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Abstract: Machine learning (ML) within the edge internet of things (IoT) is instrumental in making
significant shifts in various industrial domains, including smart farming. To increase the efficiency of
farming operations and ensure ML accessibility for both small and large-scale farming, the need for a
low-cost ML-enabled framework is more pressing. In this paper, we present an end-to-end solution
that utilizes tiny ML (TinyML) for the low-cost adoption of ML in classification tasks with a focus
on the post-harvest process of olive fruits. We performed dataset collection to build a dataset that
consists of several varieties of olive fruits, with the aim of automating the classification and sorting
of these fruits. We employed simple image segmentation techniques by means of morphological
segmentation to create a dataset that consists of more than 16,500 individually labeled fruits. Then, a
convolutional neural network (CNN) was trained on this dataset to classify the quality and category
of the fruits, thereby enhancing the efficiency of the olive post-harvesting process. The goal of
this study is to show the feasibility of compressing ML models into low-cost edge devices with
computationally constrained settings for tasks like olive fruit classification. The trained CNN was
efficiently compressed to fit into a low-cost edge controller, maintaining a small model size suitable
for edge computing. The performance of this CNN model on the edge device, focusing on metrics
like inference time and memory requirements, demonstrated its feasibility with an accuracy of
classification of more than 97.0% and minimal edge inference delays ranging from 6 to 55 inferences
per second. In summary, the results of this study present a framework that is feasible and efficient for
compressing CNN models on edge devices, which can be utilized and expanded in many agricultural
applications and also show the practical insights for implementing the used CNN architectures into
edge IoT devices and show the trade-offs for employing them using TinyML.

Keywords: TinyML; smart agriculture; machine learning; image segmentation; computer vision

1. Introduction

The olive tree, a vital tree crop in regions like the Mediterranean, has seen impres-
sive growth in farming in recent decades. This growth has been primarily driven by the
burgeoning market for olive fruit products, which play a pivotal role in the food industry.
However, despite this growth, the industry still largely relies on conventional technologies
for sorting and producing derivatives of this important fruit. Reports from the International
Olive Council and Expert Market Research business intelligence company highlight that the
demand for table olive and olive oil has nearly doubled in the last two decades [1,2]. To ad-
dress these market needs, especially for small-sized producers, it is imperative to tackle
challenges like operational costs and improving product quality by removing subpar fruits.

The post-harvesting process, particularly sorting (i.e., varieties or quality sorting), is a
major cost driver in the industry, often necessitating significant investment and leading
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to higher final product prices [3,4]. This paper seeks to address these cost concerns by
exploring innovative, low-cost technological solutions. Hence, integrating new technology
into the sector is crucial to reduce operational expenses. However, existing high-tech
solutions are typically costly and represent significant financial burdens in terms of capital
expenditure (CAPEX).

The advent of artificial intelligence (AI) and the Internet of Things (IoT) has brought
transformative changes to various industries. These technologies are central to the frame-
work of Industry 4.0 and beyond (i.e., industry 5.0), promising smart process speeds,
real-time monitoring, decision-making, and improved automation operated by AI [5–10].
However, such high-tech solutions, often requiring high-performance computers (GPU-
powered) or cloud solutions, are not always feasible for low-cost AI applications, particu-
larly for small and medium-sized farmers. Thus, the need arises for new frameworks that
enable AI to penetrate these edge markets.

Edge computing, enabling decision-making closer to the data source, leads to faster
response times and real-time processing critical in tasks such as sorting and classification.
Tiny ML (TinyML) is emerging as a major shift in ML for edge computing. By compressing
and quantizing full-sized ML models into lightweight versions, TinyML facilitates the
deployment of ML models on edge devices with limited resources. This makes TinyML an
ideal solution for small to medium-sized olive farmers, allowing them to leverage AI-driven
solutions without significant investment.

In light of these developments, this paper aims to explore the feasibility of TinyML as
a potential solution for low-cost, AI-driven decision-making in edge farming. Our focus is
on bridging the technological gap to enable more efficient and smarter farming practices.
We seek to provide a detailed analysis of how TinyML can revolutionize the olive farming
industry, particularly in the context of post-harvest sorting and classification.

2. Related Works

AI has been playing a pivotal role in building the new face of the farming ecosystem
in recent years. This is generally led by modern deep learning (DL) and transfer learning
(TL) with the main objectives of having more efficiency and cost reductions [11–17]. At the
cortex of these changes lies the utilization of IoT sensors on the edge for data collection via
plant-attached sensors or remote sensing using drones. These granular data, when pro-
cessed with advanced AI and TL algorithms, ensure precise irrigation, optimized fertilizer
application, efficient product classification, and targeted pest control [18,19]. Further DL,
combined with historical data, proves itself invaluable in predicting crop yields, potential
disease outbreaks, and imminent climatic changes, allowing farmers to adapt their strate-
gies proactively [20,21]. Specific applications of DL, particularly in conjunction with TL,
have achieved significant milestones in forecasting crop yields, recommending cultivation
practices, detecting diseases in leaves, and analyzing diverse farming parameters [22–25].
While AI, through deep learning and transfer learning, has broadly transformed farm-
ing practices with enhanced efficiency and precision, a particularly notable advancement
is in the domain of computer vision, where deep learning has revolutionized the way
agricultural imagery is processed and interpreted across different farming sectors.

In recent years, the field of computer vision has significantly advanced due to the
revolution in deep learning (DL). This technology is increasingly being applied across
various domains of the farming ecosystem, such as crop farming, livestock farming, and fish
farming. In aquaculture, for instance, deep learning plays a crucial role in tasks like fish
identification, species classification, and water quality prediction [26,27].

The primary advantages of computer vision in farming include image segmentation
and classification. Image segmentation is critical for applications like yield prediction and
counting; for example, segmenting individual wheat grains helps in estimating harvest
volumes [28]. Image classification, on the other hand, is key in determining the health
status or variety classification of crops such as olives [29,30]. These advancements have
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significantly contributed to ’precision farming’, which combines IoT, data mining, ML,
and DL to increase productivity and decrease labor.

However, challenges exist, particularly in the need for labeled data and adapting pre-
trained models to specific agricultural contexts [13,31–33]. While AI-enhanced convolutional
neural networks (CNNs) like mask R-CNN offer improved segmentation capabilities [34],
their complexity can be a drawback in resource-constrained edge-device applications.

Furthermore, while TL has been instrumental in refining general models for specific
agricultural needs, deploying these sophisticated models on resource-limited edge devices
poses significant challenges due to computational and memory constraints [35,36]. This
limitation is particularly relevant in our study, where the focus is on olive fruit classification
for low-cost edge implementation. In this context, the simplicity and lower computational
requirements of classical image segmentation techniques become advantageous, aligning
more closely with the needs of small- and medium-sized producers. Therefore, our ap-
proach utilizes classical image segmentation methods, demonstrating their suitability for
effective and efficient olive fruit classification on edge devices.

In our research context, there have been some initiatives targeting post-harvest clas-
sification of olive fruits. However, these efforts are predominantly focused on specific
geographical locations and particular varieties of olive fruits. Crucially, none of these
endeavors have addressed the need for low-cost ML solutions to effectively tackle this issue.
For instance, the authors in [29] provide a CNN model for olive varieties classification,
but their dataset is collected from regions in Spain, featuring varieties different from those
we study in this paper. Additionally, these authors have not emphasized the development
of cost-effective ML solutions, which is a central focus of our research. Another effort in
olive fruit grading and classification, which centers on the evaluation of olive fruits based
on their geometrical dimensions, size, and mass estimation, is detailed in [37]. However,
this approach is limited to varieties found in Spain and does not address the implementa-
tion of low-cost, edge-based classification solutions, which is a gap our research aims to fill.
In [38], the authors introduce an image segmentation algorithm using discrete wavelets
transform and a classification scheme based on texture features to assess the quality of olive
fruits, focusing on defect detection. However, the study is limited to quality classification
without addressing variety differentiation or implementation on low-cost edge devices.

Here, we acknowledge these existing limitations in the field of post-harvest olive fruit
classification, particularly the lack of focus on low-cost, scalable ML solutions suitable for
diverse geographical contexts and olive varieties. By shifting our focus to TinyML, we aim
to bridge this gap, offering an innovative approach that enables efficient and cost-effective
AI solutions for edge computing. This direction not only addresses the specific needs of
olive classification in varied regions but also sets a new benchmark for deploying advanced
DL models in resource-constrained agricultural settings.

TinyML can be considered as the key enabler to tackle the challenges that are related
to the cost and the connectivity in the industrial distributed edge applications [36,39].
TinyML allows for real-time near-field decision-making and this, in essence, reduces the
costs of adopting AI solutions in the farming ecosystem. Recently, TinyML has been proven
to show high-accuracy inferences for both classification and regression tasks. In human
activity recognition, for example, TinyML has been utilized to empower IoT edge devices to
make real-time on-the-edge activity recognition [40,41]. In industrial applications, TinyML
has been demonstrated for use in an extreme industrial domain for ML-based anomaly
detection [42]. In the context of audio signal processing, TinyML has been used as a
hardware accelerator for audio conversion using CNN architectures at the edge [43].

TinyML provides the path for low-latency answers crucial for real-time monitoring
and improvements in agricultural techniques by minimizing the computing hard work and
enabling on-device analytics. Utilizing this technology will not only increase production
and sustainability but will also lower the costs that are associated with data transfer and
cloud processing, bringing an age of innovation into the current farming operations.
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Building on the promise of TinyML in agriculture, this paper makes several key
contributions to the field. The main contributions can be summarized as follows:

• Pioneering adoption of AI in Industry 4.0 and 5.0: We emphasize the adoption of ML
for smart agriculture jointly with the development of industrial applications toward
Industry 4.0 and Industry 5.0. We highlight the potential of AI in this domain by em-
phasizing the imperative need for low-cost, ML-enabled edge devices to universalize
the benefits of smart agriculture across multiple farming scales.

• Dataset collection for Jordanian olive varieties: One of the major contributions of this paper
is to collect and build a dataset for diverse olive fruits. We focus on the Jordanian
varieties from northern Jordan as a special case of the Mediterranean region. The study
also presents a framework for building the dataset, starting from capturing images,
segmenting individual objects, and then moving toward data augmentation for the
elimination of latent biases. This involved the collection of images for three distinct
categories of olives, resulting in a dataset enriched with more than 16,500 individual
fruits labeled across categories for good and bad qualities, for the sake of variety and
quality classifications.

• CNN architecture implementation: The core framework of this paper presents the adoption
of a sophisticated CNN model architecture that can solve the classification problem with
minimal hardware resources via optimization for TinyML for edge devices.

• TinyML evaluation for edge deployment: To ensure that the adopted CNN model is
suitable and feasible to run on ultra-low-cost edge devices, we present a practical
implementation with inference results on the ESP32-S3 micro-controller unit (MCU).
The results show the pipeline of how to tune the model hyperparameters while
keeping a sensible accuracy with minimal performance degradation and memory
footprints even after model compression and quantization.

• Assessing challenges and practical limitations: The final contribution of this paper is to
provide technical and practical insights for deploying TinyML on edge devices for
general-purpose classification or regression problems. We discussed the inference
rate, image size effect, and memory footprints and how to deal with the trade-offs of
these parameters.

3. Materials and Methods

In this paper, we go through multiple phases in collecting the dataset of the olive
fruits. We use the main three varieties of the Jordanian farming sector as a case study of
the Mediterranean basin. Then, we build a CNN model for training and validation and
apply the trained model on the edge MCU (ESP32-S3) to test the feasibility of the proposed
solution for adoption in low-cost machinery. First, we start with the data acquisition as in
the following section.

3.1. Data Acquisition

For the sake of collecting a dataset to build an artificial intelligence-based industrial
classifier, we performed data collection via massive image capturing of olive fruit batches.
The batch picturing eliminates the headache of single image acquisition for each fruit for
different types of the fruit. We specifically chose three prominent varieties of olives from the
northern Jordan region (32.5373188 N, 35.7359672 E) known by the local names: (1) Baladi,
(2) Nabali, and (3) Romi.

In addition to capturing images of these sorted healthy varieties, we also took pictures
of unhealthy olive fruits with major defects. With this collection, we can build a dataset
for two distinct classification tasks: first, variety classification, and second, health status
classification. In the dataset preparation, we capture a batch of olives in one image to
simplify the dataset collection. On average, each image contained between 70 and 200 olives,
amounting to a total of approximately 50 images per type. The capturing was done on a
black plate to provide contrast and simplify the subsequent image processing tasks. As for
the dataset preparation, post-acquisition, the images underwent a segmentation process,
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which will be detailed in the following section. Ultimately, our dataset comprises four
distinct classes, with each class representing a single olive fruit. For which we can do variety
or quality classification. The final processed images have dimensions of 50 × 50 pixels and
are in the red–green–blue (RGB) format. We chose the 50 × 50-pixel dimensions for the
images due to our goal of utilizing TinyML for end-to-end classification, which requires a
minimal memory footprint. However, the segmentation process can generate images of
any specified dimensions, as long as the resolution of the olive batch is sufficient to do so.
In the classification task, we use grayscale versions of the dataset. This is due to that the
classification task is primarily performed on the shape of the olive and not the color. Hence,
we can decrease the memory footprint and the complexity of the CNN model.

3.2. Fruit Detection and Segmentation

The preparation of the dataset for the ML process includes using computer vision
techniques to perform olive or object detection and segmentation. For precision agriculture,
specifically in the context of olives, achieving high fidelity in segmentation directly corre-
sponds to enhanced harvesting efficiency and enhanced ML results accuracy. Within this
subsection, we elaborate on a technically rigorous methodological framework that we’ve
devised for the detection and segmentation of olives from 2D digital imagery. We use
traditional image processing algorithms that we sequentially employed to accurately differ-
entiate olives even in the presence of background clutter or overlapping items.

1. Original image: The image is loaded in its original form as shown in Figure 1a.
2. Grayscale conversion: The RGB image is converted to grayscale to simplify further

processing. This process can be represented mathematically as:

Igray(x, y) =
IR(x, y) + IG(x, y) + IB(x, y)

3
, (1)

where IR, IG, and IB are the red, green, and blue channels of the image, respectively.
The result of this process is shown in Figure 1b.

3. Binarization: The grayscale image is binarized using Otsu’s method, which determines
an optimal threshold by minimizing the intra-class variance. Let T be the threshold,
then the binarized image Ibw can be given as:

Ibw(x, y) =

{
1 if Igray(x, y) > T,
0 otherwise.

(2)

The result of this process is shown in Figure 1c–f.
4. Morphological processing: The binary image undergoes morphological operations to

remove small artifacts. In our proposed methodology, we harness the principles of
connected-component labeling to segment distinct entities within a 2D binary im-
age. Adopting an 8-connectivity criterion ensures a comprehensive evaluation of
objects, even if their neighboring pixels are diagonally juxtaposed. Post segmentation,
morphological attributes, such as the area and the eccentricity of each object were
meticulously calculated. Eccentricity, which is symbolic of an object’s deviation from a
perfect circular form, was employed as the pivotal metric for subsequent morphologi-
cal filtering. Once the filtering phase was complete, the refined binary representation,
encapsulating only those entities that conformed to our eccentricity criteria, was
visualized and cataloged for subsequent processing and analysis. The result of this
process is shown in Figure 1d.

5. Watershed process: This process aims at segmenting objects that are close to each
other. By applying the watershed algorithm, boundaries of neighboring objects can be
identified, especially when they touch or overlap. This ensures that each object, in this
case, each olive fruit, is distinctly segmented from the rest. The outcome of this step
facilitates the successive processes and increases the accuracy of object classification.
The result of this process is shown in Figure 1e.
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6. Boundary smoothing: This stage focuses on preserving the actual shape of the detected
objects. Using methods like Gaussian smoothing, the jagged edges or noise present in
the object boundaries are smoothed out. This results in masks that more accurately
represent the original shape of the object, thus leading to improved results in further
analyses. The result of this process is shown in Figure 1e.

7. Distance transform, voids filling, and boundary object removal: In the subsequent stage of
our image analysis, a Euclidean distance transform was applied to the complement
of the binary image. This operation transformed the segmented regions into a scalar
representation of their distance from the closest non-object boundary. To further refine
this transformation, small artifacts, potentially resulting from noise or minor dis-
crepancies in the initial segmentation, were removed through an area-based opening
operation with a predefined threshold. Ensuring this refinement, any existing internal
voids within the segmented objects were addressed using a hole-filling technique,
ensuring the coherence and solidity of each segmented region. By this transformation,
we ensure robust clarity and precision for the fruit boundaries within the processed
image. The result of this process and the numbering of the detected olives is shown in
Figure 1f.

Original Image

(a)

Grayscale Image

(b)

Binarized Image

(c)

Morphological Processed Image

(d)

Distance Transform

(e)

Holes Filled

(f)

Figure 1. Computer-vision and image-processing steps visualization.

As can be seen from Figure 2, the olives are not all of the same size and hence the ML
process may make generalizations based on the size of the object within the sample image.
However, the size of the fruit is not usually the indicator of the variety class and may be
an indication of the time of the harvesting only. Hence, following the application of the
aforementioned image processing processes, we store each segmented olive into a distinct
image file in preparation for the ML classification stage. However, to use a more rigorous
ML classification method, we must verify that the results do not overfit due to biases
in the gathered dataset. To that purpose, we employ a further dataset process through
augmentation to increase the number of samples and create some visual variants.
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(a) (b) (c) (d)

Figure 2. Samples of the olive fruits from four different varieties. Each 16-image grid is for one of the
varieties (three good-quality varieties and one bad-quality mixed varieties). (a) Bad quality, (b) Baladi,
(c) Nabali, and (d) Romi.

In light of the above discussion on image segmentation, is noteworthy to mention that
image segmentation is a sophisticated process. However, the segmentation is intended
to deal with dataset preparation and not with inference. In industrial applications, it is
customary to undertake mechanical separation of the olive fruits during the inference step,
which allows for easier object detection algorithms to distinguish the olive fruit inside the
image. For example, in industrial practical implementation, we may choose to opt out of
the watershed algorithm if mechanical separations can be achieved.

As a final remark, in light of advancements in AI for image processing, it is worth
considering AI-based alternatives to conventional morphological segmentation. U-Net,
a neural network tailored for segmentation, stands out with its encoder–decoder design
for precise pixel-wise segmentation [44]. Other models, like mask R-CNN, DeepLabV3+,
and PSPNet also offer robust solutions [34,45,46]. While these models outperform traditional
methods in accuracy and efficiency, they come with challenges for a low-cost pipeline. Their
computational demands and the need for involved prepossessing to build the dataset for
AI-based image segmentation might render them less feasible in resource-limited scenarios.

3.2.1. Dataset Augmentation

Data augmentation is a sophisticated process aimed at amplifying the cardinality
and heterogeneity of datasets by artificially introducing transformed instances of existing
samples. When dissected in the domain of image analytics, it entails the generation of varied
visual perspectives of an image by employing a plethora of transformation techniques.
These techniques serve to fabricate new images which, although derivative in nature,
appear distinct from computational models, thus enriching the dataset. The primary intent
behind leveraging image augmentation is twofold: to counteract the possible scarcity of
certain visual manifestations within a dataset and to inhibit model overfitting by curbing
any latent biases that might favor certain classes during the classification procedure.

This augmentation could manifest in diverse forms, ranging from altering an image’s
spatial orientation (rotation) to inducing pixel-level shifts (both vertical and horizontal),
rescaling, skewing perspectives, or even introducing flips. Such diverse transformations
ensure that the model remains invariant to these alterations and can recognize the object
of interest under various conditions. Table 1 offers a concise enumeration of the applied
augmentation strategies, detailing the specific parameter ranges for each transformation.
For illustrative purposes, Figure 1 showcases the outcome of this augmentation mechanism
on a representative sample, underscoring the multifaceted visual adaptations of a singular
olive fruit specimen.
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Table 1. Image augmentation parameters.

Option Value

Rotation −20◦ to 20◦

Horizontal shift −10 to 10
Vertical shift −10 to 10
Scaling 0.8 to 1.2
Skewing Vertical and horizontal
Flip Vertical and horizontal

Table 1 reveals a meticulously calibrated range for each augmentation strategy, tailored
to ensure the creation of a diverse yet relevant set of image derivatives. The rotation
parameter, limited to a range of −20◦ to 20◦, introduces subtle angular variations that
simulate real-world scenarios where the object of interest may not always be perfectly
oriented. However, keeping the rotation within this bound ensures that the rotated images
do not deviate too far from plausible real-world visuals. Similarly, the constraints on
horizontal and vertical pixel shifts are intentionally set to a modest range of −10 to 10 pixels.
This mimics the minor positional variations an object might exhibit in different images
while ensuring that the central features of the object remain largely visible and recognizable.
The scaling factor’s range from 0.8 to 1.2 implies that images can be either slightly reduced
or enlarged. This mimics variations in object size or distance from the camera, imparting
resilience to the model against size-based variations. The inclusion of both vertical and
horizontal skewing introduces a level of geometric distortion, further challenging the
model to recognize objects under non-standard perspectives. Finally, the provision for
both vertical and horizontal flipping is particularly instrumental in equipping the model to
identify mirrored instances of the objects, reinforcing its invariance to such transformations.

3.2.2. CNN Model Architecture

Given the complexities inherent in our image classification tasks, a CNN is ideally
suited for our classification problem. CNNs capture the hierarchical patterns in data due to
their depth, local connectivity, and transnational in-variance.

Model Overview: As depicted in Figure 3, the proposed model is built using a
sequential architecture, meaning the output from one layer is inputted directly into the
next, facilitating a clear flow of information.

• Input layer: The model initiates with an input layer, denoted by the input_shape, which
corresponds to the dimensions of our processed images.

• Conventional layer: The architecture incorporates two convolutional layers, each suc-
ceeded by a max-pooling layer. These convolutional layers employ filters of size
3 × 3, which are adept at detecting localized features in the image. The ReLU activa-
tion function introduces non-linearity, enabling the model to learn complex patterns.
Regularization is achieved through L2 regularization to prevent overfitting.

• Pooling layer: Subsequent to each convolutional layer, max-pooling layers of size
2 × 2 are employed. These layers effectively down-sample the spatial dimensions
while retaining the most salient features, thus enhancing computational efficiency and
reducing the risk of overfitting.

• Dropout layer: After each pooling layer, dropout is applied with a rate specified by
dropout_rate. Dropout is a regularization technique that randomly sets a fraction of
input units to 0 at each update during training, which aids in preventing overfitting.

• Flatten layer: Post convolution and pooling, the matrix is flattened into a vector to
prepare it for the fully connected layers.

• Dense layer: The flattened output is then passed through a dense layer, also known as a
fully connected layer, with ReLU activation. Another L2 regularization is applied here.
The final dense layer uses a softmax activation to output the probability distribution
over the classes, facilitating classification.
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Figure 3. CNN network architecture.

The model employs the Adam optimizer while the loss function used is the categorical
cross-entropy, which is suitable for multi-class classification problems. Finally, we employ
the accuracy metric to evaluate our ML model performance.

3.3. Performance Analysis

In this paper, we employ different types of quality assessment of the classification
model; the well-known performance metrics are as follows:

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

F1 =
2 × Precision × Recall

Precision + Recall
, (5)

Accuracy =
TP+TN

TP+TN+FP+FN
, (6)

Cross-Entropy Loss = −
C

∑
i=1

yi log(pi), (7)

where TP is the true positive rate, FP is the false positive, TN is the true negative, and FN is
the false negative rate. C is the total number of classes. yi is a binary indicator if class label
i is the correct classification for the observation and pi is the predicted probability that the
observation belongs to class i. The reason behind using different performance metrics is to
validate no over-fitting bias toward any of the classes due to unbalanced data and any type
of outliers.

3.4. CNN with TinyML for Edge Devices

This section presents the ML operations (MLOps) of employing CNNs with TinyML,
ensuring that the computational demands are met for the edge IoT devices. The main
operations of the MLOps pipeline are quantization, conversion for compatibility with
TinyML and the continuous monitoring of performance metrics directly on the edge.
The operation of the MLOps pipeline can be summarized as follows:

Quantization: To make the model suitable for edge devices, quantization-aware training
was implemented. Weights and activations were quantified from 32-bit floating points to
8-bit integers, using techniques like TensorFlow Lite’s post-training quantization. This
quantization technique can be mathematically represented as follows:

Q = uint8
( r

S
− Z

)
, (8)
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where Q is the quantized value, uint8 is the rounding process from 32-bit floating points to
8-bit unsigned integers, r is the original floating-point number, S is the scale, and Z is the
zero point. This equation is applied to the weights, activations, and biases in the model to
convert them to an integer-only representation suitable for edge devices.

TinyML toolkit and model conversion: Post-quantization, the model was converted to
a TensorFlow Lite flat buffer format using the TFLite converter. This compact model
was then integrated with TinyML libraries, ensuring its compatibility with edge device
MCUs. The TinyML toolkit also facilitated model optimization, adjusting operations for
latency-critical applications on edge MCUs.

On-device inference and pipelining: Edge devices performed on-device inferences lever-
aging the optimized CNN model. Given the streaming nature of data capture, a pipelined
approach was adopted. As raw images entered the system, they underwent on-the-fly
preprocessing for real-time inference. The pipelined architecture ensured minimal latency,
crucial for the rapid quality assessment of olives.

Model evaluation metrics on edge: To validate the deployed model’s performance, edge
devices continuously reported metrics like F1-score, precision, recall, and accuracy. These
metrics were monitored and then recorded to perform further analysis as will be shown in
the results section.

3.5. Validation and Continuous Learning

Edge-based feasibility testing: Before full-scale deployment, we conducted rigorous
feasibility testing directly on the edge devices. This testing phase was pivotal in assessing
the compatibility of our models with the hardware constraints and real-world conditions
of these devices. Memory footprint and inference rates were logged and analyzed. This
evaluation provided us with a clear view of the models’ resource demands, enabling us to
fine-tune them for optimal performance in the edge environment.

Edge inference metrics monitoring: Once deployed, we continuously tracked vital metrics
to ensure robust performance. Beyond inference latency and throughput, specific attention
was given to the memory footprint and the inference rate. Any anomalies or deviations
from expected behavior were promptly flagged, ensuring the system remained responsive
and efficient in real-time scenarios.

4. Results

This section provides a detailed evaluation of our model’s performance during both
the training and TL stages, as well as the appraisal of the resource-constrained edge devices.
In the initial training phase, the model is trained and tested on a powerful computing setup
that includes an 11th generation Intel(R) Core(TM) i7-11800H CPU operating at a 2.30 GHz
clock speed and supporting 8 cores, a substantial 16.0 GB of RAM, and an Nvidia RTX 3050
Ti graphics processing unit equipped with 4 GB of memory. For the inference stage, we
utilize TinyML on ESP32-S3 MCU to emphasize the feasibility of TinyML computing for
inference on the edge. The training parameters for this section are summarized in Table 2.

Table 2. Training and edge inference parameters for the CNN structure.

Option Value

Optimizer Adam
Learning rate 0.01
Maximum Epochs 100
Mini batch size 32
L2-regularization 0.01
Model Dropouts 0.2
Training Hardware resource GPU RTX 3050TI
Edge inference unit ESP32-S3
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For a further step of evaluating the stability and strength of the chosen model, we em-
ploy the well-known dimensionality reduction technique, t-distributed stochastic neighbor
embedding (t-SNE). The t-SNE here is used to visualize the last dense layer capabilities
of the CNN ML model to distinguish between the target classes by plotting a map that
shows in 3D space the separation between the studied classes. The shown sub-figures in
Figure 4 give an illustration of the features of the last dense layer that can be visualized
from 3D space into 2D space while maintaining a reasonable separation of the target classes.
As also shown in Figure 4, we can obviously show that the employed CNN architecture can
easily separate the various olive classes into different clusters. Here, it is worth mentioning
that Figure 4 not only presents the model’s proficiency in differentiating the different fruit
classes, but also that the model is capable of extracting the latent features of the classes.
Hence, this adds an extra layer for ensuring that the model is not memorizing the the
training data (i.e., no overfitting).

−20 −10 0 10 20
Component 1

−10

−5

0

5

10

15

20

C
om

p
on

en
t

2

Component 1 vs 2

Bad

Baladi

Nabali

Romi

−10 0 10 20
Component 2

−15

−10

−5

0

5

10

15

C
om

p
on

en
t

3

Component 2 vs 3

Bad

Baladi

Nabali

Romi

−20 −10 0 10 20
Component 1

−15

−10

−5

0

5

10

15

C
om

p
on

en
t

3

Component 1 vs 3

Bad

Baladi

Nabali

Romi

(a) 50 × 50 pixels for CNN(32,16,16).

−10 0 10
Component 1

−15

−10

−5

0

5

10

15

20

C
om

p
on

en
t

2

Component 1 vs 2

Bad

Baladi

Nabali

Romi

−10 0 10 20
Component 2

−15

−10

−5

0

5

10

15

20

C
om

p
on

en
t

3

Component 2 vs 3

Bad

Baladi

Nabali

Romi

−10 0 10
Component 1

−15

−10

−5

0

5

10

15

20

C
om

p
on

en
t

3

Component 1 vs 3

Bad

Baladi

Nabali

Romi

(b) 25 × 25 pixels with CNN(128,64,32).

Figure 4. T-SNE visualization demonstrating class distinction and classification efficacy of the CNN
models. (a) T-SNE for CNN model of 50 × 50 input image and model architecture CNN(32,16,16) and
(b) T-SNE for CNN model of 25 × 25 input image and model architecture CNN(128,64,32).

The solidity and robustness of a classification model are discerned not just by its
accuracy, precision, or recall, but also from the distribution of its true and false predictions
across different categories. In the domain of olive fruit classification, understanding these
predictions becomes vital when classifying based on both quality and variety. For the
50 × 50 pixels configuration, the confusion matrix exhibited in Figure 5 exhibits a clear
diagonal trend for both quality and variety classification tasks, indicating a high rate of
correct predictions. There were minimal misclassifications, suggesting that the features
extracted from this image size are distinctive and suitable for the classification tasks.
The 25 × 25 pixels configuration, despite its reduced resolution, shows a similar trend in its
confusion matrix. This is remarkable as the reduction in image size and resolution often
impacts the feature quality.
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Figure 5. Confusion matrices for various CNN architecture for two distinct image resolutions.

When comparing the two input settings in Figure 5, we can easily conclude that
the reduction of the input image resolution to some extent does not seriously affect the
model’s performance metrics. However, it adds another degree of freedom in designing and
building the classification model for deployment for low-cost constrained edge IoT devices.
That is, when optimizing the model hyperparameters, we can choose between different
scenarios and settings that are suitable to the available device constraints. Therefore,
the results from the confusion matrices validate the model’s robustness and also guide
the model optimization process for practical deployment in real-world farming settings.
Another insight that can be drawn from the confusion matrices is the olive fruit quality
classification. That is, while our primary model involved multi-class classification for
quality and variety classification, these matrices can also be interpreted to measure the
performance of the binary classification with regard to olive health and quality. Such a
binary classification perspective might offer advantages, including a reduced model size
for the CNN and an enhanced inference rate.

In Figure 6, the loss and accuracy curves for the four different CNN configurations
are presented, each subjected to training for a duration of 100 epochs with batch sizes
comprising 64 images. Two distinct input image dimensions, 50 × 50 (Top sub-figures) and
25 × 25 (bottom sub-figures), have been used across the configurations. Notably, the aug-
mentation techniques applied during pre-processing have imparted certain peculiarities to
the training outcomes. It can be observed that, for both image sizes and across all CNN
configurations, the validation accuracy tends to slightly surpass the training accuracy. This
indicates that the models, perhaps due to the augmentation, are effectively generalizing
without over-fitting. Similarly, the validation loss is slightly lower than the training loss,
a behavior that further validates the robustness of the training process and the effectiveness
of the augmentation in creating a diverse and representative dataset.

Figure 6 provides crucial insight into the model’s training key performance measures,
as well as extra evidence of the model’s capabilities of classification with high accuracy
and low loss on unseen datasets, ensuring the models are not overfitting. The trends
observed in these curves are indicative of the models’ ability to generalize effectively, a key
characteristic of a robust ML model. This is particularly significant as it demonstrates that
the models are not overfitting to the training data, but rather learning and adapting in a
way that translates well to real-world scenarios.
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Figure 6. Loss and accuracy curves for the training and validation datasets. The top row for
50 × 50 pixels and the bottom for 25 × 25 for samples of the tested CNN architectures.

To assess the quality of the employed CNN architectures amongst different olive
fruit image resolutions. We performed a set of different training and testing procedures
and listed the results in Table 3. Upon analyzing the data presented in Table 3, several
insightful observations can be made and can be summarized as follows: Firstly, the results
affirm the viability of utilizing CNN architectures with varying complexities for olive fruit
classification. This is particularly evident when considering reduced model sizes and input
dimensions. Moreover, all tested architectures demonstrate high performance, not just
in traditional testing scenarios but also when deployed using TinyML. This consistency
underscores the robustness of the model across diverse computational settings.

Table 3. Performance and footprint analysis of TinyML-based CNN classifiers for the olive fruit.

Test Results TinyML Inference Results (Model and Input uint8 Quantization)

Image
Size

CNN
Architecture Recall F1 Precision Accuracy Recall F1 Precision Accuracy Inference

Rate (Hz)
Model

Size
(kilobytes)

Min Arena
Size

(kilobytes)
Stack

Overflow

50 × 50 CNN(128,64,32) 0.9555 0.9525 0.9527 0.9525 0.9577 0.9549 0.9552 0.9549 N/A 332.3 368.6 Yes
50 × 50 CNN(64,32,16) 0.9538 0.9487 0.9493 0.9487 0.9541 0.9488 0.9495 0.9488 5.93 87.7 184.3 No
50 × 50 CNN(32,16,16) 0.9744 0.9739 0.9740 0.9739 0.9745 0.9741 0.9742 0.9741 12.34 41.3 92.3 No

25 × 25 CNN(128,64,32) 0.9724 0.9720 0.9720 0.9721 0.9746 0.9743 0.9743 0.9743 12.04 117.2 94.4 No
25 × 25 CNN(64,32,16) 0.9684 0.9681 0.9681 0.9681 0.9661 0.9657 0.9658 0.9657 27.03 33.92 44.23 No
25 × 25 CNN(32,16,16) 0.9670 0.9669 0.9668 0.9668 0.9690 0.9685 0.9680 0.9680 55.56 14.45 22.33 No

Interestingly, there is a noticeable trade-off between the model size and the perfor-
mance. For example, the model CNN(32,16,16)’ for a 50 × 50 image size is much smaller
(41.3 kilobytes) compared to CNN(128,64,32)’ (332.3 kilobytes). Despite its smaller size,
the former’s performance in terms of accuracy, recall, precision, and F1 score is remarkably
competitive. Furthermore, reducing the image size to 25 × 25 pixels results in a further
decrease in model size, yet without a significant drop in performance metrics. This char-
acteristic is particularly beneficial for devices with limited computational capacity and
storage, typical of edge devices.

A notable point in our observations is the ‘Stack overflow’ issue, which was en-
countered only by the most complex architecture for the 50 × 50 image size for only the
CNN(128,64,32). This suggests that beyond a certain level of model complexity, deploy-
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ment on the ESP32-S3—and more generally on edge devices—may require additional
optimizations. Lastly, the results in Table 3 reveal that the inference rate, measured in
Hz, is inversely proportional to the model’s size and complexity. Simpler architectures,
especially those designed for smaller image sizes, achieve faster inference rates, which are
crucial for real-time applications and fast fruit-sorting and classification. This finding is
vital for practical implementations where speed and efficiency are paramount. Further
discussion on the practical implications and observations can be found in the practical
implementations section of the discussion.

5. Discussions

The results of our study open up a new horizon in the application of TinyML for
smart agriculture, specifically in the domain of fruit classification. Here, we discuss the
implications of our solution. We address the innovative integration of TinyML in edge
computing and the potential impact on sustainable agricultural practices. We also detail
the inherent challenges in deploying advanced ML models on edge devices, particularly
in resource-constrained settings. In the following subsections, we explore each of these
aspects in depth, offering insights into the practical applications.

5.1. Comparative Performance Analysis with Previous Studies

As aforementioned, this paper addresses the idea of olive fruit variety classification
using CNN models and TinyML for low-cost edge implementations, which stands as the
novelty of our work. However, while previous works have addressed similar classification
tasks, there are notable distinctions. Primarily, the olive fruit varieties examined in this
paper are different, rendering a direct comparison of performance metrics with previous
works less relevant, especially with the absence of publicly available datasets. However,
comparing the results that we achieved in this paper can be made with the results shown
in [29], as they utilize CNN models. The results in [29] show that a top accuracy of 95.91%
can be achieved by utilizing inception ResNetV2 architecture for TL. The key difference
here between our top accuracy model and an accuracy of 97.39% is in the model complexity.
Our models are less complex than the CNN ResNetV2 architecture used in [29], making
them more suitable for compression and deployment on low-cost, constrained edge IoT
devices. It is important to note that while our models are simpler, they do not compromise
the accuracy or effectiveness of the classification, ensuring a fair comparison of results
within the constraints of our implementation objectives.

Another aspect of comparing the performance of the model presented in this paper in-
volves examining the image segmentation process. While we employed a conventional mor-
phological segmentation approach, it is noteworthy that more advanced object detection
and segmentation methods using DL can also be utilized, particularly when computational
resources permit. However, the segmentation process employed in this study primarily
serves the purpose of preparing the dataset, under the assumption that the classification
task using the CNN models is directly performed on individual olive fruit images and hence
simple is better, especially on resource constrained settings. These images are obtained
with the assistance of mechanical separation as part of the end-to-end solution to prepare
for single olive fruit images. The state-of-the-art models include YOLOv7 [47], known
for its exceptional object detection capabilities, and YOLOv8 [48], which offers enhanced
object detection and image segmentation features. Additionally, DINOv2, a self-supervised
training method for computer vision models, represents another significant advancement
in this field [49]. However, the segmentation process utilized in this study is primarily
aimed at dataset preparation, assuming that the classification task using the CNN models
is executed directly on individual olive fruit images. Furthermore, this paper introduces
an end-to-end solution for edge devices, where internet connectivity to any cloud service
for classification and segmentation tasks is not necessary and may not be available. In
conclusion, the segmentation process that we utilized in this paper is sufficient and simple
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but utilizing more advanced segmentation techniques can be integrated in the framework
if a new dataset collection is required with minimal pre-processing and annotation efforts.

5.2. Practical Implications for Edge Real-World Implementation

In order to provide a holistic overview of the end-to-end solution for employing
TinyML on fruit image classification, we analyze the computational aspects encompassing
various dimensions of model development and deployment. Specifically, we focus on:

• Model selection for deployment: Opting for an architecture is a game of balance. For in-
stance, while the CNN(128,64,32) for the 50 × 50 image size showcases superior
traditional test results, its large model size (332.3 kilobytes) and arena requirement
(368.6 kilobytes) combined with a ‘Stack overflow’ issue make it unsuitable for de-
ployment on the ESP32-S3. Instead, architectures like CNN(32,16,16) for both 50 × 50
and 25 × 25 image sizes, with their smaller footprint and no stack overflow issues,
seem a more practical choice for edge deployment. These results emphasize the need
to optimize the model hyperparameters and architectures to adapt to the available
resources. Hence, based on the available edge resources, we need to optimize the
input image resolution, the CNN model architecture, and the available memory of the
edge device to ensure seamless integration while achieving the required olive fruit
variety classification accuracy.

• Optimization techniques in TensorFlow Lite: TensorFlow Lite provides several optimiza-
tion methods such as full integer quantization, which could further reduce the model
size. For instance, the fact that ‘Model and input unsigned integers of 8 bits (uint8)
quantization’ was employed and yielded good results implies that even higher quanti-
zation might be explored, leveraging TensorFlow Lite’s capabilities to achieve smaller
models without significantly compromising accuracy. It is important to note that,
given the nature of the RGB images of olives and their grayscale conversion, represent-
ing pixel intensity with numbers in the 0–255 range makes quantization using uint8
suitable for input to the CNN model without significantly degrading accuracy. How-
ever, quantizing the model’s weights contributes most prominently to the difference
from representations using 32-bit floating points. Consequently, while the model’s
memory footprint is reduced, the impact on accuracy is minimal.

• Memory management: The ‘Min Arena size’, which refers to the allocated memory for
the tensors in the CNN model to run on the memory of the edge MCU (i.e., for this pa-
per ESP32-S3), is a direct indication of the dynamic memory TensorFlow Lite needs to
run the inference. Keeping the arena size minimal, as in the case of CNN(32,16,16) for
a 25 × 25 image size (22.33 kilobytes), ensures that the model runs efficiently without
running out of memory, especially critical for devices with strict memory constraints.

• Real-time decision-making: The inference rate is paramount for real-time applications.
As evident, simpler architectures with smaller image sizes, like CNN(32,16,16) for
25 × 25, can achieve rates as high as 55.56 Hz. This rapid processing allows for real-
time decisions in an industrial setup, where olive fruits can be sorted or classified at
high speeds. High real-time inference rates are typically sought after, but they become
particularly beneficial in the classification of olive fruit quality as “good” or “bad”. To
accurately assess the quality of an olive fruit, multiple views of the fruit are needed
to ensure that defects are not concealed on its unseen sides. This demands rapid
classification speeds. On the other hand, when classifying the variety of the olive,
capturing just one side of the fruit is sufficient, as the primary determinant is its shape.

• Model simplification: To further reduce the model footprint on the ultra-low-cost MCUs,
more model compression and size reduction techniques such as model pruning can be
employed. Model pruning allows the model to skip some of the model weights that
are relatively close to zero and thus remove the connection between the CNN nodes.
This allows for less computational time and hence improves the real-time efficiency of
the system. This could be useful, especially for architectures that currently experience
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stack overflow issues on the edge MCUs due to the inability to allocate the memory
for the model tensors.

6. Conclusions

In this article, we developed a comprehensive end-to-end framework to evaluate the
effectiveness of TinyML using various CNN architectures on edge devices targeting agricul-
tural applications. Our approach involved extensive data acquisition and morphological
image segmentation techniques to build a robust dataset for training and validating the
ML model. We then applied image classification techniques for predicting the class and
quality of olive fruits, demonstrating the practical application of our framework for edge
inference in computationally constrained farming settings.

We successfully illustrated the training of the CNN by ensuring no ML model bias
and overfitting, followed by its efficient transfer to edge devices using advanced ML model
compression and porting tools. We conducted a detailed analysis of inference metrics on
edge devices, including inference time, accuracy, and memory footprint across multiple
CNN models. This analysis revealed how variations in CNN model hyperparameters
influence performance in terms of inference time and accuracy on edge MCUs. Our
findings show that, even in resource-constrained settings, an accuracy ranging from 94.89%
to 97.43% is feasible, demonstrating better or similar accuracy when compared to the 95.0%
in [29] and 92.4% in [38], as presented in previous studies with full computational resources.
By achieving similar or superior accuracy in resource-limited settings, our study paves
the way for the broader adoption of ML technologies in smart agriculture in a scalable
manner. This expands the potential applications of ML in agriculture and demonstrates
how advanced technologies can be adapted to fit the varying needs and limitations of
different farming environments.

For future work, several directions can be addressed. More olive fruit varieties might
be added to the dataset. This is important because adding additional olive varieties may
necessitate more complicated CNN architectures, which may be challenging to implement
on edge devices. More model compression techniques, like model pruning, knowledge
distillation, and low-rank factorization, which promise more improvements, can also be
used to improve the model’s performance on edge devices. Another approach is to use TL to
capitalize on the benefits of pre-trained models, such as ResNet or VGG. This might increase
the CNN model’s efficiency, especially in situations when the dataset is restricted. Thus,
in conclusion, this study has demonstrated the practical feasibility of a novel framework
that harnesses TinyML for the classification of olive fruits on edge devices. This innovative
approach not only marks a significant step forward in smart agriculture, specifically in the
context of olive fruit processing, but also lays the groundwork for expanding and adapting
this technology to a wider range of applications within the agricultural sector and beyond.
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