the subsequent time step’s internal temperature.

3. Accumulating predictions in an error vector for each 5 min span over 12 predictions
(1 h duration).

4. Packing each prediction in an vector that contains the errors and depicting the 12th
prediction.

5. Progressing one time step of 5 min, and then repeating the process until the test
set concludes.

4. Results
4.1. Analytical Model

Firstly, the results from the parameter optimisation were relatively close to what was
expected. For V, the ventilation rate, the optimisation found 2 m3/s to be the best choice for
the model, which is close to the 2.4 m3/s based on the fan’s advertised ventilation rate [42].
The heat loss coefficient (or thermal conductivity), Kc, was 3 W/m2 ◦C, whereas the value
used in Kittas et al. [41] was 4.2 W/m2 ◦C. A slight difference was expected, however, as



AgriEngineering 2024, 6 295

the type of covering used was different in both cases. The transmissivity of the greenhouse
cover, τ, was expected to be higher as the greenhouse’s internal temperatures are heavily
influenced by solar radiation.

However, it seems that a large portion of the solar radiation energy is absorbed by
the greenhouse cover or is reflected back into the surrounding air. The plant transpiration
coefficient, α, was much higher than Kittas et al. [41]. As we mentioned earlier, this may
be due to the black aeroponics containers and the crops used in the trial inside the tunnel.
Finally, η, the cooling efficiency of the wet wall, was unexpectedly 0.3 compared to the 0.8
that Kittas et al. [41] used. Again, this inefficiency may be due to the age of the wet wall.

The resultant analytical model in Figure 2 performs well but has significant errors in
certain edge cases.
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Figure 2. Analytical model (in red) compared to the actual temperature (in blue). Replicated with
permission from [45].

For the analytical model, the outside temperature and solar radiation significantly
affect the model’s predictions, which can be seen where the predicted inside temperature
is the same as the outside temperature at 13 ◦C. Further, on the second day in the test set,
a large error of 10 ◦C occurs. This can be attributed to the model’s reliance on outside
temperature and solar radiation, which is lower than expected for this day. As this weather
station is not located at the farm, the conditions it experienced were vastly different to the
tunnel, which is evident as the inside temperature reached 36 ◦C.

The predictive capabilities of the model are clear in Figure 3. The model’s simulated
inside temperatures (on the y-axis) compared to the actual inside temperature (on the
x-axis) is a way to confirm the model is predicting actual values rather than predicting
random ones. A generally linear relationship is present, proving the predictions are not
random. However, large variations are seen at high temperatures above about 24 ◦C. This
is when the fan is predicted to turn on, which heavily influences the predictive accuracy of
the model.
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and the analytical model’s temperatures (orange dots); however, this relationship has an R2 value
of 0.8, which is clear with the larger variances in simulated temperatures, compared to the actual
observed temperatures. Replicated with permission from [45].

4.2. SVR Predictive Model

Figure 4 displays a one-hour-ahead simulation, demonstrating the method’s accuracy
in predicting tunnel temperatures, despite occasional larger errors caused by abrupt tem-
perature changes. The model effectively captures temperature variations, especially during
rapid changes like shifts in cloud cover. Additionally, the model accurately simulates the
fan and wet wall states based on predicted temperatures, showcasing its ability to account
for these factors’ impact on internal temperatures.
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Figure 4. Data-driven model. The model closely follows the measured temperatures. However, the
simulated fan does not always turn on at lower temperatures.

Figure 5 substantiates the model’s credibility by illustrating a generally linear rela-
tionship between simulated and actual temperatures, dispelling concerns of random noise
predictions. Despite a margin of error at higher temperatures, particularly during midday
when cloud cover affects solar radiation, the model maintains overall accuracy.
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the observed and simulated data.

Comparing Figures 3 and 5 highlights the superior performance of the Support Vector
Regression (SVR) model over the analytical model in terms of prediction accuracy. This outcome
aligns with expectations, as the SVR model excels at capturing underlying patterns, overcoming
limitations imposed by assumptions in the analytical model for computational ease.

Figure 6 shows the distribution of prediction errors in five minute increments. The results
indicate significant errors, approaching approximately 12 ◦C for one-hour-ahead predictions.
However, even for this forecast horizon, the median error is still 1.3 ◦C. When predicting for
15 min ahead, the error is 0.66 ◦C. This is smaller than the RMSE reported in Table 2. In total,
the incremental predictions integrate over the multiple estimations, thereby increasing the error
for predictions further ahead.
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Table 2. Models’ performance.

Model Used RMSE (◦C) MAE (◦C) MBE R2

5 min ahead prediction 0.87 0.47 −0.05 0.98
30 min ahead simulation 1.31 0.86 −0.15 0.95
1 h ahead simulation 1.76 1.17 −0.24 0.9
Analytical model 2.93 2.16 −1.029 0.80

4.3. Model Performance

Table 2 quantifies the accuracies of the simulation process. The simulation becomes
increasingly less accurate in its predictions from 5 min ahead to 1 h ahead. Regardless, the
RMSEs for both 30 min and 1 h ahead are less than 1 ◦C more than the five-minute-ahead
prediction. R2 reduces from 0.98 to 0.9 for the three predictions. The model’s MAE accuracy
is therefore slightly more than 1 ◦C for the case of predicting one hour ahead. Further, it is
clear in Figure 5 that there is a wide variance in error for some predictions. This variation
is largest at temperatures between when the fan and wet wall turn on or off. Because of the
fan and wet wall’s effect on the internal temperatures of the greenhouse, the model is more
likely to overpredict what the temperature is likely to be while simulating as it expects the
temperature to continue to rise, but it is reduced by the fan and wet wall. This is clear at
lower temperatures where the variation in the predicted temperatures is much lower than
that at higher temperatures.

Compared to the empirical model, the analytical model is far less accurate in predict-
ing the internal conditions of the tunnel. This may be due to the absence of the model
accounting for time dependencies in the inside temperature, which leads to larger errors.
Further, because this model is more dependent on solar radiation and the outside tem-
perature, it leads to larger errors as seen in the RMSE value of 2.93 ◦C. In applications in
different locations, the model does not need to be compensated to a large extent. Instead,
the model requires hourly data to be interpolated into five minute intervals, or to use
five minute intervals for the outside temperature data. Finally, it is less accurate when
describing the data as seen by the R2 value of 0.8. Despite the reduction in accuracy, this
model does not require previous inside temperatures to predict the internal temperatures
of the tunnel and can use forecasted data for the outside temperature and solar radiation.
Further, it is possible to create a binary classifier based on the outside temperature and
solar radiation to predict the fan/wet wall state. This means the analytical model can act
independently from temporal data, which allows flexibility for a farmer to apply the outside
temperature and solar radiation at any time of the day to see the internal temperatures of
their greenhouse tunnel.

5. Discussion: Applications and Future Work

Based on the models developed in this study, real-time modelling of the temperature
inside of the greenhouse tunnel is possible at an acceptable accuracy. By forecasting
internal temperatures of the day using available weather services and measured data,
predictive forecasting using the empirical model can occur to provide accurate feedback
on the temperature of the greenhouse. Further, the analytical model can be used for an
overall temperature profile of the greenhouse temperature for the entire day. Although the
analytical model is not as accurate, it can give an insight for agriculturalists to plan and
prepare for temperature variations within the tunnel, and use the model to plan what crops
to grow. Using this forecasting method allows for improved preparedness in addressing
the temperature variability associated with climate change and its impact on agriculture.
This can aid in choosing the right plants and growing orientations for precision agriculture.
The spatial resolution can be improved with an increased number of sensors dispersed
throughout a tunnel to characterise the temperature biases that exist in a greenhouse tunnel.
Moreover, it is crucial to explore the evident aspect of the relationship between plant life
in the greenhouse and the climatic environment. To achieve this, a comprehensive study
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should be undertaken to investigate the impact of altering temperature ranges through
fan and wet wall control on crop physiology. Future applications and developments of
these models can include the introduction of neural networks and other computationally
heavy models to edge devices within the greenhouse for improved real-time forecasting
and prediction. Using such models can lead to advanced digital twins that can improve
productivity and, potentially, even yield if used for decision making. Further, as discussed
before, Fu and Zhou [28] used agricultural modelling to simulate energy consumption in a
greenhouse. Although our work focused on the thermal modelling, we believe our models
can be combined to develop a full digital twin solution that can provide different energy
transfers in to and out of a greenhouse. For South African farmers, this could lead to fully
self-sufficient greenhouses that only use renewable energy for agricultural production,
promoting improved climate change resilience. Other work can focus on the economic
viability of this solution and how it can affect self-sufficient farmers.

6. Conclusions

The objective of this study was to develop a smart digital twin solution to assist farmers
in decision-making. The focus was on understanding thermodynamics and delivering
predictive solutions to benefit farmers. This body of work can be adapted to provide similar
digital twin solutions to Zhang et al. [27], excluding the electrical energy modelling.

The work conducted in this study represents a first step in thermal modelling of a
greenhouse tunnel in the Stellenbosch area of South Africa. The tunnel, with its specific
orientation, has been modelled in an empirical and analytical model that is capable of
predicting the interior temperatures accurately.

Compared to Jogunola et al. [38], the RMSE for the SVR simulation process is signif-
icantly higher (1.76 ◦C vs. 0.025 ◦C). Due to the nature of the CNN and LSTM learning
process, these models are able to learn sequences of time-dependent events better than
the almost linear SVR process. This leads to better predictive capabilities and much more
accurate modelling. However, the resolution of the data in Jogunola et al. [38] was hourly
using either all or only one input feature. The disparity in RMSE is then justified as a
higher resolution can introduce more errors into the model, especially when a prediction is
fed back into the model to predict the following time. Further, the major trade-off in this
accuracy is computation time for the neural network models compared to the simplistic
nature of the SVR. For the analytical model, its RMSE is also significantly higher than that
seen in Jogunola et al. [38], but this too is a much simpler and quicker modelling technique
that requires a one-off parameter optimization for the different environmental variables.

When focusing on the analytical model, it is clear that it is accurate when compared to
other literature, in particular, Nauta et al. [34] in which they achieved an RMSE of 4.25 ◦C. In
Tong et al. [36], the authors used far more sensors and more cumbersome thermodynamic
and heat transfer equations to produce an error of 1.0 ◦C at night and 1.5 ◦C during the day.
Therefore, it is clear that although the models are not as accurate as the models developed in
the literature, they have a low computational cost and simpler implementation of modelling
techniques that can lead to similar results and a higher resolution of predictions that can aid
in decision making in near real time. Having the capability to forecast tunnel temperatures
one hour in advance allows farmers to enhance their readiness for unforeseen temperature
changes. This, in turn, enables farmers to make more informed decisions regarding crop
management within greenhouse tunnels. Additionally, this advancement contributes to an
enhanced comprehension of thermodynamics within South African greenhouse tunnels,
paving the way for improved physics-based modelling of African greenhouses in the times
to come.
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