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Abstract: Effective crop monitoring and accurate yield estimation are fundamental for informed
decision-making in agricultural management. In this context, the present research focuses on estimat-
ing wheat yield in Nepal at the district level by combining Sentinel-3 SLSTR imagery with soil data
and topographic features. Due to Nepal’s high-relief terrain, its districts exhibit diverse geographic
and soil properties, leading to a wide range of yields, which poses challenges for modeling efforts. In
light of this, we evaluated the performance of two machine learning algorithms, namely, the gradient
boosting machine (GBM) and the extreme gradient boosting (XGBoost). The results demonstrated the
superiority of the XGBoost-based model, achieving a determination coefficient (R2) of 0.89 and an
RMSE of 0.3 t/ha for training, with an R2 of 0.61 and an RMSE of 0.42 t/ha for testing. The calibrated
model improved the overall accuracy of yield estimates by up to 10% compared to GBM. Notably, total
nitrogen content, slope, total column water vapor (TCWV), organic matter, and fractional vegetation
cover (FVC) significantly influenced the predicted values. This study highlights the effectiveness of
combining multi-source data and Sentinel-3 SLSTR, particularly proposing XGBoost as an alternative
tool for accurately estimating yield at lower costs. Consequently, the findings suggest comprehensive
and robust estimation models for spatially explicit yield forecasting and near-future yield projection
using satellite data acquired two months before harvest. Future work can focus on assessing the
suitability of agronomic practices in the region, thereby contributing to the early detection of yield
anomalies and ensuring food security at the national level.

Keywords: crop yield; machine learning; remote sensing; Sentinel-3 SLSTR; SDGs

1. Introduction

Recognizing the global significance of food security vis-à-vis sustainable agriculture,
the United Nations, through its Sustainable Development Goals (SDG2: Zero Hunger and
SDG15: Life on Land), has called upon states to align their development agendas towards
the promotion of sustainable food production systems and the implementation of suitable
agronomic practices to enhance agricultural productivity. One key aspect in achieving
these goals is crop yield estimation, which can help identify and characterize long-standing
and persistent underperforming farming regions [1,2] toward ensuring food security for
present and future generations.

The escalating demand for food at an unprecedented rate emphasizes the importance
of timely information on crop growth stages and maturity for effective decision-making,
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emergency response mechanisms, and efficient monitoring of food production [3]. As
a result, various approaches have been employed to model crop yield, including field
surveys, expert assessments, farm reports, and forecasting models [4–6]. In recent years,
integrating remote sensing and machine learning tools has sparked a fundamental shift
in sustainable agriculture. Notably, crop yield estimation has become one of its main
applications, particularly in precision agriculture [7,8], offering valuable insights for local
and regional decision-making regarding agronomic practices and parametric insurance,
ultimately fostering local economies and ensuring food security [9].

Sustainable agriculture has undergone a tremendous change with the emergence of re-
mote sensing and machine learning tools [10,11]. By leveraging spectral information derived
from multispectral data [12–15] and incorporating geospatial data on surface properties
retrieved from synthetic aperture radar (SAR) data [16,17], along with other data sources
like climatic and phenological data [18–20], researchers have made significant progress in
modeling agricultural productivity and monitoring crop growth. For this purpose, various
prediction models have been commonly employed for yield estimation, including random
forests [21,22], neural networks [23], gradient-boosting trees [24], and linear regression
analysis [25], among other tools that involve deep learning and artificial intelligence [26,27].
Such alternative approaches hold great promise for decision-makers and farmers, enabling
installation of sustainable farming systems and facilitating effective surveying practices. For
instance, Wolanin et al. [28] have estimated a crop yield variation in the Indian Wheat Belt
using deep learning and time-series analysis based on vegetation cover and meteorological
data. Their findings demonstrated that deep neural networks outperformed other algo-
rithms, highlighting the significance of growing season length, temperature, and radiation
conditions as key parameters in crop yield assessment. In Hungary, Ferencz et al. [29]
employed Landsat Thematic Mapper™ data to develop a novel vegetation index known
as the General Yield Unified Reference Index (GYURI). This index was derived by fitting a
double-Gaussian curve to the National Oceanic and Atmospheric Administration (NOAA)
Advanced Very High-Resolution Radiometer (AVHRR) data, specifically during the veg-
etation period. Their study focused on assessing wheat and corn yields over a three-year
period while determining the average yield per county. The results revealed the potential of
remote sensing data for yield estimation, with a coefficient of determination (R2) ranging
from 0.75 to 0.93 between the GYURI index and corn yield. In Spain, Franch et al. [30]
have successfully estimated rice yield by combining Sentinel-1 SAR and Sentinel-2 MSI
data through regression analysis. They demonstrated that the highest correlation between
satellite data and crop yield could be observed three months before harvest, with an R2

ranging from 0.72 to 0.92. This study uncovered a strong association between rice yield
and spectral information obtained from spaceborne remote sensing platforms, providing
valuable insights into vulnerable areas in the coastal wetland Albufera, where farmers’
interventions can be optimized. In Kenya, Adebayo et al. [31] evaluated the predictive
performance of random forest, support vector machine, and feedforward neural network
models for maize yield estimation based on Sentinel-1 SAR and Sentinel-2 MSI data. The
research found that the random forest-based model yielded the best performance among
other machine learning models, explaining 76% of data variance. This finding serves as a
reference for selecting appropriate algorithms in future crop yield prediction studies.

Nevertheless, the application of Sentinel-3 data in crop yield assessment has been
relatively limited in the existing research. Notably, Bojanowski et al. [32] have used
Sentinel-3 OLCI and SLSTR data in combination with MODIS and ERA5 data to establish
a forecasting model of corn and wheat yields between 2000 and 2019 in Poland. This
study demonstrated promising outcomes, with root mean square errors (RMSE) ranging
from 8.15% to 13%, highlighting the potential application of Sentinel-3 data, despite their
coarse resolution, in accurately estimating yield at a regional scale. However, additional
investigation on the capabilities and constraints of Sentinel-3 data for crop yield prediction
is justified, given the limited research conducted so far.
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In this context, the present work aims to estimate the average Nepalese wheat crop
yield per district by leveraging advanced machine learning tools in combination with
remote sensing data retrieved from Sentinel-3 SLSTR. To achieve this, we have integrated
other data types, including topographic covariates and soil information, which substantially
influence agricultural productivity. By adopting a multidimensional approach, this study
aims to provide practical insights into developing an effective and timely methodology for
estimating wheat yield at the country scale. This work will assist in addressing challenges
associated with food security by enhancing our understanding of crop production dynamics
and optimizing agricultural practices through yield estimation in the early stages.

2. Materials and Methods
2.1. Study Area and Reference Data

Nepal is situated in Southeast Asia, spanning between latitudes 26◦ 22′ N and
30◦ 27′ N and longitudes 80◦ 00′ E and 88◦ 00′ E (Figure 1). With a surface area of ap-
proximately 147,516 km2 [33], Nepal is divided into seven provinces and 77 districts, each
owning distinct topographical features across their regions [34]. The country is character-
ized by five physiographic regions: Terai, Siwaliks, Middle Mountains, High Mountains,
and High Himalayas, further divided into three zones: the Terai, the Hill, and the Hi-
malayas [35]. These divisions provide valuable insights into the diverse topographic
landscapes present within Nepal’s geographical boundaries. In addition, Nepal boasts
a wide range of elevations, extending from 60 m above sea level to the world’s highest
peak, Mount Everest, at 8850 m [36]. The climate is highly diverse due to its topographic
complexity, categorized into four main types based on the Köppen climate classification:
temperate (C), arid (B), cold (D), and polar (E) [37]. Nepal experiences four distinct sea-
sons with varying weather patterns: the pre-monsoon season from March to May, the
summer monsoon from June to September, the post-monsoon season from October to
November, and the winter season from December to February. The mean precipitation is
1800 mm/year [38]. The average temperature exhibits seasonal fluctuations, with summer
temperatures ranging between 20 ◦C and 35 ◦C, while winter temperatures range between
2 ◦C and 12 ◦C [39]. In the mountainous catchment areas, the mean evapotranspiration rate
fluctuates between 1300 and 1400 mm per year [40].

As the distribution of soil types in Nepal is mainly influenced by its topography,
inceptisols dominate the hilly zones and lower tropical mountain regions, while spodosols
occupy the subalpine forest and alpine shrub areas [41]. On the other hand, land use
and land cover have been primarily influenced by combined anthropogenic and natural
processes, which have continuously changed in recent decades due to climate change [42].
Agriculturally, cereal production in Nepal has significantly contributed to food security,
with rice, wheat, and maize being the three major crops jointly contributing to 30.92% of its
GDP [43].

As one of the most economically disadvantaged countries in Asia, Nepal faces se-
rious socioeconomic challenges that will profoundly impact its population of 30 million
people [44]. A quarter of the Nepalese population lives in poverty, struggling to meet their
basic needs and access essential services [45]. This pervasive poverty indicates the pressing
need for sustainable development initiatives and targeted interventions to uplift the living
standards of the affected communities. Moreover, with half of the country’s districts con-
sistently confronting limited access to nutritious food sources, Nepal experiences yearly
food deficits. This further amplifies the nation’s socioeconomic vulnerability and impedes
progress toward achieving food security through initiatives on cropping system monitoring
and yield estimation [46].
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Figure 1. The geographic location of the study area: (a) Locator map of Nepal, and (b) Average wheat 
yield per district for 2021 retrieved from the Nepal in Data portal. 

As the distribution of soil types in Nepal is mainly influenced by its topography, 
inceptisols dominate the hilly zones and lower tropical mountain regions, while spodosols 
occupy the subalpine forest and alpine shrub areas [41]. On the other hand, land use and 
land cover have been primarily influenced by combined anthropogenic and natural 
processes, which have continuously changed in recent decades due to climate change [42]. 
Agriculturally, cereal production in Nepal has significantly contributed to food security, 
with rice, wheat, and maize being the three major crops jointly contributing to 30.92% of 
its GDP [43]. 

As one of the most economically disadvantaged countries in Asia, Nepal faces serious 
socioeconomic challenges that will profoundly impact its population of 30 million people 
[44]. A quarter of the Nepalese population lives in poverty, struggling to meet their basic 
needs and access essential services [45]. This pervasive poverty indicates the pressing 
need for sustainable development initiatives and targeted interventions to uplift the living 
standards of the affected communities. Moreover, with half of the country’s districts 
consistently confronting limited access to nutritious food sources, Nepal experiences 
yearly food deficits. This further amplifies the nation’s socioeconomic vulnerability and 
impedes progress toward achieving food security through initiatives on cropping system 
monitoring and yield estimation [46]. 

Reference data on average wheat yield in tons per hectare (t/ha) for 77 districts have 
been retrieved from the statistical information report number 2077/78 on Nepalese 
agriculture. This annual publication was prepared for the fiscal year 2020/21 and released 
by the Ministry of Agriculture and Livestock Development Planning in July 2022 [47]. The 

Figure 1. The geographic location of the study area: (a) Locator map of Nepal, and (b) Average wheat
yield per district for 2021 retrieved from the Nepal in Data portal.

Reference data on average wheat yield in tons per hectare (t/ha) for 77 districts have
been retrieved from the statistical information report number 2077/78 on Nepalese agri-
culture. This annual publication was prepared for the fiscal year 2020/21 and released
by the Ministry of Agriculture and Livestock Development Planning in July 2022 [47].
The report provides updated data on diverse aspects of Nepal’s socioeconomic sectors,
including crops, livestock, and fisheries, among other key inputs. The document offers
detailed insights into the agricultural sector and its performance. For more informa-
tion on the reference data, it can be retrieved from the Nepal in Data portal, available
at https://nepalindata.com/resource/STATISTICAL-INFORMATION-ON-NEPALESE-
AGRICULTURE-2077-78{-}{-}2020-21/ accessed on 30 March 2023.

2.2. Remote Sensing Data and Other Features

The Sea and Land Surface Temperature Radiometer (SLSTR) is a dual-scan temperature
radiometer selected for the ESA Sentinel-3 mission in low earth orbit as a part of the
Copernicus Programme [48]. The instrument provides a wide range of applications related
to earth observation, with a primary focus on sea surface temperature (SST) and land
monitoring [49]. SLSTR products offer highly accurate global and regional measurements
of sea and land surface temperature (SST and LST), supporting various environmental-
related studies [50,51]. The mission delivers data with a high temporal resolution of less
than half a day of revisit time. However, it features a moderately coarse spatial resolution,
ranging from 500 m to 1 km. Such temporal and spatial properties make the data sufficiently
intricate to be incorporated into various applications, encompassing factors such as soil

https://nepalindata.com/resource/STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2077-78{-}{-}2020-21/
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moisture content, surface heterogeneity, and vegetation cover [52–54]. In the present
study, we acquired the Sentinel-3 SLSTR Level 2 product sensed on 26 February 2021 and
performed a co-registration and geometric correction. Following this, we extracted these
key features: land surface temperature (LST), which was converted from kelvin to degrees
Celsius (◦C), total column water vapor (TCWV), normalized difference vegetation index
(NDVI), and fractional vegetation cover (FVC). It is crucial to emphasize that our deliberate
choice of acquiring data at the end of February aligns with the observations of the wheat
growth season according to Nepal’s crop calendar (end of February to mid-March) [55], a
time frame that was further confirmed by Sahbeni et al. [56].

For soil information, we retrieved reference maps on soil properties, including soil
organic matter (SOM) (%), total nitrogen content (%), and pH from the National Soil
Science Research Center (NARC) website, accessed at https://soil.narc.gov.np, accessed
on 30 March 2023. These products have a spatial resolution of approximately 250 m. For
topographic data, we acquired a Shuttle Radar Topography Mission (SRTM GL1) Global
30-m (SRTM_GL1) product, from which elevation (m) and slope (degrees) data were
derived [57]. SRTM GL1 (30 m ellipsoidal) represents a version of the SRTM dataset that
employs elevation values from WGS84 ellipsoidal height instead of the usual orthometric
or geoid-referenced elevation. This dataset was generated by subtracting the EGM96 geoid
model from the standard SRTM GL1 data, and it features a resolution of 1 arc-second
(ca. 30 m at the Equator) [58]. The resulting covariates derived from Sentinel-3 SLSTR, soil
maps, and SRTM DEM are presented in Table 1 and Figure 2.

Table 1. Variables used in the research and their descriptions.

Variable Description

LST (◦C) Measurement of surface temperature inland
TCWV (kg/m2) Quantification of the total water vapor in the atmosphere

NDVI Indicator of vegetation density and health
FVC Estimation of the proportion of land covered by vegetation

OM (%) Percentage of organic matter in the soil
pH Measurement of the acidity or alkalinity of the soil

Total nitrogen content (%) Proportion of nitrogen content in the soil
Elevation (m) Altitude above sea level at a specific location

Slope (degrees) Inclination or gradient of the land surface

Following the reprojection of geospatial data to the Universal Transverse Mercator
(UTM) coordinate system using the World Geodetic System (WGS) 1984 datum assigned to
the North UTM Zone 44 and resampling them to a 30 m spatial resolution, we masked out
non-cropland areas at the country level. For this step, we used the biome layer within the
Sentinel-3 SLSTR data. This layer is a modified version of the GlobCover classification [59],
re-gridded to 1/120◦ resolution. Thus, we focused on Class 11 and 20, which represent
irrigated and rain-fed croplands, respectively [60]. By considering only these classes, we
extracted cropland areas within the boundaries of Nepal. Subsequently, we derived the
mean values per district from the resulting variables using the “zonal statistics as Table”
tool in ESRI ArcMap® 10.3. Once we compiled a comprehensive database containing nine
independent variables and one dependent variable (average wheat yield per district), we
imported it into RStudio. Then, we performed training, calibration, and testing of the
machine learning models. Out of the 77 available observations, we allocated 70% of the
data for training, while the remaining 30% were used for testing. Figure 3 provides a
visual representation of the study’s flowchart, illustrating the sequential steps undertaken
throughout the analysis.

https://soil.narc.gov.np
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2.3. Gradient Boosting Machine (GBM) versus Extreme Gradient Boosting (XGBoost)

The gradient boosting machine (GBM) is a highly influential machine learning algo-
rithm that has earned significant attention in diverse environmental applications, including
agriculture [61], climatology [62], and soil studies [63]. GBM stands out as a robust tool due
to its ability to leverage tree-like structures for decision-making [64]. Notably, its potential
in crop yield estimation has been widely recognized and acknowledged by experts in the
field [65]. One of the main advantages of GBM is its versatility, as it can be employed
for both regression and classification tasks, enabling effective policy-making in various
scenarios [66]. The ensemble learning algorithm sequentially builds upon weak trees,
progressively enhancing the previous models’ performance. This iterative process creates
powerful predictive models capable of delivering accurate estimates [67]. The reliability of
GBM in fitting new trees and generating accurate predictions has been well-documented
across different fields. For instance, it has been successfully implemented in actual evapo-
transpiration estimation, allowing a better understanding of short-term drought episodes
associated with surface temperature and vegetation cover changes in Kenya [52]. Further,
GBM has demonstrated its effectiveness in land cover and land use assessment, enabling
more precise land surface mapping and monitoring [68]. It has also shown potential in
water quality assessment, facilitating the prediction of water quality indices for monitoring
purposes [69]. In this analysis, we used the “gbm” package in R Studio to implement
this approach. Its fundamental concept, adopted by Friedman [70], is summarized by
Algorithm 1.
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Algorithm 1: Friedman’s gradient boost algorithm

Inputs:
• Input data (x, y)N

i=1
• Number of iterations M
• Choice of the loss-function ψ(y, f)
• Choice of the base-learner model h(x,θ)
Algorithm:
1. Initialize f̂0 with a constant
2. for t = 1 to M do
3. Compute the negative gradient gt(x)
4. Fit a new base-learner function h(x,θt)
5. Find the best gradient descent step-size ρt:

ρt = argminρ

N
∑

i=1
ψ
[
yi, f̂t − 1(xi) + ρh(xi,θt)

]
6. Update the function estimate:

f̂t ← f̂t−1 + ρth(x,θt)

7. end for

On the other hand, extreme gradient boosting (XGBoost) is an advanced variant of
the gradient boosting machine that has gained significant attention in the research focused
on crop yield estimation and land cover monitoring, among other fields [71,72]. XGBoost
offers enhanced performance of up to 99%, in addition to its scalability and regularization
capabilities compared to traditional gradient-boosting algorithms [73]. One notable ad-
vantage of XGBoost is its efficient implementation, which allows for faster training and
prediction times compared to traditional gradient-boosting algorithms [74]. It utilizes
approximate greedy algorithmic optimization, which reduces the model’s computational
complexity while maintaining high accuracy, making XGBoost well suited for handling
complex datasets and features [75]. XGBoost incorporates regularization techniques to
prevent overfitting, such as controlling the complexity of individual trees and performing
random feature subsampling during tree construction [74]. This helps to improve the gen-
eralization capability of XGBoost, especially in high-dimensional spaces. Furthermore, it
supports parallel and distributed computing, enabling efficient utilization of computational
resources and scalability to handle massive data [76]. In this study, we used the “xgboost”
package in R Studio to implement this approach. Its basic concept is presented in Figure 4.
The interested reader can find more information in [74,75].
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2.4. Hyperparameter Optimization

Hyperparameter optimization is a fundamental step that guides decision-making
regarding the most important parameters and their corresponding tuning spaces [78]. In
the present study, we employed the random grid search method to fine-tune the machine
learning-based models and optimize their parameters. This approach involves defining a
domain of hyperparameter values and conducting random sampling within that defined
space [79]. Notably, Bergstra and Bengio [80] demonstrated the significant potential of the
random search in enhancing model accuracy by thoroughly exploring a wider spectrum of
configuration possibilities. In contrast to the commonly used grid search, random search
has proven effective in identifying accurate models with minimal computational overhead
when operating within the same domain, as highlighted by Larochelle et al. [81].

In the gradient boosting machine (GBM) calibration, we focused on configuring three
essential hyperparameters: the number of trees, the learning rate, and the depth of each
tree. The number of trees refers to the total count of trees in the sequence or ensemble,
while the depth of each tree is the number of levels or splits in the tree structure [82].
Unlike bagged and random forests, which average independently grown trees and face
challenges with excessive trees leading to overfitting, GBM operates differently. Each tree
is constructed sequentially to address the shortcomings of its predecessor, enhancing the
overall performance. The learning rate plays a critical role in determining the contribution
of each tree to the final output and influences the algorithm convergence speed during the
gradient descent. A comprehensive description of the GBM calibration can be found in [83].
Based on the random grid search results, we determined the optimal hyperparameters
for the GBM. The best values identified were 50 for the number of trees (n.trees), 0.1 for
the learning rate (shrinkage), and 1 for the depth of each tree (interaction.depth). These
hyperparameters were tuned to enhance the performance and accuracy of the GBM model
in estimating wheat yield.

Regarding the XGBoost model, we focused on fine-tuning several hyperparameters [84],
as illustrated in Table 2. A comprehensive description of the XGBoost optimization process
can be found in [85]. In essence, the inclusion of additional regularization parameters
compared to the traditional GBM is expected to enhance XGBoost’s capabilities to capture
complex patterns in data, as proposed by Bentéjac et al. [86].
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Table 2. Hyperparameter optimization for the XGBoost model and their respective objectives.

Hyperparameter Objective Value

nrounds or n_estimators Determines the number of boosting rounds, allowing for a substantial
ensemble of trees. 100

max_depth Controls the maximum depth of each tree, enabling the model to capture
complex interactions between features without excessive depth. 3

Learning rate eta Selected to balance the contribution of each tree to the final prediction and
facilitate convergence during the gradient descent process. 0.1

gamma Imposes a minimum loss reduction threshold for further splits in the tree
structure, promoting regularization and mitigating overfitting. 0.01

colsample_bytree Randomly samples a fraction of features at each tree construction, introducing
diversity and reducing overfitting. 0.3

min_child_weight Determines the minimum sum of instance weights required to create a new
child node in the tree. 1

subsample Randomly selects a fraction of training instances to train each tree to
reduce overfitting. 0.3

2.5. Accuracy Assessment Metrics

The estimation of the average wheat yield per district can be accomplished through the
application of machine learning models that leverage remote sensing data. This contributes
to initiatives focused on improving crop productivity, enhancing food security, and ensuring
sustainable agricultural development [87]. The determination coefficient (R2) and root
mean square error (RMSE) were used to evaluate the statistical performance of GBM
and XGBoost estimation models. The two statistical metrics can be determined using
Equations (1) and (2):

R2 = 1− ∑ (yi − ŷi)
2

∑ (yi − y)2 (1)

RMSE =

√
n

∑
1
(ŷi − yi)

2/n (2)

where yi is the observed crop yield, ŷi is the estimated value of the ith observation, y is the
mean value, and n is the total number of observations.

3. Results and Discussion
3.1. Descriptive Analysis

The descriptive analysis of reference data revealed a significant spatial variability,
as evidenced by a substantial difference between the minimum yield of 1.15 t/ha in the
Bhojpur district, eastern Nepal, and the maximum yield of 4.51 t/ha in the Chitawan
district in the central south of the country. This disparity highlights the spatial variability
in yield values across districts, as presented in Table 3. Furthermore, a normality test was
conducted to assess the distribution of yield data. The results indicated that data followed
a normal distribution, with a slight negative skewness of −0.009. This finding was further
corroborated by the minimal difference between the mean and median values, indicating
an overall symmetrical distribution.

Table 3. Descriptive statistics of average wheat yield (t/ha) in Nepal for 2021.

Minimum 1st Qu. Median Mean 3rd Qu. Maximum Skewness

1.15 2.09 2.56 2.65 3.26 4.51 −0.009

Upon conducting the Mann–Kendall test, a statistical test used to analyze trends in
data [88], a tau value of 0.04 was obtained. This value serves as a quantitative measure to
assess the strength and direction of the observed trend in data. In this context, the tau value
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indicates the presence of a negligible trend. This test was performed in R Studio using the
“kendall” package.

3.2. Selection of Variables and Model Calibration

To select the most informative variables on crop yield, Pearson correlation was con-
ducted between wheat yield and explanatory variables retrieved from Sentinel-3 SLSTR
data, soil maps, and DEM. The final results are illustrated in Figure 5. Among the exam-
ined features, slope, TCWV, OM, and elevation displayed the most significant correlation
coefficients of −0.73, 0.69, −0.68, and −0.67, respectively. These results suggest that steeper
slopes and elevated terrains tend to be associated with reduced yields, potentially due to
the challenges in crop management and growth under such suboptimal conditions, which
corroborates with Ferrara et al. [89] and Heil et al. [90] regarding topography impacts on crop
yield variability under different climatic settings. In addition, a higher total column of water
vapor indicates an increased crop yield. This further agrees with Hsiao et al. [91] regarding
water vapor’s role in canopy growth, hence its productivity. Generally, a higher TCWV
indicates reduced water stress responses in vegetation, such as increased photosynthetic
rates and higher leaf area development, which considerably influences yields.

Although SOM plays a crucial role in crop growth, for wheat, its optimal range is
typically between 2% and 4%. Interestingly, the analysis conducted in this study showed
a wide variation in OM content, with mean values ranging between 1.1 and 6.2%. The
correlation analysis did not support a typically positive relationship between OM and
crop yields. This contradicts previous research findings [92,93] regarding the positive
correlation between yield and SOM. However, a recent study by Vonk et al. [94] showed
a poor association between yield data and SOM in some European territories, finding
similar results under the Atlantic climate with an average of 75 kg/ha lower wheat yield on
soils with increased SOM by 1%. Another study by Wood et al. [95] reported an opposite
effect between yield and SOM. The latter study suggested that different SOM fractions are
regulated by distinct mechanisms, which result in various associations with agricultural
management outcomes intricately intertwined with environmental factors like topography,
ultimately affecting crop productivity. These findings support the significance of the
relationship between yield and SOM. Nevertheless, intensive research is needed to better
understand the complex interactions in different scenarios.

Furthermore, a moderately high correlation coefficient of 0.61 was observed for FVC,
indicating that a more significant fraction of vegetation cover signifies higher wheat yield.
This agrees with the work of Cui et al. [96] regarding the positive correlation between FVC
values and yield. As FVC represents the proportion of land surface covered by vegetation,
a higher value suggests a greater density and extent of vegetation, a feature that can be
influenced by soil fertility. Specifically, in the context of crops, fertile soils can sustain more
abundant vegetation, thus resulting in increased FVC [97].

Total nitrogen content plays a fundamental role in canopy growth, including wheat,
with an optimal range typically falling between 0.2% and 0.4% [98]. Our study observed a
wide variation in nitrogen content across districts, ranging from 0.07% to 0.24%. Contrary to
expectations, the analysis revealed a negative correlation of−0.57 between nitrogen content
and yield, disagreeing with previous research work [99]. Notably, different fractions of total
nitrogen are regulated by distinct processes, influencing crop productivity. For instance,
a recent study by Sun et al. [100] has demonstrated that lower nitrogen content rates
are beneficial for soil and leaf physiological factors, ultimately leading to enhanced crop
yield. These findings highlight the significance of understanding the complex mechanisms
involved in the relationship between total nitrogen content in soil and crop yield, further
corroborating previous research work [101,102].
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Different regions and altitudes in Nepal have distinct microclimates and temperature
patterns [103]. In higher altitudes, cooler temperatures prevail, which have different
implications for yield compared to slightly warmer lowland regions [104]. Therefore, the
correlation between LST and wheat yield in Nepal depends on the study area’s specific
elevation, canopy characteristics, and local climatic conditions. While wheat has an optimal
temperature range for growth between 15 and 25 ◦C [105], the mean surface temperature
exhibited a broader range in this study, spanning between −1.1 and 27.95 ◦C. It is essential
to highlight that specific temporal patterns observed throughout the growing season can
affect the relationship between LST and crop yield. In this context, a study conducted by
Kern et al. [106], based on remote sensing data and climatic features, revealed that elevated
temperatures during mid-season have a beneficial effect on wheat growth, hence its yield.
In the present study, a weak correlation of 0.37 between crop yield and LST has been found,
suggesting that although surface temperature may have an impact on wheat productivity,
other factors exert a more substantial influence in determining the overall yield in Nepal.
In essence, the temperature impact on crop yield depends on how well it aligns with the
temperature requirements of the crop at different phenological stages, which can either
be advantageous or detrimental, depending on its suitability for the specific crop growth
stage. These observations are consistent with the findings of Musa et al. [107].

While NDVI is commonly used as an indicator of plant health and biomass, measuring
vegetation greenness and density [108], our findings revealed a relatively weaker correlation
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between NDVI and crop yield. Consequently, we excluded NDVI, along with pH, for the
same reason. This contradicts previous research on the potential of NDVI in crop yield
estimation. For instance, Panek and Gozdowski [109] conducted a study focusing on NDVI
during the March to May period and its correlation with crop yield. Their findings indicate
that a 0.1 increase in NDVI leads to a remarkable improvement in crop yield, ranging
from 1.1 to 2.6 t/ha based on MODIS data. This observation highlights the possibility of
predicting regional-level crop yield 3 to 4 months before the harvest using solely NDVI.
A more recent study by Roznik et al. [110] suggested that crop yield estimation modeling
can be enhanced by including higher-resolution satellite data integrated with more precise
cropland masks.

Although pH is a key factor for soil health and nutrient availability to crops [111], its
relatively low significance in this study indicates that the mean pH levels, ranging from
5.6 to 7.7, did not exhibit a strong correlation with variations in wheat yield. Maintaining
an optimal pH range of 6 to 7.5 is crucial for crop growth; however, other factors, such as
agronomic practices and technological advancements, may have had a more substantial
role in influencing the observed variations in wheat yield in this study.

These findings emphasize the complexity of interconnectedness between variables
and wheat yield, suggesting that the impact of organic matter and total nitrogen content on
crop productivity may vary depending on specific conditions and contexts [112,113]. As a
result, key variables like slope, TCWV, OM, elevation, FVC, nitrogen content, and LST are
used in the subsequent machine learning modeling phase to develop estimation models for
wheat yield at the district level.

3.3. Accuracy Assessment and Influence of Features

A comparison of the GBM and XGBoost calibrated models revealed notable differ-
ences in their performance when predicting wheat yield using Sentinel-3 SLSTR data, soil
information, and topographic features. The main results are illustrated in Table 4.

Table 4. Performance of machine learning-based models in crop yield estimation using two statistical
metrics in training and testing.

Model
Training Testing

R2 RMSE (t/ha) R2 RMSE (t/ha)

GBM 0.79 0.38 0.56 0.47
XGBoost 0.89 0.30 0.61 0.42

Compared to the GBM model, the XGBoost model showed superior performance
in predicting wheat yield, exhibiting an improvement of approximately 10% in accuracy
for the training set and 5% for the testing set, as indicated by the increased R2 and de-
creased RMSE values. This indicates that the XGBoost model effectively captures the
underlying patterns and relationships between the variables, resulting in more accurate
estimates for average wheat yield. These findings are in agreement with previous studies
by Mariadass et al. [114], Kulpanich et al. [115], and Noorunnahar et al. [116], which have
also highlighted the superior performance of the XGBoost algorithm compared to other
machine learning models. A recent study by Huber et al. [117] explored the potential
of XGBoost for soybean yield estimation in the United States, yielding an average R2 of
0.79, which was outperformed by our XGBoost-based model. The same study suggested
future research to focus on yield prediction on other crops based on XGBoost due to its
superiority even to deep learning. Another research by Oikonomidis et al. [118] has eval-
uated machine learning for estimating crop yield across nine states in the United States
using weather, soil, and agricultural management data. Several models were evaluated,
including XGBoost, convolutional neural networks (CNN) combined with deep neural
networks (DNN), CNN-XGBoost, CNN-recurrent neural networks (RNN), and CNN-long
short-term memory (LSTM). Although the results indicated that the CNN-DNN model
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performed the best among the tested models, it is worth noting that the XGBoost model
achieved the second-best performance while demanding less execution time compared to
deep learning-based models. Their XGBoost model achieved an R2 of 0.8, which our model
surpassed with an R2 of 0.89.

Figure 6 illustrates the linear correlation assessment of observed and estimated wheat
yields. Notably, a closer alignment with reference data is exhibited by the XGBoost model,
indicating a more robust association between the predicted and actual average wheat
yield values. This further supports the superior statistical significance and predictive
capabilities of XGBoost. Its improved performance can be attributed to its enhanced
ability to handle complex relationships and interactions among the variables. As XGBoost
effectively addresses the limitations of the GBM model, such as bias and variance, more
accurate wheat yield estimates were expected. XGBoost incorporates enhancements that
contribute to its robust performance, including regularization techniques, better processing
of missing values, and the ability to handle non-linear relationships more effectively [85].
For example, Khan et al. [119] evaluated the performance of GBM and XGBoost, along
with other machine learning algorithms, in maize yield prediction across France using
meteorological data. The study demonstrated that XGBoost outperformed GBM, achieving
an R2 of 0.51 compared to an R2 of 0.17 for GBM. Regardless, our established model
yielded more accurate predictions compared to their findings. Furthermore, recent research
conducted by Ahmed [120] to predict maize yield in the Saudi Arabia region based on
weather data has further proven the potential of XGBoost in enhancing estimation accuracy
compared to GBM. The study noted a decrease in RMSE value by 0.01 t/ha, indicating the
improved performance of XGBoost in accurately predicting crop yield.
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The analysis of wheat yield predictions reveals minimal heteroscedasticity, suggest-
ing that only a few data points deviated from the overall trend. To explore this further,
two robust regression methods, the Theil–Sen estimator [123,124] and the RANSAC algo-
rithm [125,126], were applied to the data. Figure 6 illustrates the results obtained from
these two methods alongside ordinary linear regression (OLS). While all three models
(OLS, Theil–Sen estimator, and RANSAC) yielded comparable results, the latter two exhib-
ited enhanced robustness. RANSAC successfully identified outliers that were excluded
from the regression analysis. Both the RANSAC and Theil–Sen models performed well,
leading to more reliable estimates. The number of identified outliers varied between the
training and testing phases and between models based on different algorithms, such as
GBM and XGBoost. During the testing phase, the RANSAC model identified a higher
number of outliers for both XGBoost (5 outliers) and GBM (8 outliers) models, compared
to the training phase (3 outliers for XGBoost and 4 outliers for GBM). This outcome is
expected, as the testing phase involved new, unseen data that was not part of the training
set. Notably, for XGBoost training, RANSAC highlighted three outliers: Chitawan, Myagdi,
and Nuwakot. These districts are located in the central region of Nepal, in the transition
physiographic zones between the Sivalik, low mountains, and high Himalayan regions.
Previous research by Karki et al. [127] has characterized this area with a temperate climate
masked by a dry winter and a warm to hot summer. Such climatic variability can contribute
to unpredictability and fluctuations in agricultural productivity assessments. For testing,
the outliers identified by RANSAC were predominantly situated in the middle mountain to
the high Himalayan physiographic regions, which span a broad spectrum of climatic zones
from tropical savannah to polar tundra. In this context, both least squares and Theil–Sen
regression yielded comparable results, whereas the RANSAC model provided valuable
insights into the specific behavior of data outliers. In addition, the RANSAC algorithm
has effectively identified the inliers, predominantly located in the low-altitude flat areas
characterized by expansive croplands. Although a few points in the middle region were
identified as outliers, the districts in the Terai zone are primarily aligned with the overall
trend, indicating a robust correlation between the actual and estimated wheat yield within
these districts.

The behavior of points located in the Terai region motivated us to further inspect
those districts separately, given their significance as the country’s primary agricultural
land surface [128]. Remarkably, the districts within this region showed a close alignment
in terms of correlation between observed and estimated wheat yield, with the XGBoost
model demonstrating exceptional effectiveness in capturing the trends and patterns in the
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Terai districts. This led to significantly improved accuracy in wheat yield estimation in
this region. These observations highlight the importance of considering regional variations
and employing appropriate machine learning algorithms when analyzing agricultural
data. Further, the varying number and geographic distribution of outliers elucidate the
potential advantages of robust regression techniques in addressing datasets affected by
heteroscedasticity and influential outliers in the context of crop yield assessment.

Integrating data on topography, soil quality, water content in the atmosphere, and
vegetation density, leveraged by remote sensing techniques, is fundamental for accurately
estimating crop yield. Based on the calibrated XGBoost, a demonstration of the most to least
influential variables affecting yield estimation is presented in Figure 7. To assess the relative
influence of used variables, we employed the feature importance approach, which measures
the extent to which the model’s prediction error is affected when a feature is shuffled. As
shuffling the feature values breaks the association between the variable and the outcome, the
magnitude of the increase in prediction error reflects its importance, with a more significant
increase indicating greater importance [129]. Among input variables, nitrogen content
was identified as the most influential, significantly impacting wheat yield estimation. This
finding is consistent with the observed distribution of average wheat yield per district,
where lower nitrogen content tends to correlate with higher yields. Furthermore, variables
like slope, total column water vapor, and organic matter have also revealed varying degrees
of influence on crop yield, as highlighted in previous studies [130–132]. These features
demonstrate great potential for application in agronomy-based studies and agricultural
management systems. In contrast, land surface temperature (LST) was the least influential
feature. A recent study indicated that the association between surface temperature and
wheat yield is subject to complex interactions in both temporal and spatial dimensions [133].
These findings emphasize the importance of considering multiple influential variables,
including nitrogen content, slope, total column water vapor, organic matter, FVC, and
elevation. By incorporating these variables, researchers can improve the accuracy and
reliability of yield estimates, enabling better-informed decision-making in agricultural
management and food security initiatives at the national level.

Despite the superior performance of the XGBoost model in wheat yield estimation,
there are still valuable opportunities for future research to enhance the capabilities of estab-
lished models further. One potential avenue is integrating supplementary data associated
with crop productivity, like nutrient management practices. Including additional variables
that capture factors such as fertilization practices, pest and disease incidence, and irrigation
management practices, can provide a more comprehensive insight into the complex dynam-
ics that affect wheat yield within a spatio-temporal framework. Furthermore, acquiring
extensive field data through detailed surveys, rather than relying solely on average values
for districts, will significantly improve the accuracy of the established models. Collecting
detailed data at the field level, including information on soil properties, crop phenology,
and management practices, will enable a systematic analysis that effectively captures the
spatial heterogeneity within agricultural landscapes. Higher-resolution data can also pro-
vide valuable insights into the factors governing crop yield variability at the country level,
as demonstrated by Roznik et al. [110]. By incorporating multiple data sources and refining
the model architecture, future studies can strive to predict and map crop yield distribution
more accurately in similar environmental and climatic contexts.
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4. Conclusions

This research aims to estimate wheat yield in Nepal using Sentinel-3 SLSTR, soil data,
and topographic features. The study involved a comparative analysis of the performance
of two machine learning models: gradient boosting machine (GBM) and extreme gradient
boosting (XGBoost). The models were evaluated using the reference data on average yield
per district in 2021. The findings indicated that the XGBoost model exhibited improved
accuracy compared to GBM, with an increase of up to 10% in the coefficient of determination
(R2) and a decrease in the root mean square error (RMSE).

The results highlight the potential of the established approach based on machine
learning tools and geospatial data for crop yield estimation at the district level. The
suggested approach successfully identified key relationships between various factors and
wheat yield. Notably, the analysis revealed a positive correlation between average wheat
yield and Sentinel-3 SLSTR-based features like fractional vegetation cover (FVC) and
total column water vapor (TCWV), while altitude and slope negatively correlated with
yield. Remarkably, soil factors such as organic matter and total nitrogen content exhibited a
negative correlation with yield, which requires further investigation to grasp the underlying
mechanisms and potential factors involved.

Considering the promising results obtained in terms of yield estimation, the suggested
methodology demonstrates the potential for application in other study areas with compa-
rable agricultural systems and climatic conditions. In the future, it can be enhanced by
integrating real-time meteorological data with ground-based measurements. This would
further facilitate monitoring agronomic practices and assessing their suitability at the farm
level, given their significant impact on wheat yield.

Further research using alternative machine learning tools and data sources is rec-
ommended to enhance the model’s efficiency and thoroughly investigate the dynamics
governing the relationships between the selected features and wheat yield. This would
enable more accurate and timely monitoring, as well as early detection of yield anomalies
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in Nepal, aligning with Sustainable Development Goals (SDG2: Zero Hunger and SDG15:
Life on Land).
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