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Abstract: Agriculture is one of the most essential activities for humanity. Systems capable of auto-
matically harvesting a crop using robots or performing a reasonable production estimate can reduce
costs and increase production efficiency. With the advancement of computer vision, image processing
methods are becoming increasingly viable in solving agricultural problems. Thus, this work aims to
count green oranges directly from trees through video footage filmed in line along a row of orange
trees on a plantation. For the video image processing flow, a solution was proposed integrating
the YOLOv4 network with object-tracking algorithms. In order to compare the performance of
the counting algorithm using the YOLOv4 network, an optimal object detector was simulated in
which frame-by-frame corrected detections were used in which all oranges in all video frames were
detected, and there were no erroneous detections. Being the scientific and technological innovation
the possibility of distinguishing the green color of the fruits from the green color of the leaves. The use
of YOLOv4 together with object detectors managed to reduce the number of double counting errors
and obtained a count close to the actual number of oranges visible in the video. The results were
promising, with an mAP50 of 80.16%, mAP50:95 of 53.83%, precision of 0.92, recall of 0.93, F1-score
of 0.93, and average IoU of 82.08%. Additionally, the counting algorithm successfully identified
and counted 204 oranges, closely approaching the actual count of 208. The study also resulted in a
database with an amount of 644 images containing 43,109 orange annotations that can be used in
future works.

Keywords: fruits account; deep learning; YOLO; object tracker

1. Introduction

Agriculture is one of the most essential activities for humanity. Fruits are a great
source of nutrients in most people’s diets. Thus, continuous production is necessary to
meet global demands [1]. One of the ways to increase production quality and reduce
costs is through technological innovations such as computer vision, which has undergone
significant advances in pre-harvest fruit image processing. The two computer vision
applications that have recently developed the most in this area relate to fruit production
estimation and robotic harvesting sectors, as shown by [2].

Pre-harvest fruit crop production estimation is an essential task in precision agriculture.
The procedure offers several benefits to producers. For example, performing site-specific
management based on production estimation optimizes the number of materials needed,
such as agricultural chemicals and fertilizers. It reduces the cost of labor in growing and
harvesting production [3]. Production estimation has other benefits, such as estimating the
storage capacity needed to store the fruits after harvest [4].
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1.1. Problem Statement and Paper Contributions

This work proposes a solution for evaluating the production of oranges in the rows
of the orange grove through detecting and tracking the fruits via image processing along
the video frames. To accomplish that task, a new dataset of images of green oranges
(pre-harvest) was created. Being the scientific and technological innovation the possibility
of distinguishing the green color of the fruits from the green color of the leaves. This set
was used to train a green–orange detector and the respective detected objects, marked by
bounding boxes, go through a tracking process to compute the count.

This work aims to count green oranges directly from the trees through video footage
filmed in line along a row of orange trees on the plantation. As the images acquired for
the detection and counting of fruits in this type of environment are dense scenes in large
quantities (that is, images or videos with a large number of objects, often accompanied
by a large number of occlusions or overlaps [5]) there are some challenges in the task
of detecting and counting pre-harvest fruits, and among the complicating aspects, they
highlight: (i) occlusion, (ii) the size of objects to be detected in the images and (iii) the
complex background [6], as can be seen in Figure 1.
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Figure 1. The original image of oranges is depicted on the left, while on the right, the same image is
displayed with distinctive red bounding boxes delineating each orange.

Some works found in the literature present similar proposals to this one. However,
most perform the counting of the fruits using images or count ripe oranges [7–10], unlike
this work that performs the count using video and with green oranges.

Another contribution of this work was to create a database with labeled images of
pre-harvest green oranges and make them available to the scientific community. The green–
orange image database is a challenging dataset due to the arrangement of the oranges
in the trees, the daytime lighting and the similarity in color between the foliage and the
oranges. Thus, there are high levels of occlusion due to the foliage and the fruits themselves,
uncontrolled lighting due to daytime lighting, and significant similarity of color between
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the fruits and the background due to the maturation stage of the oranges. All characteristics
of images of the fruit in nature [11].

1.2. State of the Art and Related Work

Recent advances have been made in this field [2,12]. Nevertheless, there are still
many challenges, such as variation in lighting conditions, object occlusion or overlap,
low contrast between fruits and foliage, and variation in the shape and position of the
fruits [13,14]. However, computer vision systems based on Deep Learning [15] can deal
with these challenges, and are essential and necessary resources for the recognition of
complex objects in external environments [16].

Algorithms based on Deep Learning have proven to be one of the most robust ways to
detect objects [17,18]. In particular, the object detection algorithms of the YOLO family [19]
have proven to be effective for counting fruits directly from trees [20–22]. Object detection
results can be integrated by associating the data using object trackers to perform in-line
fruit counts in the field [23].

In a study conducted by Liu and Kumar [23], they introduced a cost-effective and
lightweight fruit counting pipeline. This pipeline relies exclusively on a monocular cam-
era. Its functionality initiates with a fruit and tree trunk detection component employing
convolutional neural networks (CNNs). Subsequently, it employs a tracking mechanism
to monitor the movement of fruits and tree trunks across images, facilitated by a Kalman
filter that integrates inputs from the CNN detectors and an optical flow estimator. Ulti-
mately, the system estimates fruit count and generates a map using an efficient semantic
structure-from-motion algorithm based on fruit features. This algorithm transforms two-
dimensional (2D) fruit and trunk trajectories into 3D landmarks, effectively addressing
double counting scenarios. The study reported that for trees with fewer than 185 mangoes,
the monocular system exhibited an average undercount of 3%. However, for trees with
more than 185 mangoes, the system undercounted by 16%.

In their recent work, Sozzi and Francesco [24] explored the application of Convolu-
tional Neural Networks (CNNs) for object detection in the context of viticulture, with a
specific focus on grape yield estimation. To address this, the authors evaluated six ver-
sions of the You Only Look Once (YOLO) object detection algorithm, including YOLOv3,
YOLOv4, YOLOv5x, and others, for real-time bunch detection and counting in white grape
varieties. Importantly, grape yield estimation was based on image data, rather than video.
Their results demonstrated that YOLOv5x and YOLOv4 achieved F1-scores of 0.76 and
0.77, respectively. Furthermore, the final YOLOv5x model exhibited the ability to estimate
the number of bunches per plant with an average error of 13.3% per vine.

Cardellicchio and Vito [25] present a study on plant phenotyping, which involves the
examination of complex plant traits to assess their status under various life-cycle conditions.
This paper specifically focuses on the detection of phenotypic traits in tomato plants using
YOLOv5. They have effectively identified nodes, fruit, and flowers within a challenging
dataset obtained during a stress experiment involving multiple tomato genotypes. The
models have learned how to identify and automatically extract significant phenotyping
traits on images of tomato plants at different growth stages under various stress conditions.

Wang and He [26] addressed the crucial challenge of rapid and accurate detection of
apple fruitlets prior to fruit thinning. The primary objective of this study was to develop a
precise apple fruitlet detection method with a compact model size, employing a channel-
pruned YOLO V5s Deep Learning algorithm. Experimental results demonstrated the
effectiveness of the channel-pruned YOLO V5s model under varying conditions, achieving
a recall rate of 87.6%, a precision rate of 95.8%, and an F1 score of 91.5%.

Long and Darrell [27] pointed out that occlusion is one of the biggest challenges in
dense scene quantities. There are two main types of occlusion: scene occlusion and inter-
object occlusion [5]. Scene occlusion occurs when other non-object elements in the scene
occlude the object; inter-object occlusion occurs when objects detected in the environment
overlap other objects.
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The reduced size of the objects, in this case, the oranges, in the image is another
challenge in dense scenes in quantities. This problem causes objects to have a low resolution,
making them subject to noise and lighting changes that can lead to inaccurate detections.

The complex background includes two situations; the primary and most relevant
for this work is that the background is similar to the objects, which makes it difficult to
distinguish between the object and the background. Green oranges are easily confused
with tree foliage, which makes detection and counting more complex when compared to
ripe oranges.

One of the main limitations of using techniques based on Deep Learning is the image
database used to train the system [28]. The database must be large enough, with represen-
tative samples of the scenario to be treated and well labeled to perform the detection task
efficiently. Therefore, preparing the database is one of the tasks that demand more effort
and work in applying techniques based on Deep Learning. In addition, not all databases
proposed in other works are available to be used, which makes the reproducibility of
experiments complex [28], as is the case of the pre-harvest green oranges database.

The fruit count can be divided into two steps, detection of fruits, already discussed in
the previous paragraphs, and tracking fruits through a sequence of frames of the footage
of the trees. To count the fruits in the video is necessary to carry out the correspondence
of each fruit in the adjacent frames. A given orange in several frames must be identified,
and other oranges must be distinguished from it simultaneously. However, tracking the
same oranges for identification is challenging, as their location and appearance vary due
to environmental factors, such as lighting conditions and camera movement in the in-line
footage of the rows of orange trees [29]. Many works in the literature deal with fruit
detection; however, few use detection and tracking to perform fruit counting, especially for
greenish fruits and under unstable lighting conditions [29]. Even if foliage, branches, or
other oranges occlude an orange, it is still necessary to track it. Otherwise, the orange will
be counted twice or more each time it is detected again in successive video frames.

2. Materials and Methods

Algorithms based on methods that use Deep Learning are the most efficient way to
perform object detection [17,18]. The YOLO (You Only Look Once) approach proposes the
use of a neural network that simultaneously predicts bounding boxes and class probabilities,
distinguishing itself from previous object detection algorithms that repurposed classifiers
for this purpose. By adopting a fundamentally different approach to object detection,
YOLO has achieved state-of-the-art results, outperforming other real-time object detection
algorithms significantly [19].

In contrast to methods such as Faster RCNN [30], which identify potential regions of
interest using the Region Proposal Network and subsequently conduct recognition on those
regions separately, YOLO performs all its predictions through a single fully connected layer.
While approaches employing Region Proposal Networks require multiple iterations for the
same image, YOLO accomplishes the task in a single iteration.

Considering speed and accuracy, YOLOv4 has presented good performance among
object detection models recently [31]. The YOLO V4 architecture has undergone signifi-
cant modifications, with a renewed emphasis on data comparison, leading to substantial
performance improvements. Its defining characteristic is its integration of various compo-
nents, resulting in notably high performance. In essence, YOLO V4 can be described as a
combination of CSP Darknet53, SPP, Pan, and YOLO V3 [32].

The primary contributions of YOLO V4 include the introduction of an efficient target
detection model, an investigation into the impact of state-of-the-art (SOTA) techniques
during training, and the optimization of SOTA methods for single-GPU training. YOLO
V4 also reorganizes the target detector framework into Input, Backbone, Neck, and Head
components, utilizing multiple anchor points for a single ground truth. Key improvements
in YOLO V4 encompass the inclusion of SPP, the utilization of the MISH activation func-
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tion, data augmentation techniques like Mosaic/Mixup, and the adoption of the GIOU
(Generalized Intersection over Union) loss function [33].

Recent studies have harnessed YOLO-based models, including YOLOv3, YOLOv4, and
YOLOv5, for fruit detection, demonstrating their significant potential in accurately identifying
fruit directly on trees [34–37]. Notably, the results achieved with YOLOv4 [32] have been
found to be similar to those obtained with YOLOv5. Given this similarity in performance,
YOLOv4 was chosen as the model of preference for orange detection in this work.

2.1. Creation of the Green Oranges Dataset

To carry out the YOLOv4 training to detect pre-harvest green oranges, a database
containing images of oranges directly from the trees and duly annotated is necessary. It
is one of the contributions of the present study, the creation of a pre-harvest and duly
annotated green oranges dataset. Among the types of oranges available in the place where
the images for the database were acquired, the type chosen for this work was the variety
called “folha murcha”, which is a Valencia-type orange tree [38], with data collection
occurring between 7 and 6 months before harvest.

Data were obtained in the field using a Xiaomi Redmi Note 9PRO smartphone cam-
era in both portrait and landscape orientations. At the same time, the camera operator
walked in a straight line parallel to the row of orange trees being filmed. Data collec-
tion took place on 15 March 2021 and 18 April 2021. The orange trees were filmed in
1920 × 1080 p resolution at 60 frames per second. The images for the database were taken
from the video frames at 3-s intervals.

The oranges were divided into three categories: green oranges, ripe oranges, and
spoiled oranges. Furthermore, they were annotated using the online tool CVAT (COM-
PUTER VISION ANNOTATION TOOL) [39] totaling 644 images with 43,109 annotated
oranges, of which 532 images were separated for training and 112 images for tests. Among
these annotations, 42,710 belong to the green orange class, 368 to the spoiled orange class,
and 31 to the ripe orange class. It is important to emphasize that both vertical and hori-
zontal image orientations were incorporated to augment the dataset’s generality. Unlike
Rauf and Chan’s dataset [40], which focuses exclusively on 1465 images of ripe oranges,
our dataset includes a significant number of green oranges.

In Figure 2, the oranges properly annotated using the CVAT tool are shown, where
green oranges are annotated with blue bounding boxes, ripe oranges with yellow bounding
boxes and spoiled oranges with pink bounding boxes.

2.2. YOLOv4 Model Training

The YOLOv4 training was performed using the Darknet framework on the Google
Colab platform with the Tesla P100-PCIE-16GB GPU. We configured and tuned the YOLOv4
architecture for our custom database. The main source code of the Darknet framework
was prepared by [32]. We modified the last three layers of YOLOv4 to be compatible with
the number of classes in our database, following the authors’ guidelines [32]. The original
YOLOv4 was trained in 80 classes; therefore, we have changed the number of classes to
three: “green orange”, “ripe orange”, and “spoiled orange”. We set the width × height
of the network input image to 1056 × 1056. This input value was chosen to consider the
size of the oranges in the image, if the oranges become smaller than 11 × 11 pixels after
resizing the image in the input, this can compromise the quality of network detections.
Data augmentation techniques and network hyperparameters were kept at default values.
In addition, the maximum number of training epochs was set at 6000 following the formula
provided by the authors (number of classes × 2000) [32].

Tensorflow [41] is a machine learning framework that works in data processing and
has a wide variety of libraries and resources that allow the use of the latest Deep Learning
algorithms and models in a flexible way. After The YOLOv4 model had been trained, the
model was converted to a Tensorflow model, using the following source code as a basis to
perform the conversion [42].
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2.3. Orange Counting System

It is possible to use only detection to count objects. However, as discussed earlier,
detection systems often fail in some occlusion and lighting situations. Thus, relying solely
on the number of detections in an image to perform the orange count would be a wrong
decision, especially in a pre-harvest scenario where the abovementioned situations are
pretty standard. For this reason, a counting system must cover these limitations to ensure
counting accuracy. One of the ways to achieve this is by assigning a unique ID to each
orange detected and tracking it through video frames. In this way, obtaining more reliable
results in counting objects in case of detection system failures is possible.
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The system used in this work uses two methods of tracking the oranges using a unique
ID across the frames. The first uses the Euclidean distance between the centroids of the
objects detected via YOLOv4 in subsequent frames to relate the IDs of the oranges of the
previous frame with the detected oranges by YOLOv4 in the current frame. The second
uses object tracking algorithms to match the IDs of the oranges of the previous frame with
the oranges of the current frame that YOLOv4 has not detected.

The first method, based on the Euclidean distance between centroids, is divided
into four steps. Step 1: Obtain the coordinates of the bounding boxes and calculate their
centroids. Step 2: Calculate the Euclidean distance between objects in the previous frame
and objects in the current frame. Step 3: Update object coordinates. Step 4: Register objects
with new IDs.

In step 1, the algorithm receives the coordinates of the bounding boxes and calculates
their respective centroids. Assuming this is the first received set of bounding boxes. Each
centroid, or object, is assigned a unique ID, as shown in the left image of Figure 3. The
object’s centroids are calculated at each video frame using the bounding boxes. However,
instead of assigning new unique IDs to objects detected in the current frame, it is first
necessary to determine if it is possible to associate the centroids of the new objects with the
centroids of the objects of the previous frame. It is done through step 2.
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Figure 3. Two-step process for centroid ID assignment. Step 1 (left) assigns IDs based on bounding
box coordinates, while Step 2 (right) calculates Euclidean distances between centroids from previous
and current frames.

In step 2, the Euclidean distance between each pair of object centroids of the previous
frame and centroids of objects of the current frame is calculated. In the right image of
Figure 3, the centroids of the objects of the previous frame are represented by the two blue
dots, and the yellow dots represent the centroids of the objects of the current frame. Arrows
represent Euclidean distances.

The central assumption made in the first method is that objects in consecutive frames
tend to move little. In this way, the distance between the centroids of the same object in
2 consecutive frames will be smaller than the distances between all other centroids.

In step 3, the centroids of objects with the smallest Euclidean distance between them
will have their IDs related, as shown in the left image of Figure 4. However, if the number
of new objects is greater than the number of existing objects in the previous frame, or if
these objects are at a distance greater than 70 pixels from all objects that have not been
associated with an ID, then it will not be possible to associate the IDs of objects from the
previous frame with all objects in the current frame, such as is shown in the left image
of Figure 4 with the isolated yellow dot. Therefore, it is necessary to associate these new
objects with new IDs in step 4.
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Figure 4. Step 3 (left), associating centroids based on Euclidean distances, except for isolated objects
or too-distant ones. In Step 4 (right), objects with high detection confidence receive new IDs.

In step 4, objects that have not been associated with objects with existing IDs have new
IDs assigned to them if the detection confidence of this object is 85% or more, as shown in
the right image of Figure 4. This situation happens when an object, which was not part of
the previous frames, is detected.

In Figure 5, we can see the first method for ten consecutive frames. In frame number
163, there are three oranges with IDs numbered 81, 80, and 77, each with a circle of different
colors inside it to facilitate the identification of oranges of identical IDs in different frames.
The smaller black circle inside the orange represents a YOLOv4-detected orange in that
frame. It is possible to notice that the oranges move very little between consecutive frames,
which facilitates the attribution of the IDs between the oranges frame by frame.
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Figure 5. In ten consecutive frames, Frame 163 highlights three oranges with IDs 81 (brown),
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2.4. Object-Tracking Algorithm

The second method of tracking oranges through video frames with a unique ID is
used when it is impossible to relate an object’s ID from the previous frame to an object that
YOLOv4 has detected in the current frame. In this case, we use object-tracking algorithms
to make this relationship.
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In this process, the objective of object tracking algorithms is to estimate the object’s state
(position) over time [43]. When there is no change in the environment, tracking objects is not
overly complex, but this is usually not the case. Various disturbances in the real world can
disrupt tracking, including occlusion, variations in lighting, change of viewpoint, rotation and
blurring due to motion [44]. The steps used to track the object in the video involve:

• Selecting the object (target) in the initial frame with a bounding box;
• Initializing the tracker with information about the frame and the bounding box of the object;
• Using subsequent frames to find the new bounding box of the object in these frames.

In this work, the following object trackers are used for comparison: the Dlib correlation
tracker (Dlib tracker) [45], Boosting [46], Multiple Instance Learning (MIL) [47], Median-
FIow [48], Kernelized Correlation Filter (KCF) [44] and Channel and Spatial Reliability
Tracker (CSRT) [49]. These algorithms were selected for their robustness and because they
are implemented in the OpenCV and Dlib-ml libraries. Except for the Dlib tracker, which
is implemented using the Dlib-ml library [50], all other object trackers are implemented
using the OpenCV (The Open Source Computer Vision) library [44,51].

The Dlib Correlation Tracker focuses on robust scale estimation, while Kernelized
Correlation Filter (KCF) adjusts channel characteristics and introduces CN features for
tracking. The Channel and Spatial Reliability Tracker (CSRT) combines DCF with spatial
and channel reliability, enabling adaptable and accurate short-term tracking, even for non-
rectangular objects. In contrast, Boosting treats tracking as a binary classification task and
continually updates the classifier for the target object, thereby enhancing its robustness.
Median Flow, on the other hand, identifies tracking failures through the comparison of
forward and backward trajectories, ensuring the robustness of tracking through discrepancy
measurements. Additionally, Multiple Instance Learning (MIL) enhances the robustness of
discriminative classifiers used in “tracking by detection” techniques, effectively mitigating
inaccuracies in the tracker.

Object trackers are used to estimating the object’s position when YOLOv4 cannot
detect the object in the image in the current frame. It is possible because the trackers only
need the previous frame and the object’s bounding box. After that, object trackers can track
the object frame by frame without the help of YOLOv4. The entire process is shown in the
flowchart in Figure 6.
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Figure 7 shows an example of this situation using the Dlib tracker. In frame 196, the
orange of ID 85 was detected by YOLOv4; this is demonstrated by the black circle inside.
In frame 197, the orange of ID 85 was not detected by YOLOv4; the white circle inside it
visually demonstrates this, which indicates that the object tracking algorithm is tracking
the orange. The orange is then tracked through the frames even if YOLOv4 fails to detect it
again. This tracking process takes place for 35 frames, if YOLOv4 cannot detect the orange
again within those 35 frames, then the ID of that orange is deleted, and the object tracking
algorithm stops tracking it.
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Figure 7. In Frame 196, ID 85 orange is initially detected by YOLOv4 (black circle), with IDs 21 and
85 represented by red and purple circles. In Frame 197, YOLOv4 does not detect the same orange
(white circle), but the object tracking algorithm effectively maintains tracking. Source: research data.

3. Results and Discussions

Ten seconds of a video were chosen whose images were not used to compose the
database to test the counting algorithm. So, in order to compare the performance of the
algorithm using YOLOv4, a situation was simulated in which the detection algorithm used
would detect all oranges in all video frames without committing any detection error. This
was achieved by manually annotating all oranges in all the 600 frames of the 10-s video
with bounding boxes. This information was used frame by frame to simulate an optimal
detection. The actual number of 208 oranges possible to see in the video was also counted.
The counting algorithm was then tested using YOLOv4 and the simulated optimal object
detector together with each of the mentioned above object-tracking algorithms.

After training YOLOv4, the network acquired the parameters as displayed in Table 1.
The training process utilized 532 images with the classes, “green orange”, “ripe orange”,
and “spoiled orange”. It is noteworthy that the parameters presented in the table reflect
the network’s performance on a separate set of 112 test images. These test images were not
part of the training dataset, ensuring an impartial evaluation of the model’s performance.
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Table 1. YOLOv4 parameters.

Model mAP50 mAP50:95 Precision Recall F1-Score Average IoU

YOLOv4 80.16% 53.83% 0.92 0.93 0.93 82.08%

True Positives (TP) represent instances where the model correctly predicts a label that
matches the ground truth. True Negatives (TN) occur when the model correctly abstains
from predicting a label that is indeed not part of the ground truth. On the other hand, False
Positives (FP) arise when the model erroneously predicts a label that is not supported by
the ground truth. Conversely, False Negatives (FN) occur when the model fails to predict a
label that is present in the ground truth.

Intersection over Union (IoU) is a metric that quantifies the overlap between the
coordinates of the predicted bounding box and the ground truth box. A higher IoU value
indicates that the predicted bounding box coordinates closely resemble those of the ground
truth box. When evaluating multiple detections, the Average IoU is calculated as the mean
IoU of all the detections made. This metric provides an overall measure of how well the
predicted bounding boxes align with the ground truth boxes on average.

The Precision metric assesses how effectively true positives (TP) can be identified
out of all positive predictions (TP + FP), while Recall evaluates the ability to locate true
positives (TP) within all predictions (TP + FN). Both Precision and Recall are fundamental
in evaluating the performance of object detection algorithms. Additionally, the F1-Score,
often described as their harmonic mean, offers a balanced single metric that necessitates
both Precision and Recall to be simultaneously high for the F1-Score to increase. This
provides a comprehensive assessment of a detector’s performance, considering both the
ability to minimize false positives and false negatives. Notably, the Precision, Recall, and
F1-Score values presented in Table 1 are computed with an Intersection over a Union (IoU)
threshold of 50%.

Average Precision (AP) quantifies the detection model’s performance by calculating
a weighted mean of precision scores across different confidence thresholds, accounting
for the increase in recall from the previous threshold. Mean Average Precision (mAP)
serves as a comprehensive metric to assess the overall performance of a detection model.
It extends the evaluation by calculating Average Precision (AP) at multiple Intersection
over Union (IoU) thresholds. The mAP is derived by averaging the AP scores across these
IoU thresholds, offering a thorough assessment of the model’s accuracy across a spectrum
of bounding box overlap conditions. Specifically, mAP0.5 represents the mAP calculated
at an IoU threshold of 0.5, while mAP0.5:0.95 extends the analysis across a range of IoU
thresholds from 0.5 to 0.95, with 0.05 increments.

It is important to emphasize that the 10 s video, comprising 600 frames, differs from
the training and test datasets. The test images were exclusively utilized to evaluate the
network’s image detection performance. In contrast, the 10 s video is employed to assess
the counting algorithm’s performance, which is specifically tailored for video sequences.
This distinction ensures a separate evaluation, clearly separate from the image detection
task, within the scope of this study.

The counting algorithm using the frame-by-frame corrected detections obtained the
results shown in Table 2. As the detections were corrected frame by frame, to compare with
the results obtained using the YOLOv4 network, there is no detection omission (oranges
that were not detected in frames) and no false detections (objects that were detected as being
orange, but which are not). The number of oranges counted by the algorithm remained
close to the correct number of oranges, no matter which object tracker was used or even if
none was used.
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Table 2. Orange count with the simulated optimal object detector.

Tracker
Omission of

Detection
−

Wrong
Detection

+

Double
Count

+

Repeated
ID
−

Number of
Oranges
Counted

Correct
Number of

Oranges
Counted

No
tracker 0 0 10 2 216 208

Dlib 0 0 8 0 216 208
Boosting 0 0 7 0 215 208

Csrt 0 0 8 1 215 208
Kcf 0 0 10 0 218 208

Medianflow 0 0 8 0 216 208
Mil 0 0 9 0 217 208

This is because whenever an orange is visible in the frame, it will be detected as the
detections were manually corrected frame by frame. That way, when the object trackers are
used, they are not tracking the oranges because if the orange was not detected, it is because
it is no longer visible in the frame and not because the object detector failed. Thus, even
if no object tracker is used, the number of oranges counted is still very close, even if the
double counting number and the ID repetition number (situation in which the same ID
is used in two oranges, generally when the first orange is occluded and soon after a new
orange is detected nearby and the same ID of the occluded orange is assigned to the new
detection) are more significant.

When the counting algorithm is used with YOLOv4 to perform the detection of
oranges, we have a more significant discrepancy in the number of oranges counted, as
shown in Table 3. The number of omission of detections was 15 oranges, meaning that
during all frames, there were 15 oranges that YOLOv4 did not detect even once in all
frames. It does not mean that YOLOv4 failed to detect oranges 15 times in all frames, but
rather that it missed 15 oranges in all frames at least once, so if the same orange was missed
in multiple frames, it counts as an omission of detection only. If an orange appeared in
100 frames but was detected by YOLOv4 in 20 frames, it does not count as an omission
of detection, as it is possible to track the orange in frames where YOLOv4 was unable to
detect it using the object trackers.

Table 3. Orange count with YOLOv4.

Tracker
Omission of

Detection
−

Wrong
Detection

+

Double
Count

+

Repeated
ID
−

Number of
Oranges
Counted

Correct
Number of

Oranges
Counted

No
tracker 15 2 25 5 215 208

Dlib 15 2 10 1 204 208
Boosting 15 2 10 1 204 208

Csrt 15 2 10 1 204 208
Kcf 15 2 16 1 210 208

Medianflow 15 2 10 1 204 208
Mil 15 2 9 1 203 208

The number of erroneous detections was 2, meaning that the network detected two
objects as being orange and they were not. In the same way, even though YOLOv4 has
detected the same object erroneously in several frames, this counts only as one false
detection. The number of double countings of oranges and repetitions of the same ID for
different oranges was also higher when no tracker was used than when any of the proposed
object trackers were used.

It was already expected because now, unlike the detections corrected frame by frame,
there were times when the orange was visible in the frame, but YOLOv4 did not detect it.
In this way, having an object tracker to be able to track the oranges in the frames in which
YOLOv4 fails helps to reduce the number of double counting. Because if YOLOv4 detects
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the orange again in future frames, reassign the ID of the orange being tracked by the object
tracker instead of assigning a new ID.

Although frame-by-frame corrected detections are more accurate than YOLOv4-
produced detections, the orange counting algorithm came closer to the correct number
of oranges when using YOLOv4 detections than when using frame-by-frame corrected
detections. This is because when using the corrected detections, there are no omissions of
detections or wrong detections, so the only errors present are double counting errors and
ID repetition errors. ID repetition errors are much rarer than double-counting errors, espe-
cially when using an object tracker. Thus, double counting errors constitute the majority
of errors when using corrected detections. By their nature, double-counting errors tend
to overestimate the number of oranges counted. That is, they tend to introduce a positive
error in the final count of the number of oranges.

When using the detections made by YOLOv4, there are some detection failures. Some
oranges are not detected at all in every frame, either because of occlusion or lighting, and
some objects are detected as being orange when they are not. We have a total of 15 oranges
that were not detected and two objects that were erroneously detected as oranges. In this
way, we have a more significant error due to the oranges that were not detected than the
objects detected wrongly. Unlike double counting, the error introduced by the omission
of detection tends to underestimate the correct number of oranges. That is, it introduces a
negative error in the final count. Thus, when the detections made by YOLOv4 are used, the
error introduced by the omission of detection tends to balance the error introduced by the
double counting. That is why the counting algorithm arrived at a count closer to the actual
value when using YOLOv4 detections than frame-by-frame corrected detections.

It is also possible to notice that there was no significant difference in the count when
different object trackers were used. It is because the object tracker only tracks the object
for a maximum of 35 frames after the object detector can no longer detect it. If, after these
35 frames, the object detector has not detected a nearby orange that can be assigned to the
orange tracked by the object tracker, the ID of that orange is deleted. The video acquisition
was performed at 60 frames per second; there are no significant variations from one frame
to its subsequent frame, as seen in Figure 7. Therefore, at 35 frames, there are no significant
variations in the orange image between the first frame and the last one, which makes it
very difficult to track, making the object trackers have similar performances.

In Figure 8, 20 frames are shown spaced from the first frame to the last of the 10 s
video, where it is possible to see the counting algorithm with YOLOv4 for detection and
the Dlib tracker for tracking objects. In the upper-left corner of each frame is indicated,
respectively, from top to bottom:

• The number of that frame;
• The total number of oranges already counted by the algorithm;
• The total number of oranges present in that frame;
• The type of object tracker used;
• The number of oranges being tracked by the object tracker.

In the upper-left corner of each orange’s bounding box, we have a legend indicating
the ID number assigned to that orange. The larger colored circles are used to distinguish
oranges of different IDs visually. The smaller black and white circles within the larger
colored circles are used to indicate whether the object detector detected that orange in that
frame or not—black if the object detector was able to detect and white if the object detector
was not able, and therefore, the object tracker is being used to track orange through the
respective frames.
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Figure 8. Twenty frames from a 10 s video, illustrating YOLOv4 detection and Dlib tracking for
counting and tracking oranges. Black circles signify successful detection, while white circles denote
undetected oranges, with unique IDs represented by colored circles within orange bounding boxes.

In Figure 9, we have a situation of occlusion by a branch in which the algorithm can
reassign the same ID to the respective oranges, thus avoiding double counting. In frame
208, the algorithm is tracking the oranges of IDs 13 and 91, and we can see from the black
circle marking that the object detector detected both in that frame. In frame 228, both
oranges are no longer detected by the object detector, as it is possible to see by the marking
of the white circle. Currently, the oranges are being tracked using the Dlib object tracker.
In frame 248, both oranges are detected again by the object detector, and their IDs are
reassigned without double counting.
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Figure 9. Occlusion caused by a branch. It successfully reassigns IDs to prevent double counting.
Frames 208 and 228 show tracking with black circles when the object detector does not detect, and
frame 248 reassigns IDs upon detection.

Unlike the situation shown in Figure 9, in which there was an occlusion situation,
but the counting algorithm reassigned the orange IDs, thus avoiding double counting, in
Figure 10, we have an occlusion situation in which the algorithm was not able to avoid
double counting. The orange of ID 84 was being tracked until the moment it was occluded
by foliage and is no longer detected by the object detector in frame 156. After not being
detected again by the object detector in the following frames, the algorithm stops tracking
this orange in frame 186. However, in frame 280, that same orange is again detected by the
object detector after the foliage stops obstructing her line of sight. However, in this case,
we do not have the position of the ID 84 bounding box next to it to reassign the same ID
since the algorithm stopped tracking it at frame 186, so a new ID number 124 is assigned to
that orange, so the same orange was counted twice.
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Figure 10. This scenario highlights occlusion challenges. It tracked orange ID 84 (indicated by a blue
circle), which became obscured by foliage in frame 156 and remained undetected until frame 280. Upon
re-detection, it received a new ID, 124 (indicated by a red circle), resulting in inadvertent double counting.
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This same occlusion and double counting situation shown in Figure 10 occurs again
in Figure 11. The orange in frame 126 is being tracked by the algorithm and has ID 11. In
frame 144, this orange is no longer detected by the object detector and becomes tracked by
the Dlib object tracker. In frame 162, as the object detector could not detect the orange again
due to the occlusion caused by the foliage, the algorithm stopped tracking the orange and
stopped showing its ID and its bounding box in subsequent frames. However, in frame 218,
that same orange is again detected by the object detector, now receiving ID number 102, so
the same orange was counted twice.
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Figure 11. In Frame 126, the algorithm tracks orange ID 11 (gray circle) and shifts to Dlib tracking by
Frame 144 as the object detector stops. By Frame 162, foliage occlusion leads to tracking cessation and ID
removal. In Frame 218, the same orange is detected as ID 102 (blue circle), resulting in double counting.

In Figure 12, we have another double counting situation, but this time instead of
occlusion due to foliage, occlusion occurs due to another orange. The orange of ID 99 was
being tracked by the algorithm, as it is possible to see in frames 256 and 268. However, in
frame 280, the orange of ID 99 is obstructed by the orange of ID 103 and is no longer detected
by the object detector. At that moment, the Dlib object tracker now carries out the orange
tracking. As the object detector cannot detect the orange of ID 99 again in subsequent
frames, the algorithm stops tracking this orange and stops showing its bounding box and
its ID in the frames, as seen in frame 301. However, the orange that had been obstructed by
the orange ID 103 becomes visible again in frame 316, as it is impossible to reassign ID 99,
as it was discarded in previous frames, the algorithm assigns the new ID number 133. Thus,
performing the double counting of the same orange.
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Figure 12. A double counting scenario due to occlusion, where one orange obstructs another. Initially,
orange ID 99 (dark blue) is tracked but gets obscured by orange ID 103 (light blue) in frame 280,
leading to Dlib tracking. As the object detector fails to rediscover ID 99, it receives a new ID, 133
(green), resulting in double counting.
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4. Conclusions

This study addressed the problems of detecting, tracking, and counting oranges from
video footage of the plantation. For the video image processing flow, a solution was
proposed to integrate the YOLOv4 network with object tracking algorithms, providing
promising results.

The YOLOv4 network demonstrated competence in detecting small oranges compared
to the image size and greens with a color closely resembling the surrounding foliage. At
the same time, the object tracking algorithms benefited from the information provided by
YOLOv4 to position the images. Bounding boxes in oranges and performing tracking at
times when YOLOv4 could not detect them, thus reducing the double counting error.

Frame-by-frame corrected detections were employed, detecting all oranges in every
video frame without any erroneous detections. This allowed for a comparison of the
counting algorithm’s performance using the YOLOv4 network. The results were promising,
with an mAP50 of 80.16%, mAP50:95 of 53.83%, Precision of 0.92, Recall of 0.93, F1-Score
of 0.93, and Average IoU of 82.08%. Additionally, the counting algorithm successfully
identified and counted 204 oranges, closely approaching the actual count of 208. The
utilization of YOLOv4 and object trackers reduced the number of double-counting errors,
resulting in a count that closely matched the actual number of oranges visible in the video.

The study also resulted in a database with an amount of 644 images with 43,109 anno-
tated oranges that can be used in future works.
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