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Abstract: Groundnut, being a widely consumed oily seed with significant health benefits and
appealing sensory profiles, is extensively cultivated in tropical regions worldwide. However, the yield
is substantially impacted by the changing climate. Therefore, predicting stressed groundnut yield
based on climatic factors is desirable. This research focuses on predicting groundnut yield based on
several combinations of climatic factors using artificial neural networks and three training algorithms.
The Levenberg–Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient algorithms were
evaluated for their performance using climatic factors such as minimum temperature, maximum
temperature, and rainfall in different regions of Sri Lanka, considering the seasonal variations in
groundnut yield. A three-layer neural network was employed, comprising a hidden layer. The hidden
layer consisted of 10 neurons, and the log sigmoid functions were used as the activation function. The
performance of these configurations was evaluated based on the mean squared error and Pearson
correlation. Notable improvements were observed when using the Levenberg–Marquardt algorithm
as the training algorithm and applying the natural logarithm transformation to the yield values.
These improvements were evident through the higher Pearson correlation values for training (0.84),
validation (1.00) and testing (1.00), and a lower mean squared error (2.2859 × 10−21) value. Due to
the limited data, K-Fold cross-validation was utilized for optimization, with a K value of 5 utilized
for the process. The application of the natural logarithm transformation to the yield values resulted
in a lower mean squared error (0.3724) value. The results revealed that the Levenberg–Marquardt
training algorithm performs better in capturing the relationships between the climatic factors and
groundnut yield. This research provides valuable insights into the utilization of climatic factors for
predicting groundnut yield, highlighting the effectiveness of the training algorithms and emphasizing
the importance of carefully selecting and expanding the climatic factors in the modeling equation.

Keywords: activation function; artificial neural networks; climatic factors; groundnuts; K-Fold cross
validation; optimization algorithms; yield prediction

1. Introduction

Groundnut (Arachis hypogaea L.) is a self-pollinating allotetraploid legume crop that
belongs to the Fabaceae family [1,2]. Groundnut, also known as peanut, is recognized
as the third most significant oilseed crop globally [3]. It holds great significance due to
its high-quality edible oil and protein content. Moreover, the crop’s byproducts, namely
oilcake and haulms, play a crucial role as valuable animal feed, further enhancing its
economic value in the agricultural industry [3]. China is the largest groundnut producer
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in the world, followed by India and Nigeria. In the year 2022/2023, China produced 37%
of the global groundnut output, while India accounted for 13% and Nigeria contributed
9%. The total global production for that year was 49,535 thousand metric tons (MT) [4].
Groundnuts are typically cultivated in tropical, subtropical, and warm temperate climatic
zones [5]. Therefore, Sri Lanka, located in a tropical region, provides a suitable environment
for growing groundnuts. In Sri Lanka, two primary seasons exist, namely Yala and Maha.
The Yala season typically extends from April to the end of August, while the Maha season
spans from September to the end of March of the subsequent year, following the rainfall
pattern [6]. Groundnuts are primarily grown in the dry and intermediate zones of Sri
Lanka, either as rain-fed crops in highland areas during the Maha season or as irrigated
crops in paddy lands during the Yala season. In Sri Lanka, the main groundnut cultivation
regions include Moneragala, Kurunegala, Ampara, Badulla, Puttalama, and Ratnapura
districts [7,8]. In 2021, the country’s groundnut production reached 36,947 metric tons,
cultivated across an area spanning 18,537 hectares [9].

Soft computing techniques can be employed to estimate the yield of various crops. As
a result of rapid advancements in technology, crop models and decision tools have emerged
as vital components of precision agriculture worldwide. These models and tools utilize lin-
ear regression techniques, non-linear simulations, expert systems, Adaptive Neuro-Fuzzy
Interference Systems, Support Vector Machines, Data Mining, Genetic Programming, and
Artificial Neural Network (ANN)s to predict harvest outcomes [10,11], particularly under
the influence of climate change. These prediction methods play a significant role in im-
proving the accuracy and reliability of yield estimation in agricultural systems [12]. ANNs
successfully address identification [13], classification, and regression challenges in crop
disease identification [14], harvest mechanization [15], and product quality sorting [16].
Multiple linear regression and discriminant function analysis were employed to construct
a groundnut yield forecasting model, utilizing weather indices including maximum tem-
perature, minimum temperature, total rainfall, morning relative humidity, and evening
relative humidity [17]. In this study [18], the objective was to predict sesame oilseed yield
based on plant characteristics. Several machine learning models, including radial basis,
multiple linear, and gaussian process, were employed. These models were complemented
by the principal component analysis method to enable a comparative analysis with the
original machine learning models. The aim was to assess the efficiency of the prediction
process. In this study [19], minimum and maximum temperatures, rainfall, and relative
humidity were also utilized as factors in the development of wheat yield prediction models.
Employing techniques such as stepwise multiple linear regression, principal component
analysis was combined with stepwise multiple linear regression, ANN, and penalized
regressions like least absolute shrinkage and selection operator and elastic net. The models,
particularly least absolute shrinkage and selection operator and elastic net, demonstrated
remarkable accuracy, boasting a normalized root mean square error of under 10% across
most test locations. In this study [20], a wheat yield forecasting model was developed
using an ANN that considers factors like productive soil moisture, soil fertility, weather,
and the presence of pests, diseases, and weeds. The model utilized input parameters like
the soil’s moisture content, nitrogen, phosphorus, humus, and acidity levels, as well as
precipitation data, average air temperature, and the presence of diseases and pests from
13 North Kazakhstan districts from 2008 to 2017, achieving commendable prediction results.
The neural network’s advantage lies in its ability to handle nonlinear data relationships and
its enhanced performance with abundant training data, suggesting potential adaptability
for forecasting other crops and regions.

Neural networks, inspired by the nonlinear parallel structure of the human brain sys-
tem, constitute a large-scale, parallel distributed information processing system. Originally
derived from the biological central nervous system, ANNs are composed of interconnected
nonlinear computational units. These networks emulate the intricate processing capabilities
of the human brain and enable complex information-processing tasks through their parallel
and distributed nature [21]. ANN’s flexibility makes it a powerful alternative to linear
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models. A single hidden layer ANN, with enough neurons, fits any continuous mathemati-
cal function within a given interval, given ample data and computational resources [22].
When developing a neural network model, people normally employ three distinct training
algorithms, namely Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled
Conjugate Gradient (SCG). These training algorithms aid in the training process of the
ANN model to achieve better results. The LM algorithm excels in various problem do-
mains, surpassing simple gradient descent and other conjugate gradient methods in terms
of performance and effectiveness [23]. BR is a regularization method used in tandem with
a gradient-based solver. It prevents over-fitting by limiting the magnitude of the synaptic
weightings relative to the sum of the squared error or mean squared error (MSE) being
minimized [24]. The SCG algorithm, a supervised learning method for network-based
approaches, finds widespread application in addressing large-scale problems [25]. These
algorithms are utilized to train the neural network model and enhance its performance
through optimization techniques [12,26,27].

Temperature and rainfall variations significantly impact various crop types in different
regions across the globe. These climatic factors have a crucial role in influencing the growth,
development, and productivity of different crops in specific geographical areas. The
diverse responses of crops to temperature and rainfall variations highlight the importance
of considering regional climatic conditions when planning and managing agricultural
activities [12,28,29]. The adverse impact of increasing temperatures on crop yields has been
acknowledged as a notable factor. Extensive research has been conducted using advanced
modeling techniques to comprehensively study this phenomenon [30–32]. In the context
of Sri Lanka, this research represents the first study to explore the relationship between
climatic factors, such as rainfall and temperature data, with groundnut yield using the
ANN model while investigating the optimum training algorithm.

2. Materials and Methods
2.1. Artificial Neural Networks and Their Training Algorithms

ANNs are widely applied to solve real-world problems with non-linear characteristics.
To develop an ANN, a minimum of three layers is essential: input, hidden, and output.
These layers consist of numerous neurons, and these neurons are interconnected in a fully
connected manner, as shown in Figure 1. ANNs learn from data patterns by identifying rela-
tionships. In the beginning, raw data are received and processed by the initial layer, which
then sends them to the hidden layer. Following this, information travels from the hidden
layer to the final layer, ultimately generating the output [10,33]. To enhance performance,
several optimization algorithms are commonly employed to train ANN models.
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2.1.1. Levenberg–Marquardt Algorithm

The Levenberg–Marquardt algorithm combines the Gradient Descent and Gauss-
Newton methods. By incorporating the Gauss–Newton method to express the backpropa-
gation of the neural network, the algorithm exhibits an increased likelihood of converging
toward an optimal solution [34]. In the LM algorithm, the calculation of the Hessian
calculation approximation (H) and the gradient calculation (g) is fundamental. The Hes-
sian approximation is determined by multiplying the Jacobian matrix (J) and Jacobian
transposed matrix (JT) [12,35], as shown in Equation (1).

H = JT J (1)

On the other hand, the gradient (g) is obtained by multiplying the Jacobian transposed
matrix (JT) with the vector of network error (e), as given in Equation (2).

g = JT e (2)

To further delve into the LM algorithm, it exhibits behavior akin to Newton’s method,
which is a classical optimization technique. The updated Equation (3) demonstrates the
iterative nature of the LM algorithm [12,36].

x(k+1) = xk − [JT J + µI]−1 JT e (3)

In this equation, x(k+1) represents the new weight calculated using the gradient func-
tion, while xk corresponds to the current weight obtained through the Newton algorithm.
The term JT J is the product of the Jacobian matrix transpose and the Jacobian matrix, and
the term JT e is the result of multiplying the transpose of the Jacobian matrix with the
vector of network error. The constant µ and the identity matrix (I) are also involved in
the update equation, playing specific roles in controlling the convergence behavior of the
algorithm [34,37].

2.1.2. Bayesian Regularization Algorithm

The Bayesian Regularization Algorithm is a technique used in machine learning. It is
similar to another algorithm called LM, as both update weights and biases during learning.
The fundamental objective of the BR algorithm is to minimize the linear combination
of squared errors and weights during the learning process [38]. A special feature of
the BR algorithm is its ability to change this combination. Using Bayesian methods, we
can pick regularization coefficients using only training data. This is different from other
methods, which need separate training and validation data. Additionally, the Bayesian
approach can handle relatively large numbers of regularization coefficients, which would be
computationally prohibitive if their values had to be optimized using cross-validation [39].
Being able to generalize well is really important for the algorithm to work effectively in
real-world scenarios.

In the domain of functioning approximation problems, both the LM and BR algorithms
have gained recognition for their ability to attain lower MSEs compared to alternative
algorithms. This serves as an indication of their superior performance in accurately ap-
proximating intricate functions and capturing nuanced patterns within the dataset. The
advantage provided by LM and BR algorithms has been acknowledged by researchers in
various studies, underscoring their potential in diverse applications [40,41].

2.1.3. Scaled Conjugate Gradient Algorithm

The Scaled Conjugate Gradient algorithm is an extensively employed iterative tech-
nique for the resolution of problems concerning large systems of linear equations. Its
popularity stems from its efficiency and efficacy in minimizing the objective function con-
cerning multiple variables. The SCG algorithm is an extension of the Conjugate Gradient
algorithm, which finds primary usage in unconstrained optimization problems. In the
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realm of linear equation-solving, the SCG algorithm integrates second derivative informa-
tion to enhance its performance, facilitating more efficient convergence toward the optimal
solution [42].

The primary equation of the SCG algorithm can be represented as follows (refer to
Equation (4)).

xk = x(k−1) + αk d(k−1) (4)

Here, the variable k denotes the iteration index. The term αk corresponds to the step
length at the kth iteration, and dk signifies the search direction [34].

To bolster the learning process, the SCG algorithm employs step-size scaling tech-
niques. These techniques enable the efficient adjustment of the step length, thereby reducing
the time required for iterations. By dynamically scaling the step length, the algorithm
can adapt to the problem’s characteristics and optimize the convergence process. The
SCG algorithm finds extensive application in diverse fields, including machine learning,
optimization, and numerical analysis. Its effectiveness in solving problems involving large
systems of linear equations and minimizing the objective function has been empirically
established [43].

2.2. Study Area and Data

Based on the groundnut harvest, several areas were selected. These areas are shown
in Figure 2 (Puttalam, Kurunegala, Anuradhapura, Badulla, and Hambantota). Apart from
Badulla, all other areas are comparably drier areas in Sri Lanka. Badulla is located in the
intermediate climatic zone. However, these areas showcased some drastic climatic trends in
seasonal rainfalls and atmospheric temperatures. People in these areas experienced longer
dry periods and shorter but intensified rainfalls.
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Monthly and seasonal climatic data, such as rainfall (mm), minimum temperature
(◦C), and maximum temperature (◦C), were obtained from the Department of Meteorology,
Sri Lanka, and the Department of Census and Statistics in Sri Lanka from 1990 to 2018.
Similarly, the groundnut yield (kg/ha) data for the Yala and Maha seasons in rain-fed
agriculture were obtained from the Department of Census and Statistics, Sri Lanka for the
same duration. However, the data availability is limited for some of the climatic factors for
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some years (1980–1989) for various reasons, including instrument issues, recording issues,
and financial constraints.

2.3. Problem Formulation

This research was carried out to predict groundnut yield considering climatic factors.
The analysis used two methods (Method 1 and Method 2) and four scenarios (1, 2, 3, and 4).
The details of these methods are given in the following area and the K-fold cross-validation
method was used to validate the results obtained from the ANN. Equation (5) represents
the mathematical formulation of the nonlinear relationship modeled in this study.

Groundnut Yield = φ (Rainfall, Temperaturemin, Temperaturemax) (5)

In this equation, φ denotes the nonlinear function that captures the association between
the groundnut yield and the climatic factors. Groundnut yield was represented by the
harvested kilograms per hectare (kg/ha), while rainfall (mm) referred to the cumulative
rainfall of the respective season (Scenario 1) or month (Scenario 2, Scenario 3 and Scenario 4),
as defined by the scenarios below. Temperaturemin (◦C) and Temperaturemax (◦C) denote
the minimum and maximum temperatures recorded in the respective season or month.
Depending on the availability of data, the aforementioned relationship can be formulated
on a regional basis, considering different harvesting seasons.

Neural networks were utilized to explore different climate combinations and establish
the relationships outlined in Equation (5), considering the availability of data. In cases
where data for some of the years were lacking, a combination of yield data from the Maha
and Yala seasons (for example, the Anuradhapura district) was used to derive the climate
relationships. Three training algorithms (LM, BR, and SCG) were separately used for model
training in Method 1 and Method 2.

In Method 1, the neural network structure consisted of three layers, with 10 neurons
in the hidden layer. The activation function used in the hidden layer was sigmoid. In
Method 2, the neural network structure was created under the neural network toolbox
feature with three layers, including a single hidden layer. The hidden layer comprised
10 neurons, and the activation function used was log sigmoid.

The model was simulated using the cumulative rainfalls (RF) (mm) for each month
in the season Initially, the model was simulated using seasonal data for both the Yala and
Maha seasons together, considering the variables yield(Maha, Yala), RF(Maha, Yala), minimum
temperature(Yala, Maha), and maximum temperature(Yala, Maha) for the Anuradhapura district.
This represents Scenario 1.

Subsequently, the model was run using only Maha season data for the Anuradhapura
district, including variables such as yieldMaha, RF (RFSep, RFOct, RFNov, RFDec, RFJan, RFFeb,
RFMar), minimum temperature (TSep, TOct, TNov, TDec, TJan, TFeb, TMar), and maximum
temperature (TSep, TOct, TNov, TDec, TJan, TFeb, TMar). This represents Scenario 2, where
monthly climatic data were used.

Moving on to Scenario 3, the yearly summation of the yields of the Yala and Maha
seasons in the Anuradhapura district was used, while the monthly climatic data for Yala and
Maha seasons were used. The variables included yield(Yala+Maha), RF (RFSep, RFOct, RFNov,
RFDec, RFJan, RFFeb, RFMar, RFApr, RFMay, RFJun, RFJul, RFAug), minimum temperature (TSep,
TOct, TNov, TDec, TJan, TFeb, TMar, TApr, TMay, TJun, TJul, TAug), and maximum temperature
(TSep, TOct, TNov, TDec, TJan, TFeb, TMar, TApr, TMay, TJun, TJul, TAug).

To assess the presence of a strong relationship between yield and climatic factors,
the yield values were transformed into natural logarithmic values. This transformation
was implemented to reduce the wide range of yield data and facilitate further analysis.
Lastly, in Scenario 4, the yearly ln(yield) of Maha seasons in the Anuradhapura district
was used, while the monthly Maha season climatic data were used. The variables included
ln(yieldMaha), RF (RFSep, RFOct, RFNov, RFDec, RFJan, RFFeb, RFMar), minimum temperature
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(TSep, TOct, TNov, TDec, TJan, TFeb, TMar), and maximum temperature (TSep, TOct, TNov, TDec,
TJan, TFeb, TMar). This is given in Equation (6).

ln (Groundnut Yield) = φ (Rainfall, Temperaturemin, Temperaturemax) (6)

Equation (6) was used to evaluate Yala data. Yala data include yield in Yala season
(YieldYala), monthly cumulative rainfalls (RFApr, RFMay, RFJun, RFJul, RFAug) and average
monthly temperatures (minimum (TApr, TMay, TJun, TJul, TAug) and maximum (TApr, TMay,
TJun, TJul, TAug)) for the season. The model simulation was carried out under the three train-
ing algorithms. The time series data for each input and output parameter were segregated
into three clusters: training (70%), validation (15%), and testing (15%) datasets [27].

In addition, due to the limited data, the K-Fold cross-validation method was employed
to further validate the relationship between climatic data and groundnut yield in Scenarios
1–4 [44,45]. This technique ensures robustness and reliability by dividing the data into
K subsets and using each subset as both iterative training and testing data [46]. The
k value used for this method was 5. The results obtained from the ANN model and its
performance were thoroughly assessed and validated across different scenarios by applying
K-Fold cross-validation. Table 1 presents detailed descriptive statistics of the data used in
the study.

Table 1. Descriptive statistics of data.

Scenarios Factors Yield Methods

Scenario 1 RainfallYala,Maha, minimum temperatureYala,Maha, maximum
temperatureYala,Maha

YieldYaLa,
YieldMaha

Method 1
Method 2

K-Fold cross validation
Method

Scenario 2
Rainfall (RFSep, RFOct, RFNov, RFDec, RFJan, RFFeb, RFMar)

Minimum temperature (TSep, TOct, TNov, TDec, TJan, TFeb, TMar)
Maximum temperature (TSep, TOct, TNov, TDec, TJan, TFeb, TMar)

YieldMaha

Scenario 3

Rainfall (RFSep, RFOct, RFNov, RFDec, RFJan, RFFeb, RFMar,
RFApr, RFMay, RFJun, RFJul, RFAug)

Minimum temperature (TSep, TOct, TNov, TDec, TJan, TFeb, TMar,
TApr, TMay, TJun, TJul, TAug)

Maximum temperature (TSep, TOct, TNov, TDec, TJan, TFeb, TMar,
TApr, TMay, TJun, TJul, TAug)

Yield(Yala + Maha)

Scenario 4
Rainfall (RFSep, RFOct, RFNov, RFDec, RFJan, RFFeb, RFMar)

Minimum temperature (TSep, TOct, TNov, TDec, TJan, TFeb, TMar)
Maximum temperature (TSep, TOct, TNov, TDec, TJan, TFeb, TMar)

ln(yieldMaha)

Jan = January, Feb = February, Mar = March, Apr = April, May = May, Jun = June. Jul = July, Aug = August,
Sep = September, Oct = October, Nov = November, Dec = December.

2.4. Model Accuracy Evaluation

The primary objective was to minimize the MSE and maximize the Pearson Correlation
Coefficient (r) of predicted and actual yields. The MSE value witnessed a substantial
reduction, indicating a higher level of accuracy in the predictions. When the r increases,
this indicates a stronger linear relationship between input and output variables. A higher
value of r implies that the two variables tend to move closely together in a linear manner.
Equations (7) and (8) outline the mathematical formulas employed to calculate r and MSE,
respectively. The r values show a correlation with the observed values and a higher MSE
value indicates a greater difference between the predicted and observed values, suggesting
a decrease in the model’s accuracy in capturing the variability in the data [47].

r =
∑N

i=1(yi − y )(xi − x )√
∑N

i=1(yi − y )2. ∑(xi − x )2
. (7)



AgriEngineering 2023, 5 1720

MSE =
∑N

i=1[xi − yi]

N
. (8)

Let x represent the observed values and y denote the predicted maximum value for
the given observation i. . . n. Both x and y correspond to the actual and predicted values,
respectively. x and y denote the mean values of actual and predicted values, respectively.
The parameter N signifies the total number of observations [48].

2.5. Overall Methodology

The entire process is given as a flowchart in Figure 3. The MATLAB numerical
computing environment (version 9.6-R2019a) was utilized to develop the ANN architectures
for predicting the groundnut yield.
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Initially, three training algorithms were employed to train ANN using Method 1. The
LM algorithm showed a better performance for Scenario 1 using Method 1. Therefore, an
LM algorithm was used to analyze Scenarios 2, 3, and 4 using Method 1. Out of these
scenarios, it was found that Scenario 4 produces better results using Method 1. After
selecting Scenario 4 as the optimal choice, the three training algorithms using Method 1
were employed to analyze Yala and Maha seasons for all districts.

As the next step, similar training algorithms were utilized to train the ANN using
Method 2. The LM algorithm showed a better performance for Scenario 1 using Method



AgriEngineering 2023, 5 1721

2. Therefore, the LM algorithm was used to analyze Scenarios 2, 3, and 4 using Method 2.
Out of these, it was found that Scenario 4 produces better results using Method 2, as in the
previous case. After selecting Scenario 4 as the optimal choice, the three training algorithms
using Method 2 were employed to analyze Yala and Maha seasons for all districts. As
the final stage of this study, K-Fold cross-validation was used to validate the relationship
between selected climatic factors and groundnut yield for Scenarios 1–4.

3. Results

This section describes the procedure and outcomes derived from the experiment.
Initially, it outlines the results achieved through the application of Method 1 and Method 2
across Scenarios 1–4. Additionally, the process verified by K-Fold cross-validation method
is presented.

3.1. Results Obtained Using Method 1

Table 2 presents the results of groundnut yield in the Anuradhapura district for both
Yala and Maha seasons, along with the variation in climatic factors, using the three training
algorithms. By employing the LM training algorithm, better r values were achieved for
training, validation, testing, and all data points compared to the BR and SCG algorithms.
Nevertheless, under the BR algorithm, a negative value of −0.13 was observed for testing,
while the SCG algorithm exhibited negative values of −0.51 for validation and −0.10 for
testing. Furthermore, the MSE values were comparatively lower in the LM training al-
gorithm for training, validation, and testing compared to other algorithms, such as BR
and SCG.

Table 2. Accuracy of model development in Scenario 1 for Anuradhapura district using Method 1.
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LM 0.49 0.22 0.32 0.44 153,036.5 144,567.3 147,216.6
BR 0.37 NA −0.13 0.32 170,728.1 NA 148,876.6

SCG 0.18 −0.51 −0.10 0.05 203,124.2 281,224.0 311,886.6
NA denotes not applicable.

For further clarification, Figure 4 illustrates the progression of r values through training
and validation plots.
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The aim of this analysis was to identify the most suitable training algorithm for fur-
ther utilization in the study. The LM algorithm demonstrated comparatively higher out-
comes. Nevertheless, the r and MSE still exhibited low and high values, respectively. Con-
sequently, the climatic factors were expanded on a monthly basis, as in Scenario 2. Subse-
quently, only the LM training algorithm was employed for Scenario 2, resulting in the 
outcomes illustrated in Figure 5. This represents the r values for the Anuradhapura district 
during the Maha seasons, considering the monthly variations in climatic factors, under 
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The aim of this analysis was to identify the most suitable training algorithm for further
utilization in the study. The LM algorithm demonstrated comparatively higher outcomes.
Nevertheless, the r and MSE still exhibited low and high values, respectively. Consequently,
the climatic factors were expanded on a monthly basis, as in Scenario 2. Subsequently,
only the LM training algorithm was employed for Scenario 2, resulting in the outcomes
illustrated in Figure 5. This represents the r values for the Anuradhapura district during
the Maha seasons, considering the monthly variations in climatic factors, under the LM
training algorithm. This evaluation aims to observe the alterations in r values, as climatic
factors are expanded on a monthly basis within the LM training algorithm.
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As shown in Figure 5, a notable r was observed for training and testing, leading to a 
relatively lower value for all data points and a negative value for the validation result. 
Considering the unsatisfactory results shown in Figure 5, there was a necessity to enhance 
the relationship between climatic factors and groundnut yield by increasing the r values. 
Consequently, Scenario 3 was chosen for the subsequent analysis. The outcomes of Sce-
nario 3 under the LM model are illustrated in Figures 6 and 7. In this case, climatic factors 
were further expanded to cover the entire year by considering both Yala and Maha seasons 
together on a monthly basis. 

Figure 5. Actual vs. predicted yields in Scenario 2 using Method 1 (a) for training; (b) for validation;
(c) for test; (d) for all data points.

As shown in Figure 5, a notable r was observed for training and testing, leading to
a relatively lower value for all data points and a negative value for the validation result.
Considering the unsatisfactory results shown in Figure 5, there was a necessity to enhance
the relationship between climatic factors and groundnut yield by increasing the r values.
Consequently, Scenario 3 was chosen for the subsequent analysis. The outcomes of Scenario
3 under the LM model are illustrated in Figures 6 and 7. In this case, climatic factors were
further expanded to cover the entire year by considering both Yala and Maha seasons
together on a monthly basis.
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Figure 6. Actual vs. predicted yields in Scenario 3 using Method 1 (a) for training; (b) for validation; 
(c) for rest; (d) for all data points. 

 
Figure 7. Validation performance for the LM model trained by Scenario 3 using Method 1. 

Based on the results shown in Figure 6, higher r values were recorded; however, the 
MSE value remained elevated, as shown in Figure 7. Consequently, Scenario 4 was chosen 
for subsequent analysis. In this scenario, climatic factors of the Maha season were consid-
ered on a monthly basis for the Anuradhapura district, and the groundnut yield values were 
logarithmically converted. The outcomes exhibited elevated r values and reduced MSE val-
ues in Scenario 4, as demonstrated in Figures 8 and 9, respectively. As satisfactory results 
were achieved for Scenario 4, the decision was made to apply this approach to both Yala and 
Maha seasons for all districts using the three training algorithms, as displayed in Table 3. 
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Based on the results shown in Figure 6, higher r values were recorded; however,
the MSE value remained elevated, as shown in Figure 7. Consequently, Scenario 4 was
chosen for subsequent analysis. In this scenario, climatic factors of the Maha season were
considered on a monthly basis for the Anuradhapura district, and the groundnut yield
values were logarithmically converted. The outcomes exhibited elevated r values and
reduced MSE values in Scenario 4, as demonstrated in Figures 8 and 9, respectively. As
satisfactory results were achieved for Scenario 4, the decision was made to apply this
approach to both Yala and Maha seasons for all districts using the three training algorithms,
as displayed in Table 3.
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Table 3. The r and MSE values for different algorithms for Scenario 4 using Method 1 Yala and Maha
seasons for all districts.

District Season
Training

Algorithm

r

MSE
Num of
EpochsTraining Validation Test All Data

Points

Anuradhapura

Maha
LM 0.95 0.98 0.93 0.86 0.4993 2
BR 0.99 NA 0.1 0.89 0.0081 769

SCG 0.87 0.96 0.75 0.63 0.0542 12

Yala
LM 1.0 0.94 0.77 0.89 0.1902 4
BR 0.74 NA 0.91 0.65 0.0862 87

SCG 0.81 0.87 0.68 0.74 0.1721 7

Badulla

Maha
LM 0.84 0.98 0.91 0.83 0.1113 1
BR 0.82 NA 0.95 0.8 0.2565 36

SCG 0.87 0.96 0.78 0.82 0.2435 06

Yala
LM 0.99 0.95 0.99 0.89 0.4007 4
BR 0.87 NA 0.87 0.81 0.1966 1000

SCG 0.84 0.88 0.93 0.84 0.2855 6

Hambantota

Maha
LM 0.98 0.96 0.97 0.84 0.7888 02
BR 0.89 NA 0.93 0.9 0.0804 133

SCG 0.98 0.93 0.99 0.94 0.1332 7

Yala
LM 0.94 0.84 0.9 0.89 0.2097 2
BR 0.87 NA 0.76 0.84 0.1406 1000

SCG 0.88 0.84 0.99 0.87 0.1397 13

Kurunegala

Maha
LM 0.99 0.83 0.81 0.94 0.0292 3
BR 0.96 NA 0.03 0.82 0.0247 731

SCG 0.94 0.82 0.55 0.76 0.0707 9

Yala
LM 0.97 0.89 0.86 0.84 0.2542 1
BR 0.84 NA 0.87 0.81 0.2492 180

SCG 0.85 0.98 0.70 0.77 0.9202 06

Puttalam

Maha
LM 0.99 0.86 0.98 0.92 0.3919 2
BR 0.54 NA 0.55 0.57 0.6876 2

SCG 0.65 0.63 0.53 0.58 0.9212 4

Yala
LM 0.99 0.96 0.88 0.76 0.9067 3
BR 0.47 NA 0.8 0.48 0.4712 2

SCG 0.82 0.61 0.72 0.6 0.2909 10

NA denotes not applicable.

AgriEngineering 2023, 5 1724 
 

 

Table 3. The r and MSE values for different algorithms for Scenario 4 using Method 1 Yala and Maha 
seasons for all districts. 

District Season 
Training 

Algorithm 

r 
MSE Num of Epochs 

Training Validation Test All Data 
Points 

Anuradhapura 

Maha 
LM 0.95 0.98 0.93 0.86 0.4993 2 
BR 0.99 NA 0.1 0.89 0.0081 769 

SCG 0.87 0.96 0.75 0.63 0.0542 12 

Yala 
LM 1.0 0.94 0.77 0.89 0.1902 4 
BR 0.74 NA 0.91 0.65 0.0862 87 

SCG 0.81 0.87 0.68 0.74 0.1721 7 

Badulla 

Maha 
LM 0.84 0.98 0.91 0.83 0.1113 1 
BR 0.82 NA 0.95 0.8 0.2565 36 

SCG 0.87 0.96 0.78 0.82 0.2435 06 

Yala 
LM 0.99 0.95 0.99 0.89 0.4007 4 
BR 0.87 NA 0.87 0.81 0.1966 1000 

SCG 0.84 0.88 0.93 0.84 0.2855 6 

Hambantota 

Maha 
LM 0.98 0.96 0.97 0.84 0.7888 02 
BR 0.89 NA 0.93 0.9 0.0804 133 

SCG 0.98 0.93 0.99 0.94 0.1332 7 

Yala 
LM 0.94 0.84 0.9 0.89 0.2097 2 
BR 0.87 NA 0.76 0.84 0.1406 1000 

SCG 0.88 0.84 0.99 0.87 0.1397 13 

Kurunegala 

Maha 
LM 0.99 0.83 0.81 0.94 0.0292 3 
BR 0.96 NA 0.03 0.82 0.0247 731 

SCG 0.94 0.82 0.55 0.76 0.0707 9 

Yala 
LM 0.97 0.89 0.86 0.84 0.2542 1 
BR 0.84 NA 0.87 0.81 0.2492 180 

SCG 0.85 0.98 0.70 0.77 0.9202 06 

Puttalam 

Maha 
LM 0.99 0.86 0.98 0.92 0.3919 2 
BR 0.54 NA 0.55 0.57 0.6876 2 

SCG 0.65 0.63 0.53 0.58 0.9212 4 

Yala 
LM 0.99 0.96 0.88 0.76 0.9067 3 
BR 0.47 NA 0.8 0.48 0.4712 2 

SCG 0.82 0.61 0.72 0.6 0.2909 10 
NA denotes not applicable. 

  
(a) (b) 

Figure 8. Cont.



AgriEngineering 2023, 5 1725AgriEngineering 2023, 5 1725 
 

 

  
(c) (d) 

Figure 8. Actual vs. predicted yields in Scenario 4 using Method 1 (a) for training; (b) for validation; 
(c) for test; (d) for all data points. 
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Figure 8. Actual vs. predicted yields in Scenario 4 using Method 1 (a) for training; (b) for validation;
(c) for test; (d) for all data points.
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Figure 9. Validation performance for the LM model trained by Scenario 4 using Method 1.

3.2. Results Obtained Using Method 2

Table 4 shows the outcomes of groundnut yield in the Anuradhapura district for both
Yala and Maha seasons, along with variations in climatic factors, using the three training
algorithms. By employing the LM training algorithm, higher r values were attained
for training, validation, and all data points, in contrast to the BR and SCG algorithms.
Moreover, using the BR algorithm, lower r values were observed for training, validation,
and all data points when compared to the LM training algorithm. Meanwhile, the SCG
training algorithm exhibited negative r values for training (−0.01), testing (−0.07), and all
data points (−0.03). Additionally, the validation MSE value was relatively lower in the LM
training algorithm compared to other algorithms, such as BR and SCG.

Due to the unsatisfactory results, the decision was made to sequentially proceed from
Scenarios 2 to 4 using the LM training algorithm. According to the outcomes shown in
Table 5, Scenario 4 emerged as the most effective way to achieve higher r values and lower
validation MSE values in comparison to Scenarios 2 and 3. Figure 10 illustrates the r and
MSE values for Scenario 4 under the LM training algorithm.

Based on the better outcomes observed in Scenario 4, the decision was made to extend
the utilization of this approach to encompass both Yala and Maha seasons for all districts
employing the three training algorithms, as presented in Table 6.
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Table 4. Accuracy of model development under Scenario 1 for Anuradhapura district using Method 2.

Algorithms
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LM 0.45 0.37 0.19 0.33 211,778.0
BR 0.36 0.09 0.22 0.27 383,710.9

SCG −0.01 0.20 −0.07 −0.03 253,457.4

Table 5. Accuracy evaluation of LM model in Scenarios 2–4 using Method 2.

Algorithms
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Scenario 2 0.10 0.77 0.99 0.30 82,393.9
Scenario 3 0.99 0.78 0.69 0.77 535,600.9
Scenario 4 0.84 1.00 1.00 0.87 2.2859 × 10−21
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Figure 10. Actual vs. predicted yields and validation performance in Scenario 4 using Method 2 (a) 
for training; (b) for validation; (c) for test; (d) for all data points; (e) for validation performance. 

Based on the better outcomes observed in Scenario 4, the decision was made to extend 
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Yala 
LM 0.76 0.87 0.86 0.77 0.2776 00 
BR 0.78 0.93 0.46 0.76 0.2831 00 

SCG 0.70 0.53 0.66 0.68 0.7562 01 
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Maha 
LM 0.72 0.99 0.99 0.81 0.0070 00 
BR 0.71 0.41 0.88 0.67 0.3920 02 

SCG 0.99 0.99 0.41 0.93 0.0038 32 

Yala 
LM 0.86 0.84 0.94 0.86 0.1520 0 
BR 0.68 0.93 0.54 0.60 0.5087 16 
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Maha 
LM 0.90 0.99 1.00 0.94 0.0010 00 
BR 0.58 0.83 −0.34 0.34 0.0599 20 
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BR 0.43 0.60 0.34 0.41 0.8918 00 

Figure 10. Actual vs. predicted yields and validation performance in Scenario 4 using Method 2 (a)
for training; (b) for validation; (c) for test; (d) for all data points; (e) for validation performance.

Table 6. The r and MSE values for different algorithms for Scenario 4 using Method 2 Yala and Maha
seasons for all districts.

District Season
Training

Algorithm
r

MSE
Num. of
RpochsTraining Validation Test All Data Points

Anuradhapura

Maha
LM 0.84 1.00 1.00 0.87 2.2859 × 10−21 00
BR 0.32 0.14 0.81 0.23 0.1900 01

SCG 0.91 0.86 0.97 0.76 0.9616 27

Yala
LM 0.99 0.94 0.98 0.95 0.0928 02
BR 0.68 0.13 0.35 0.50 0.2489 01

SCG 0.24 0.96 0.53 0.42 0.0488 00

Badulla

Maha
LM 0.94 0.92 0.63 0.89 0.2890 02
BR 0.75 0.88 0.85 0.64 0.4318 02

SCG 0.74 0.85 0.40 0.71 0.2618 04

Yala
LM 0.76 0.87 0.86 0.77 0.2776 00
BR 0.78 0.93 0.46 0.76 0.2831 00

SCG 0.70 0.53 0.66 0.68 0.7562 01

Hambantota

Maha
LM 0.72 0.99 0.99 0.81 0.0070 00
BR 0.71 0.41 0.88 0.67 0.3920 02

SCG 0.99 0.99 0.41 0.93 0.0038 32

Yala
LM 0.86 0.84 0.94 0.86 0.1520 0
BR 0.68 0.93 0.54 0.60 0.5087 16

SCG 0.56 0.78 0.91 0.57 0.4400 01

Kurunegala

Maha
LM 0.90 0.99 1.00 0.94 0.0010 00
BR 0.58 0.83 −0.34 0.34 0.0599 20

SCG 0.84 0.85 0.87 0.82 0.1204 00

Yala
LM 0.99 0.85 0.78 0.92 0.5239 03
BR 0.57 0.88 0.55 0.65 1.3866 01

SCG 0.66 0.94 0.10 0.67 0.2908 00

Puttalam

Maha
LM 0.74 0.96 0.87 0.70 0.3689 01
BR 0.43 0.60 0.34 0.41 0.8918 00

SCG 0.75 0.99 0.53 0.70 0.1296 00

Yala
LM 0.76 0.94 0.99 0.78 0.0581 00
BR 0.27 −0.13 0.93 0.34 0.2900 00

SCG 0.92 0.99 −0.50 0.57 0.0504 20
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3.3. Results Obtained Using K-Fold Cross Validation Method

Due to the limited data, K-fold cross-validation was used. According to the results of
Figure 11 and Table 7, Scenario 4 was the most effective scenario, which was the same as
Method 1 and 2. Therefore, K-fold cross-validation was used for Yala and Maha seasons for
all districts in Scenario 4, as shown in Table 8.
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Figure 11. Predicted and actual values of scenarios (a) for Scenario 1; (b) for Scenario 2; (c) for Sce-
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Scenario 1 
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Robust Linear 1.8071 × 105 
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Scenario 4 Medium Gaussian SVM 0.37245 

SVM denotes Support Vector Machines. 

Figure 11. Predicted and actual values of scenarios (a) for Scenario 1; (b) for Scenario 2; (c) for
Scenario 3; (d) for Scenario 4.

Table 7. MSE values and models of K-fold cross-validation in S1–4.

Scenario K Value Best Model MSE

Scenario 1

5

Robust Linear 1.8071 × 105

Scenario 2 Linear SVM 1.3371 × 105

Scenario 3 Linear SVM 2.7491 × 105

Scenario 4 Medium Gaussian
SVM 0.37245

SVM denotes Support Vector Machines.
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Table 8. MSE values and different models for Scenario 4 under K-fold cross-validation for Yala and
Maha seasons of all districts.

Districts Season K Value Best Model MSE

Anuradhapura Maha
5

Gaussian SVM 0.37245
Yala Bagged Trees 0.1738

Badulla
Maha

5
Bagged Trees 0.46631

Yala Coarse Gaussian SVM 0.50422

Hambantota
Maha

5
Fine Tree 0.17157

Yala Linear SVM 0.46875

Kurunegala Maha
5

Coarse Tree 0.26792
Yala Bagged Trees 0.73634

Puttalam
Maha

5
Gaussian SVM 0.45825

Yala Coarse Tree 0.45147
SVM denotes Support Vector Machines.

4. Discussion
4.1. Evaluating the Climatic Data with Groundnut Yield using Method 1

Table 2 presents the r and MSE values for three training algorithms for Maha and Yala
yields in the Anuradhapura district (Scenario 1) using Method 1. Notably, the BR algorithm
records a relatively higher r value of 0.32 compared to the SCG algorithm, which yields an
r value of 0.05 for all datasets. However, all three algorithms display higher MSE values, as
shown in Table 2. It is worth mentioning that the LM algorithm demonstrates relatively
lower MSE values for training (153,036.5), validation (144,567.3), and testing (147,216.6)
compared to the other algorithms. Considering the higher r values approaching 1 and
relatively lower MSE values compared to the SCG and BR algorithms, the LM algorithm
was selected for further analysis in subsequent equations in the research. Through a
comparative analysis of the three training algorithms, it is evident that the LM algorithm
outperforms the BR and SCG algorithms. Nevertheless, both the BR and SCG algorithms
still exhibit somewhat satisfactory results, although their results are not the best [12,49,50].
These results are further explained in Figure 4 for the LM algorithm. Only training and
validation plots are shown here (Figure 4a,b). The results were not highly accurate. Similar
trends can be seen with the BR and SCG training algorithms.

Figure 5a–d represents the coefficient of correlation values obtained for the training,
validation testing and all data points, respectively, for the LM algorithm based on Scenario
2 using Method 1. The r values for each category are recorded as follows: training (0.72),
testing (0.78), validation (−0.6), and all data points (0.46). Comparing these r values with
Scenario 1, it is observed that the LM algorithm yields higher r values, except for the
validation r value, when the three climatic factors present in Equation (5) are expanded
month-wise in Scenario 2 using Method 1. Consequently, due to the negative validation
r value in Scenario 2, we cannot fully trust the model based on these results. Although
in Scenario 2, training and testing r values increased compared to Scenario 1, we still
could not satisfy the requirements due to the negative r value in terms of validation.
Nevertheless, the overall results demonstrate that expanding the factors in the equation
leads to higher r values, indicating better goodness-of-fit and a stronger correlation between
the predicted and observed values. These findings highlight the effectiveness of the
LM algorithm in capturing the relationships between the input climatic factors and the
groundnut yield, ultimately enhancing the predictive capabilities of the model [12]. The
best validation performance in terms of the MSE is still observed to have a relatively high
value of 860,539.991 for Scenario 2 using Method 1. This represents a substantial increase
in the MSE value compared to Scenario 1. Interestingly, when the three climatic factors
expand month-wise in the equation, the MSE values exhibit an upward trend. This indicates
that the increased complexity introduced by the additional factors influences the overall
prediction accuracy (as reflected in the MSE values) [51,52]. The substantial increase in the
MSE values highlights the need for further analysis and potential refinement of the model.
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Consequently, it is crucial to carefully evaluate the trade-off between increasing the factors
to improve correlation and managing the associated increase in prediction errors [53,54].

Figure 6a–d presents the r values between actual and predicted yields in Scenario
3 using Method 1 for the LM algorithm. The r values for these datasets are reported as 0.82,
0.91, 0.95, and 0.7, for training, validation, testing and all data points, respectively. When
comparing these results with Scenario 2, it is evident that the three climatic factors expand
month-wise with Yala and Maha seasons in Equation (5) of Scenario 3 using Method 1,
which led to higher r values across all data points. This suggests an improvement in the
model’s ability to capture the underlying relationships between the climatic factors and
groundnut yield. However, it is noteworthy that despite the increase in r values, the best
validation performance in terms of the MSE still exhibits a relatively high value of 410,730.45
(refer to Figure 7). When compared to Scenario 2, this represents a substantial decrease in
the MSE value. The inclusion of additional factors in Scenario 3 using Method 1 resulted in
higher r values, indicating stronger correlations between the predicted and observed values.
Moreover, it led to a significant decrease in the MSE value, indicating improved prediction
accuracy. These findings highlight the importance of carefully considering the inclusion
of factors in the equation to strike a balance between achieving a higher correlation and
minimizing prediction errors.

In Scenario 3, all factors, including minimum temperature, maximum temperature,
and RF, are included monthly for the Yala and Maha seasons. While the r value is higher
and closer to 1, there is a need to further reduce the MSE value. To address this, the range
of the yield data was narrowed down by introducing the natural logarithm transformation,
resulting in ln(yield) values as described in Scenario 4. Upon applying Scenario 4 using
Method 1, the results indicate notable improvements. Table 3 overall presents the accuracy
of the ANN model based on the r and MSE values. The analysis was carried out using the
three training algorithms and Method 1.

According to the results obtained after training the ANN model using the LM al-
gorithm in Scenario 4, it can be concluded that the LM algorithm performs better than
the other algorithms in general. However, it is worth noting that the SCG algorithm also
showed good results in some districts based on the data.

Figure 8a–d displays the r values, which are reported as 0.95, 0.98, 0.93, and 0.86,
respectively, for training, validation, test and all data points, respectively (presented only for
Maha season in the Anuradhapura district). However, axes values are natural logarithmic
values. These findings demonstrate that, in most cases, the r values increased compared to
those obtained from Scenario 3 using Method 1. Notably, the training r value in Scenario
4 shows a decrease. Furthermore, as in Figure 9, the MSE value was significantly reduced
to 0.499. This reduction in MSE represents a substantial improvement when compared to
the MSE value obtained from Scenario 3 using Method 1. By incorporating the natural
logarithm transformation in Scenario 4 to convert the Maha season values to ln(Yield)
values, considerable enhancements were achieved in the r values. The majority of the
r values exhibit an increase compared to Scenario 3, indicating improved correlations
between the predicted and observed values using Method 1. These findings underscore the
efficacy of employing Scenario 4 for yield prediction.

4.2. Evaluating the Climatic Data with Groundnut Yield using Method 2

Table 4 presents the r and MSE values for three training algorithms for Maha and
Yala yields in the Anuradhapura district (Scenario 1) using Method 2. In Scenario 1, the
LM algorithm exhibited the highest r values for training (0.45), validation (0.37), and all
data points (0.33), and it also demonstrated the lowest validation MSE value (211,778.0)
compared with BR and SCG algorithms using Method 2. Through comparative analysis of
the three training algorithms, it was revealed that the LM algorithm outperforms the BR
and SCG algorithms.

In Table 5, the LM algorithm’s performance is shown in Scenarios 2–4 using Method
2. Except for the training r value, Scenario 4 exhibited the highest r values for validation



AgriEngineering 2023, 5 1731

(1.00), testing (1.00), and all data points (0.87), while also demonstrating the lowest MSE
value (2.2859 × 10−21) of all scenarios using Method 2. From these results, it is evident
that the LM algorithm exhibited superior performance in Scenario 4 when the log sigmoid
activation function was used in the hidden layer in Method 2. Figure 10a–d show the plots
of actual and predicted yields, and the validation performance is shown in Figure 10e,
in Scenario 4 using Method 2. When comparing the MSE values of Scenarios 1, 2, and
3, Scenario 4 exhibited a dramatic reduction when using Method 2, similar to what was
observed using Method 1. However, when the log sigmoid activation function was used
in the hidden layer of the ANN using Method 2, the MSE was dramatically reduced in
Scenario 4, in comparison to the same scenario when using Method 1.

Table 6 displays the application of three training algorithms to all districts’ Yala and
Maha seasons using Method 2. Based on the results obtained after training the ANN
model using the LM algorithm in Scenario 4 with Method 2, a clear conclusion can be
drawn that the LM algorithm generally outperforms the other algorithms. Nevertheless,
it is essential to acknowledge that the SCG algorithm demonstrated promising outcomes
in certain districts based on the available data. When comparing Method 1 and Method
2, overall better results were obtained when using the LM algorithm in Scenario 4 with
Method 2 for Yala and Maha seasons in all districts. However, it should be noted that, in
some districts, good results were achieved when using the LM algorithm in Scenario 4 with
Method 1.

4.3. Validation of the Climatic Data with Groundnut Yield using the K-Fold
Cross-Validation Method

The prediction and actual values obtained from the application of the K-Fold cross-
validation method to Scenarios 1–4 are depicted in Figure 11a–d, respectively. The corre-
sponding MSE values for Scenarios 1–4 are 1.8071 × 105, 1.3371 × 105, 2.7491 × 105, and
0.37245, which, along with their best-fit models, are displayed in Table 7. Consistent with
the LM model case in the previous analysis using Methods 1 and 2, Scenario 4 consistently
exhibited a much lower MSE value compared to Scenarios 1–3, indicating more accurate
prediction abilities. The application of the K-Fold method in Scenario 4 for Yala and Maha
seasons to all selected districts is shown in Table 8. The best-fit model was selected by
comparing and selecting the lowest MSE value according to the climatic and groundnut
yield data. Cross-validation is a widely employed method for estimating prediction er-
ror [55,56]. The machine learning algorithm’s performance can be enhanced by tuning
the hyperparameters of the K-Fold cross-validation method. The best-fit model for the
particular dataset can be observed by tuning this set of additional variables. Following the
model selection phase, the error estimation phase ensures the reliability of the results by
assessing the performance of the chosen model [57].

4.4. Previous Similar Studies

Understanding how the current study aligns with previous studies in the same field is
essential for gauging the novelty, significance, and contributions of this study. In Table 9,
we compare various aspects of our present research with those of prior related studies.
This comparative analysis covers the research scope, data sources, methodology, novel
contributions, and limitations.
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Table 9. Comparison of current research and previous related studies in this field.

References Description Employed Methodology Remarks (Comparison with the Study)

[12]

Using climatic factors, paddy
yield was predicted and
evaluated using training
models to train ANNs for

8 districts in Sri Lanka.

ANN model trained using
LM, BR and SCG

training algorithms

This research was conducted using one method.
However, in our study, we expanded the scope by
applying two distinct methods and subsequently

validated their outcomes through K-Fold
cross-validation.

[58]

In this study, artificial
intelligence technology was
employed for forecasting in
dynamic climatic scenarios,

incorporating historical
arboreal data and insights
from an ecological process-

oriented model.

Growth and yield models
and JABOWA-3

Our study utilized only actual climatic data from
previous years to train an ANN model.

Furthermore, our investigation encompassed the
application of two distinct analytical methods. In

addition to this, the K-Fold cross-validation
technique was employed to validate both methods.

[59]

The aim of this study was to
assess how climate change

affects the grain yield of
rainfed wheat in the

Kashafrood basin located in
northeastern Iran.

Hadley Centre Coupled
Model, version 3

(HadCM3)
And Canadian Climate

Centre for Modelling and
Analysis, version 2

(CGCM2)

We used actual climatic data from previous years
and the main goal was to understand the
connection between climatic factors and

groundnut yield. Given the inherent attributes of
ANNs, such as their flexibility, adaptability,

data-driven analytical capabilities, enhanced
predictive accuracy, and the ability to calibrate and

correct biases in models, we concluded that the
ANN model was the most suitable approach for
our research compared to HadCM3 and CGCM2.

[60]

This study, conducted over a
20-year period from 1993 to
2013, assessed the impact of

climatic factors, such as
monthly rainfall and

temperature, on sugarcane
productivity in Maharashtra,

revealing a non-linear
relationship that varies

seasonally.

Multiple Regression
Model

In our study, we utilized the ANN model, known
for its suitability in identifying non-linear

relationship patterns. Furthermore, we extended
the inclusion of climatic factors across Scenarios

1–4 as input variables and employed two distinct
methods.

5. Conclusions

The results obtained from the analysis indicate that the LM training algorithm outper-
forms the BR and SCG training algorithms, with higher r values and relatively lower MSE
values, when using Method 1 and Method 2. The LM training algorithm exhibits almost
perfect r values in training, validation, testing, and all datapoints compared to the other
training algorithms. A comparative analysis of the three training algorithms reveals that
the ANN model has superior performance when trained by the LM algorithm in terms
of capturing the relationships between the input climatic factors and natural logarithmic
converted values of groundnut yield using Method 1 and Method 2. Expanding the climatic
factors so that they are considered monthly in Scenarios 1–3 leads to an increase in r values,
indicating improved goodness-of-fit and a better correlation between the predicted and
observed values in Method 1 and Method 2. However, expanding the climatic factors so
they are considered monthly also resulted in a change in MSE values, suggesting larger
discrepancies between the predicted and observed values. Therefore, a careful evaluation
of the trade-off between expanding climatic factors and managing MSE is necessary. By
introducing the natural logarithm transformation in Scenario 4, the range of yield data is
narrowed down, leading to improved results, indicating higher r and lower MSE values
using the LM training algorithm in both Methods 1 and 2. The optimization techniques
used in the LM algorithm, such as the combination of the steepest descent method and
the Gauss–Newton method, contribute to its efficient convergence and ability to find the
optimal solution more quickly [61–63]. When comparing Method 1 and Method 2, it was
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observed that Method 2 achieved superior results for r and MSE values in Scenario 4,
indicating that the best performance was achieved when using the log sigmoid function
as the activation function in the hidden layer. To validate the results of Methods 1 and
2, K-Fold cross-validation was used in different scenarios. The results demonstrated that
Scenario 4 consistently yielded the lowest MSE values using the cross-validation method,
indicating improved prediction performance compared to Scenarios 1 to 3. This verified the
result of the LM algorithm when used with Scenario 4 using Methods 1 and 2. Overall the
LM algorithm proved to be the most effective in this study, offering higher r values, lower
MSE values, and faster convergence compared to the BR and SCG algorithms. The results
highlight the importance of selecting the appropriate training algorithm and considering
the inclusion of factors and transformations to improve the performance, accuracy and
predictive capabilities of the ANN model. The findings emphasize the importance of care-
fully selecting and expanding climatic factors in the modeling equation and highlight the
potential of the LM algorithm combined with sigmoid and log sigmoid activation functions
using separate methods, with K-Fold cross-validation used to validate the results.

6. Suggestions and Future Research

In the current research, several avenues for future investigations emerge. Firstly, there
is the potential to extend the analytical framework by integrating a broader spectrum
of factors beyond climatic variables. Incorporating attributes like soil characteristics,
agricultural practices, and the occurrence of pests and diseases could yield a more holistic
and accurate yield prediction model. Additionally, expanding the geographical scope
to encompass diverse tropical regions would provide a nuanced understanding of how
climatic factors impact yields in different contexts. Exploring the generalizability of the
developed methodology to various crops would enhance its versatility and practicality.
To enhance the model’s interpretability and facilitate insights for stakeholders, there is an
opportunity to combine the neural-network-based approach with interpretative techniques.
This hybridization could offer deeper insights into the complex relationships between
climatic factors and groundnut yield, making the model more valuable for decision-makers.

Moreover, considering the dynamic nature of agriculture and the evolving field of
machine learning, hybrid approaches could be explored. Integrating the current methodol-
ogy with other advanced machine learning techniques or leveraging ensemble methods
might contribute to an increase in robustness and prediction accuracy. Collaborative re-
search efforts could further refine these methods. This research sheds light on the potential
toutilize climatic factors in the prediction of groundnut yield; the field remains ripe for
further exploration. Future investigations could bridge gaps, enhance model applicability,
and elevate prediction accuracy, thus significantly contributing to sustainable agricultural
practices and food security.
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