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Abstract: Plastic contamination in marketable cotton bales, predominantly from plastic wraps used
in John Deere round module harvesters, poses a significant challenge to the U.S. cotton industry.
Despite rigorous manual efforts, the intrusion of plastic into the cotton gin’s processing system
persists. We have developed a machine-vision detection and removal system aimed at mitigating
this problem. This system employs inexpensive color cameras to detect plastic on the gin-stand
feeder apron and subsequently removes it, reducing contamination. This system, built around low-
cost ARM computers running Linux, comprises 30–50 machines and requires considerable effort to
calibrate and tune. Moreover, its operation represents a technological challenge to typical cotton
gin workers. This research presents a solution to this calibration operational hurdle by introducing
an auto-calibration algorithm that has potential to simplify the system into a plug-and-play device.
The auto-calibration system is designed to dynamically track the cotton color and utilizes frequency
statistics to avoid plastic images that could compromise the system’s performance if incorporated into
the auto-calibration process. We detail the design of the auto-calibration algorithm, which is expected
to significantly reduce the setup overhead and facilitate the system’s continuous use. This innovation
minimizes the need for skilled personnel and, therefore, is expected to expedite the system’s adoption
across the cotton ginning industry.
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1. Introduction

The pervasive issue of plastic contamination in cotton lint has swiftly escalated in
importance for the U.S. cotton industry. This urgency has been underscored by the rise in
new harvester designs that involve plastic-wrapped cotton modules, consequently leading
to a new prevalence of plastic within cotton bales–a trend noted by textile mills. U.S.
cotton classing offices have pinpointed the primary source of contamination to be the
plastic wraps used on cotton modules sourced by the novel John Deere harvesters. Despite
the industry’s robust efforts to eliminate all plastic during module unwrapping, residues
persistently infiltrate the cotton gin’s processing system [1]. Plastic contamination has
been implicated in the depreciation of the U.S. cotton’s market value. Once commanding
a premium of $0.02 (U.S.)/kg on the international market for its superior cleanliness, the
advent of plastic-wrapped modules has some economists projecting that U.S. cotton is now
trading at a discount of $0.01 (U.S.)/kg, amounting to a total loss of $0.034 (U.S.)/kg [2,3]
in comparison to relative market trading just before the introduction of the new harvesters
that wrap the cotton in plastic. When extrapolated across a typical annual cotton yield,
the projected financial burden on U.S. producers exceeds $750 (U.S.) million per annum,
prompting grave concerns among cotton growers and the gin industry [4–8]. While it is
noted that plastic contamination may not be wholly responsible for this loss, economic
analysis suggests it is a major contributor.
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In response to this critical issue, our team has developed an innovative plastic contam-
ination detection and removal system. This system harnesses the capabilities of economical
color cameras to detect plastic on the otherwise obscured dispersing cylinders of the module
feeder. This paper outlines our pioneering work towards combating the plastic contami-
nation challenge in the U.S. cotton industry. In particular, it focuses on the development
of an auto-calibration algorithm to help reduce the skill and labor required to operate
the system. Our research further identified a recurrent mechanism for the introduction
of the contamination: plastic entrapped beneath modules due to improper unloading or
unwrapping processes (Figure 1).
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Figure 1. Module feeder floor system: (a) unloading of round module onto module feeder floor;
(b) where module accidentally tipped over trapping plastic underneath it so that the crew couldn’t
remove the tail. Whenever this situation occurred, the gin crew wasn’t always able to remove all the
plastic before it went into the gin.

Which would invariably lead to large pieces of module wrap plastic becoming en-
trained onto the module feeder dispersing cylinders, Figure 2.
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Figure 2. Module feeder image capture by inspection system with plastic on dispersing cylinders.

In the course of cotton processing, the accumulation of plastic on the dispersing
cylinders of module feeders results in the disintegration of these plastic constituents into
diminutive fragments, subsequently leading to the pervasive dispersion of contaminants
within a substantial cotton volume. The optimal location for detecting and removing
these plastic contaminants is on the gin-stand feeder apron, immediately preceding its
entrance into the gin stand. This juncture is characterized by a maximally dispersed,
minimally dense cotton stream. Consequently, the feeder apron is a prime location for
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the integration of a vision system purposed with the detection and removal of plastic
contaminants contained within seed cotton. Notably, the application of such a system
is met with significant challenges, primarily due to the high-speed detection operation
necessitated by the spatial constraints of the feeder apron, which only extends to a length
of 0.4 m, within which the plastic contaminants must be detected and extricated from the
seed cotton.

The ejection mechanism utilizes a series of air-knives that blow the plastic off the
gin-stand feeder apron. The system was configured with four air-knives, and the software
was developed to spot the location of the plastic which, in turn, allows it to trigger the
correct air-knives. For plastic on the edge of the image, the software turns on both its
air-knives as well as its neighbor’s air-knife to ensure successful ejection occurs even when
plastic is straddling between two neighboring systems. The feeder apron facilitates the
progression of cotton at approximately 3 ms−1, affording the machine-vision software
a narrow window of approximately 25 ms to execute image capture and subsequent
analysis, and ultimately initiate a digital output line capable of actuating a solenoid that
facilitates the removal of plastic contaminants from the seed cotton stream. To achieve these
tasks within the constricted temporal parameters, the software was developed utilizing a
combination of custom software, written in a low-level C++ programming language, while
leveraging high-speed open-source machine-vision libraries. Laboratory and commercial
field trials provided evidence that the technology, as a system, is able to reject >90% of
plastic (excluding black, clear and white plastic). Further details on the experimental testing
will be covered in a subsequent experimental “Research” paper that will be submitted for
publication shortly.

The primary aim of this technical manuscript is to elucidate the intricacies involved in
the software architecture of a sophisticated, machine-vision guided, cotton-gin stand feeder
inspection and contaminant removal system. The system includes a machine-learning
program that automatically detects and removes plastic contamination on the gin stand.
With the proposed new algorithm, the system will be capable of automated adaptive
learning of the colors of the flowing cotton. Further, it will be able to adjust detection
performance to avoid false-positive detections when cotton’s natural constituents exhibit
colors very close to plastic contamination.

While the semi-automated approach works, when cotton conditions change; for in-
stance, the addition of green-leaf or yellow-spotted cotton bolls; then a new calibration
is needed to avoid having the system be inundated with lots of false positives. With the
addition of the plastic ejection module, these false positives each end up blowing cotton
out of the process stream and onto the gin floor which if it happens too often, becomes
such a nuisance that it is likely the gin personnel may turn off the system rendering it
inoperable. To correct the system to ignore these new non-plastic colors, a significant
amount of work is required to redo the calibration, as an end user must sort through all
the false-positive pictures and determine which ones are free of plastic and can be used
to calibrate the system and which ones it must exclude in order to obtain a valid classifier.
For example, in one of the commercial trials, 15,000 triggered plastic images were collected
across the season from 6 camera nodes. It should be noted that not all of these images are
of plastic contamination. Some of these images were duplicate occurrence images that were
taken on consecutive frames, as the plastic slides through the field of view of the camera
(typically 3 images are taken for the same piece of plastic). Other triggered pictures were
captured of the ginner’s hand and clearing stick as they were performing maintenance.
These maintenance images cannot be used in the calibration as many times the ginner’s
clothing or clearing stick has colors that could potentially match plastic contamination, so
these images must be excluded from the negative-classifier build. The number of images
that must be examined to ensure only cotton images are utilized to build the classifier can
become overwhelming, especially if the cotton has seen a recent change in normal cotton
colors such as the addition of green-leaf or yellow-spotted cotton.
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The camera nodes were set up with a single camera-node per gin stand, to provide a
sample observation of plastic contamination. Extrapolating to a complete set of images,
that would be taken for a full plastic protection system which covered the entire length of
all the gin stands (6× number of cameras); 90,000 images would be captured as potential
plastic, per season. Someone looking at running a calibration would have to delete or
sample this mass of images to find and extract images of just cotton, that were responsible
for incorrectly triggering the system. The task of sorting through all the plastic-detected
images, for clean cotton images that do not have any plastic or ginner’s clothing or brightly
colored clearing sticks, can be somewhat alleviated through automated periodic discarding
of images. However, even in a single day, a fair number of images need to be opened
and verified as clean and suitable for submission to the build-classifier. Plus, a good
classification build can benefit from having hundreds or even thousands of images, to
ensure all potential colors in the current cotton flow are represented in the classifier. A
further impediment to this operation, for the cotton ginning industry, is that this task
also requires a user to be skilled in using computers. Which unfortunately precludes this
operation from the many unskilled laborers that make up the bulk of the labor force in
the cotton ginning industry. What is needed is an easy method to obtain a calibration that
non-skilled workers can execute.

There are a few different methodologies that potentially could be utilized for the
detection of plastic images, to ensure a calibration image data set is clean and only contains
plastic-free cotton images. The first is a deep-learning AI approach, which we are currently
exploring in another research effort. The second is a statistical exclusion method that seeks
to exclude plastic images based upon frequency of occurrence. This report covers this
approach. Other potential sources of images that are not valid for use in calibration occur
when gin personnel stick their hands under the cameras during maintenance operations.
This work assumes the absence of these types of images, and work is currently ongoing
to develop a sensor to sense when these hand-intrusion events occur. This work will be
submitted for publication shortly.

An autocalibration system that dynamically tracks the cotton flow and adjusts itself
will be a significant improvement in the design of the system and is the primary objective
is this research. To achieve this auto calibration, the research developed a novel algorithm
that can dynamically track the cotton while avoiding plastic images, which if utilized in the
calibration step, would seriously degrade the performance of the system. So, the primary
objective of the algorithm is to sample current cotton flow, while avoiding plastic contami-
nation images, to provide a clean image dataset to submit to the classifier-build routines.
The development analysis and design of the autocalibration algorithm are presented in the
subsequent sections of this research report.

1.1. Technical Decision Process

The technical decision process for the evaluation of potential solutions was as follows:

i. Problem Identification: The primary problem is to protect against the inclusion of
non-cotton images into the calibration image dataset. As the inclusion of such images
can degrade the ability of the negative-classifier, utilized in our machine-vision plastic
detection system, to detect plastic. In commercial use we found three times the number
of false-positive plastic classified images to actual plastic contamination images. The
dominant source of these false-positives was gin personnel performing maintenance
operations on the gin-stand feeder. Hence, the primary objective is to find a sensor
that can detect these maintenance hand-intrusion detection, HID, events. The events
are characterized by when gin personnel stick their hands under the plastic detection
cameras. So a suitable sensor should detect when hands are placed into these inboard
positions on the gin-stand feeder apron. There are a couple of options that could be
considered a solution. Detect when a ginner sticks his hand, arm, body or a stick,
up into the feeder apron. So a beam break technology that looks across the entire
gin stand, beam-break, is one possible solution. Another is a sensor that is more
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localized and placed in near-proximity to the camera and looks down to see when an
object becomes visible. A third option would be to detect the presence of when an
operator is in the vicinity of the feeder. As when an HID event is detected, the plastic
detection system will be turned off; from an efficiency perspective, it would be ideal to
limit the number of times and duration of HID sensor triggers. As such, the first and
second options are deemed the most likely to satisfy both accurate detection while
still minimizing total detection time. As the third option will be triggered even when
the ginner is just hanging out by the feeder, which does happen quite frequently.

ii. Data Driven: The evaluation of potential HID sensors was performed by evaluating
the datasheets of potential sensors against the need.

iii. Comparison against existing solutions: in industrial environments, it is quite common
to utilize laser safety curtains. While these solutions could work, as they consist
of a paired laser array that is placed opposite of a detector array. For the position
that it would be placed into service, this design causes several issues: (1) it is a
high-vibration environment, and alignment is critical; (2) it is a location that requires
frequent periodic maintenance and if installed would likely have to be moved and
then reinstalled with subsequent alignment requirements. Given the non-critical
process operation need of the equipment, it was felt that it was unlikely that gin
maintenance workers would do a good job, if at all, of realigning the system and
ensuring it was operational. Hence, this solution was deemed unlikely to work in the
target environment.

iv. Evaluation of alternatives: during the course of the investigation, additional work
was conducted into exploring alternative approaches; the most promising of which
were: aritifical intelligence, AI, deep-learning image recognition of HID objects in
images. And depth sensing camera sensors that look down from camera position and
detect when any object is above the plane of cotton flowing down the feeder apron.

v. Timeliness: due to the rapid need for a solution, the evaluation period was accelerated,
so the most accessible and promising solution was explored first.

vi. Review and learning: as results were obtained and new sensors became available,
possible solution alternatives were re-evaluated periodically.

1.2. Economic Drivers

The economic drivers behind this design is that the current plastic detection system
requires highly skilled personnel to monitor the systems and keep them well calibrated. As
such, for the target industry this is a significant deterrent to adoption. A successful HID
sensor would allow for fully autonomous operation that would turn the system into an
appliance where you can install and mostly forget about it, other than occasional clearing
of optics.

2. Materials and Methods

The materials suitable for an HID sensor is any that can withstand high vibrations
and a high dust environment; so care was taken in the production of the prototypes to
ensure long life by providing vibration isolation and utilization of glass optics to minimize
static attraction of dust to the optics. The housings of the prototypes were 3D printed with
a thick wall design to help ensure longevity. The electronics were all manufactured with
commercial processes utilizing surface mount components to minimize unsprung mass on
the circuit boards. Inside the housings the electronics were isolated from vibration utilizing
open-cell foam and custom 3D printed soft durometer encapsulation blocks.

This section will cover the statistical basis, design, and test protocol for the proposed
auto-calibration algorithm. The algorithm is proposed to utilize frequentist statistics, to
allow for the sampling of cotton images that are statistically unlikely to have plastic con-
tamination in them. The design and development leveraged data collected at 2 commercial
cotton gins where the research deployed 10 machine-vision-based plastic contamination
monitoring stations, which were used to collect data for the duration of the 2021–2022
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cotton ginning season. The monitoring stations are the vision-only portion of the machine-
vision plastic-inspection-detection and ejection system, “PIDES” of the authors that are
described in detail in Pelletier et al. (2021 [9]). When a monitoring station observes a plastic
contaminant, it saves the image and logs the time and date in the image file name. Due to
the high-speed nature of cotton contamination monitoring, in order not to interrupt the
detection of subsequent events, the software queues each image in memory and writes
them out to file in a metered method so as not to interrupt the software’s focus on detec-
tion. This drip-feed file-writing method results in a time stamp accuracy of 1–5 s. This
time bias is anticipated to have a minor impact on the statistical assessment of the time
occurrences. It should also be noted that the high-speed camera system typically captures
1–4 images per piece of plastic, as it’s over-sampling to help in the detection of hard-to-spot
pieces that might be buried for part of the transit through the field-of-view of the machine
vision system. These extra images were included in the analysis as there’s no way for the
auto-calibration system to exclude them. The next challenge is images created by the gin
personnel performing clearing operations on the gin-stand feeder to clear tags of cotton
that get hung up. To exclude these ginner-triggered images, the system will utilize some
form of optical gate to let the algorithm know there’s a maintenance process going on, so it
must exclude any images during this time.

2.1. Statistical Basis: Poisson-Process

To enable the current semi-automatic calibration system to become fully automated,
the primary impairment to fully automatic operation is how to automatically collect images
of cotton that are free from plastic. To aid in the development of this algorithm, the
research placed 10 detection systems into 2 commercial cotton gins and tracked plastic
detection events throughout the 2021–2022 cotton-ginning season. Each detection system
was carefully calibrated using expert operators to assess the images used by the machine-
vision system’s software (Pelletier et al., 2021 [9]). The machine-vision software was
configured to save all detected plastic images and ttrack the time and date of each plastic
detection event, hereafter referred to as an “Event”. After the ginning season ended,
the data were analyzed to assess the potential for finding a means to provide separation
that would allow an auto-classification algorithm to gather ongoing cotton images while
avoiding plastic images, which would degrade the classifier’s performance. The separation
method of interest utilizes frequentist statistics, similar to how music or communication
systems remove the effect of key frequencies utilizing frequency domain filtering. To assess
this potential exclusion mechanism, the observation time of each event, for a single day,
was plotted (Figure 3). From this observation, it is clear the events are not uniformly spaced
but instead occur in clusters.

To observe the clustering nature of the events, the event time log was converted
to time duration since the last plastic event. A histogram of this data is plotted below
and shown in Figure 4. Due to the very wide span in observed durations, ranging from
secs to numerous hours on some occasions, the time data was plotted on a log scale to
allow for better observation of the occurrences. From this, it is apparent that once the
timespan exceeds 1 min, the number of occurrences is fairly uniform. This is fortuitous as it
provides flexibility in the selection of the cluster observation window, for use in the design
of an algorithm.

Using experimentally logged plastic events, when the data was plotted it was observed
that the events seemed to occur in bursts or clusters. This intuitive observation does
align with the physical system as plastic typically occurs only after a piece of plastic
gets embedded onto the module dispersing cylinder and then gets shredded, as shown
previously in Figure 2. As the initial introduction of the plastic onto the dispersing cylinder
is a random event in time, the random occurrence of a start of a cluster is a reasonable
assumption. However, once a piece of plastic has become embedded onto the dispersing
cylinder, there is a much higher probability of a plastic shedding event. Hence, the observed
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clustering of the plastic events is a reasonable model, based upon the physical nature of
the process.
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Figure 4. Histogram of waiting time between plastic events, as observed in commercial cotton gin in
2021–2022 cotton-ginning season.

To assess the clustering of plastic events, commercial observations of plastic event
logs were assessed using a sliding observation window (in time). A preliminary survey
of the data suggests similar statistics, number of occurrence events per minute, as the
window size changes from 1 to 20 min. As the longer the window duration, the greater the
number of plastic events; then to exclude the plastic based upon occurrence differences,
the algorithm will have to use a much larger number of images. To strike a balance, a
two-minute window was selected as it provides a reasonable duration in which to collect a
sufficient number of images to build a reasonable calibration, while not having so many
images to analyze that it impacts the processing power of the machine-vision node. The
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start of a cluster was noted by a pause greater than the window duration, and then all
subsequent plastic events, for the duration of the window, were assigned to that cluster
group. In assessing the clustering, a histogram of time from the initial plastic (at the start
of the cluster) is shown in Figure 4, which was constructed using a two-minute sliding
window to assess clusters. In the time domain, Figure 5 shows the time positioning and
size of clusters (also using a 2-min sliding observation window).
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Along with the timing occurrences, a histogram of the cluster sizes was also con-
structed, Figure 6.
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Figure 6. Histogram of experimentally observed cluster sizes of plastic events that occurred at a
commercial gin in the 2021–2022 cotton-ginning season.

As the potential algorithm for separating plastic images from non-plastic images
is proposed to be based on the number of occurrences exceeding a threshold level, of



AgriEngineering 2023, 5 1251

interest is to examine the Poisson-Process statistics of the cluster size. This will provide the
statistical basis to estimate an upper threshold on the expected number of occurrences of
plastic images within a selected window duration, beyond which plastic being responsible
becomes increasingly unlikely. To ensure the approach is valid, several tests were conducted
to assess if the experimentally observed number of plastic events, for a given cluster window
duration, followed a Poisson distribution.

To assess if cluster sizes followed a Poisson distribution, the experimentally observed
distribution of the cluster sizes was compared to several types of standard statistical
distribution functions. To assess the type fit to a particular distribution, a z-test was
performed. Results comparing a Poisson distribution to the experimentally observed
cluster sizes, with a two-minute window, were found to be statistically the same, with a z
value of 0.0027 (z > 2.5 is required to reject the null hypothesis that groups are the same).
A visual confirmation is also provided, by means of a probability-probability (P-P) plot,
which compares the cumulative distribution function for a Poisson-Distribution versus
the distribution found experimentally from the clustered plastic events, which is shown in
Figure 7.
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ginning season.

The final observation that supports the cluster model is to compare the statistics
of clustered observations, versus the pure random chance occurrence model. Over the
observation time of 10 days, there were 57 clusters with a mean of 3.2 events per cluster
(using a two-minute window) with a standard deviation of 3.1 events. Over an observation
time of 30 days (again two-minute cluster window), 171 clusters were found with a mean
number of events for each cluster of 3.3. For the random chance model, the mean time
between plastic events was found to be 63.76 min, (average time between plastic images
averaged across the entire ginning season). Using the Poisson-Process model for the non-
cluster randomly occurring model, the probability of having 3 events within a two-minute
window (the mean of the cluster model) was found to be effectively zero (less than 1 in
billion). As the experimental observation was for 57 clusters (two-minute window) over
10 days, Table 1, and for a 30-day observation time there were 171 clusters with a mean of
3.3 images detected, it is safe to conclude that the non-cluster random event model is not
predictive for this purpose. It should also be noted that for an algorithm trying to exclude
plastic, based on the number of occurrences, the larger the number the more conservative,
so the cluster model provides the most conservative and safest approach.
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Table 1. Cluster statistics (2-min window size), for all image detection events, from a single node,
over 10 days of observation at a commercial cotton gin in the 2021–2022 cotton-ginning season.

Cluster Sizes

count 57.0

mean 3.2

SD 3.1

min 1.0

25% quartile 1.0

50% quartile 2.0

75% quartile 4.0

max 18.0

Leveraging the knowledge that the cluster sizes follow a Poisson distribution, a
Poisson-Process model was developed to assess the potential for creating statistical separa-
tion between “plastic events” and more frequently occurring normal cotton color events.
The approach was to assess the Poisson-Process statistics of plastic events for a given
window. Then construct an algorithm that requires the number of events to exceed a
probability threshold to ensure that the color is not from a plastic image. As the mean
cluster size, for a two-minute observation window, was found to be 4.44 events, using
this as the Lambda input into a Poisson-Process model provides a probability of 1 in a
million for k = 17 events to occur. Of note is a two-minute observation window will be
repeated continuously throughout an entire ginning season. Thereby providing upwards
of 65,000 opportunities for a statistical anomaly to occur, so the collective probability for an
occurrence across a season of 90 days is reduced to 0.065, or roughly 94% probability that
the system will operate throughout the season without inadvertently introducing plastic
into a calibration. To further ensure safe operation, the algorithm will be deployed to
continuously adjust the classifier, thereby providing a short operational life, for a given
classifier. Thus, should a classifier be inadvertently created with a plastic image, there
will only be a short operational time in which the bad classifier will be operational and
potentially allow the plastic to be ignored.

To further test the hypothesis of the Poisson-Process for predicting cluster events (not
to exceed); further confirmation was sought by performing a search of plastic event images
captured at the commercial gin that had the highest number of plastic events on the gin
stand that saw the largest number of clusters. This produced a list of all the clusters, over
the longer timeframe of 30 days, in which of interest was the number of times clusters
were equal or greater in size than thresholds identified by the Poisson-Process statistics
model. These exceedance events are detailed in Table 2. From this list, it is apparent that
the Poisson-Process model is under-estimating, as the k ≥ 15 thresholds occurred once
every 7 days. This extended observation supports the Poisson-Process statistical threshold
concept but also suggests it would be prudent to use the more stringent k = 45 threshold, if
possible. The next phase of this report will examine if that high a value of k is practical, for
a two-minute sampling window, to build a classifier capable of plastic detection and very
low false-positive rates.

In summary, the observations of cluster sizes from the commercial gin suggest the
Poisson-Process model approach is valid, but the approach should consider an increase in
the threshold level. Hence, it is recommended to use the Poisson-Process k ≥ 45 levels, if
possible, to ensure the highest level of protection possible when developing and utilizing
the auto-calibration approach based upon the frequentist exclusion principle provided by
Poisson-Process modeling.
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Table 2. List of the number of observations where cluster size (2-min window size) exceeded some of
the proposed thresholds for exclusion of colors from classifier design, due to the high risk of potential
inclusion of a plastic image into the classifier build.

K≥ Number of Observations

10 14
15 4
20 3
30 2
40 2
44 0

2.2. Algorithm

To implement the Poisson-Process statistics, to ensure the exclusion of any plastic im-
ages, the statistics require that any color entered into the negative classifier
(Pelletier et al., 2021 [9]), must occur in 45 or more images within any two-minute time
window. The negative classifier utilizes L*a*b* color space and discards the luminance,
“L” channel that reduces 3-dimensional, “D”, red-green-blue, RGB, color space down to a
2-dimensional color space (Schanda, 2007 [10]). To implement the negative classifier, all the
colors of a set of cotton images, free of plastic contamination, are scanned; and all the colors
in those images are used to create a look-up-table, LUT, that provides the exclusion criterion.
If a color is in the LUT, then it is ignored as being cotton, else it triggers a detection. On
a side note: tests were conducted using multiple levels of “L”, for a multi-LUT approach
(multiple LUTs were used one for each range of L) to see if there might be some advantages
to a more detailed classifier. The tests looked at using up to five levels of “L” for a 5 LUT
negative classifier. This multi-LUT approach was tested against a rich dataset of plastic
contamination images versus cotton images free from plastic contamination. After thor-
ough testing comparing the two approaches (single-LUT versus multi-LUT), no advantage
was found for the more complicated multi-LUT approach.

To collect the images across the two-minute window, the machine-vision software
monitoring for plastic detection should be configured to save an image once every one to
two seconds. To allow for colors to be removed from the classifier, it should not differentiate
if the current classifier marks a particular image as plastic or not. So, the software is set
up for simple blind sampling of images of the cotton flowing in the field of view of the
machine-vision system. For each auto-classifier build, the sampling is structured to sample
once every two seconds for two minutes. Then, the auto-classifier analyzes the images
to build a LUT that statistically should be free from plastic images. Once the new LUT is
constructed, the program sets a flag to alert the machine-vision software that it should load
the new LUT. This process then repeats continuously, such that a new LUT is provided,
based upon the current cotton conditions, every 10 min.

The protocol for the auto-calibration algorithm starts with the build-LUT (look-up-
table) routine, from the negative classifier (Pelletier et al., 2021 [9]). For each image collected
over the two-minute window, the build-LUT routine analyzes all the colors in the image
and notes them as colors to ignore in the LUT it creates (that is used for later image
classification for plastic detection) and returns to the calling auto-calibration routine. The
auto-calibration algorithm routine then takes the returned LUT and adds each color to
build a histogram of the number of occurrences for each color. The algorithm restricts
each color occurrence, from a single image to only count once in this histogram, regardless
of how many times it occurs in any one image. Hence, a given color only counts once
per image. This is repeated for each of the images that are collected over the two-minute
window. Once all the colors, from the LUTs from each of the images are added to the
histogram, a threshold of 45 is applied to each color as the threshold for entry into the
working classifier’s LUT. For clarification on the details, Figure 8 provides a flowchart of
the auto-calibration LUT build protocol.
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To test if this is a possible protocol that will still allow for a reasonably accurate
classifier to be constructed, python code was developed (attached to this report in the
Supplementary Materials).

2.3. Test Protocol

The second part is to assess if an auto-calibration protocol can generate a classifier,
that exhibits high accuracy while minimizing the number of false positives. As the current
plastic removal system dumps the plastic, and a small amount of cotton, onto the gin
floor in front of the gin stand; when the number of false positives increases, so does the
annoyance factor. This raises the risk that the gin personnel will simply turn off the system
if the false-positive rates are allowed to become elevated. To ensure against this risk, a
fundamental criterion is to ensure low false-positive rates are a primary metric of the
system’s overall performance.

To test this proposal of using only a two-minute window by which to collect images
and then to exclude colors, but only if the colors occur in at least 45 images (Poisson-
Process exclusion criterion). To obtain images for testing, cotton with varying levels of
trash was run on a research cut-down gin-stand feeder that was fed with a conveyor.
Approximately 8000 images were collected of cotton, free of plastic, at varying cotton
trash levels. Additionally, a dataset was collected of more than 5000 images of cotton that
included plastic, sourced from the most common contamination plastics that are used
to wrap cotton modules. To build the classifier, the plastic-free cotton-only images were
randomly sub-sampled into two groups (calibration, and test). Images from the calibration
pool were utilized to create a LUT that was then used to classify the images from the test
pool. As these images do not have plastic, the metric of interest here was the number of
false positives. The partition ratio between the calibration versus test pool was 1:3. From
the calibration pool, a random time window of 2 min was selected and the images within
that 2 min window were utilized to build the classifier. To assess the number of false
positives, the classifier was utilized to assess if the images from the test pool, also from
the same 2 min window, were incorrectly classified as containing plastic. To assess the
classifier’s efficacy in the detection of plastic, the classifier was then used to predict from
the pool of images known to contain plastic contamination. The accuracy specification of
interest, in this case, is not on a per image basis but rather on a per plastic-event basis, as
the over-sampling of the machine-vision system was a designed feature to compensate
for lower image detection rates as plastic when conveyed with cotton can show up at
varying angles and varying levels of occlusion by the surrounding cotton. This over-
sampling is especially important for plastic colors that are overlapping the cotton colors,
as the incident angle of lighting varies during conveyance through the image detection
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zone, and the light angle can impact the camera perceived color and subsequently impact
the detection rate. This is especially important with most of the current plastic module
wrap colors as both the yellow and pink wraps overlap the cotton colors. So, in the
development of the original system, having multiple opportunities for detection was found
to be a critical design element in the plastic-contamination machine-vision detection system
(Pelletier et al., 2021 [9]). Hence, the primary metric of interest, and the metric that was
tested, was to determine if the new auto-classifier build algorithm could generate a classifier
that can perform as well as the original classifier.

3. Preliminary Algorithm Assessment

The software discussed in this report provides a proposed auto-calibration routine
for the machine-vision plastic monitoring-ejection system (Pelletier et al., 2021 [9]) that
is mounted on a gin-stand feeder. To provide a preliminary assessment of the algorithm,
prior to undergoing more rigorous statistically sound experimental validation, which will
be published in an upcoming scientific “Research” paper; a test was conducted that utilized
images collected on a laboratory cut-down version of a commercial gin-stand feeder with
cotton harvested on a commercial cotton harvester. For assessment, the captured images
were submitted to the algorithm. The size of the number of images utilized to build the
classifier, from the calibration pool of images, was varied to test for sensitivity for producing
false positives when performance was tested on the test-set of images. The criterion for
allowing color to enter the negative classifier was the Poisson-Process number of events,
“k”. For this preliminary assessment, “k” was set equal to 45 to provide sound rejection of
single plastic events from entering the image calibration dataset. This effectively imposes
the criteria of a color being required to have occurred at least once in each of 45 images
before that color is allowed to enter the final negative classifier LUT.

For assessment of the false-positive rate, the auto-classifier generated classifier LUTs
were constructed utilizing the following number of images, known to be free of plastic,
to build the classifier (600, 900, 1200, 1500, 2400). To reduce noise, the system is typically
run with an area threshold (below which the image is ignored) of 500 pixels, which is
approximately 10 × 10 mm. Previous testing by the authors found that sizes of small
plastic are removed by the feeder and have a very low probability of occurrence. The
results of a series of Monte-Carlo tests found the number of false positives, from a pool
of 5500 test images, to have from 0.2 to 2 false positives, using the exclusion criterion of
k = 45, Table 3. From Table 3, it is apparent that to keep a low false-positive rate, it will
be necessary to use numerous calibration images. In a two-minute window, collecting
images at 25 frames per second, this is 3000 images, which the data suggests would be the
ideal calibration image pool. Given the large number of images that must be captured and
processed, the use of a dedicated camera node is suggested, as this large processing load
will most likely interfere with a camera node’s primary purpose of detection and removal
of the plastic contaminants.

For assessment of the efficacy of the auto-classifier to detect plastic contamination
effectively, the auto-classifier generated LUT, with k = 45, was used to classify a pool of im-
ages with yellow plastic contamination. The auto-classifier built LUT detected 1405 plastic
contamination images in this dataset. The classifier was then rebuilt with k = 1, effectively
turning off the auto-classifier constraint yielding a normal classifier build. By comparison,
the normal classifier built LUT also detected 1405 plastic contamination images (area-
threshold = 100). This was repeated with area-threshold = 500, where the number of plastic
images was found to be 1350, again for both the auto-classifier as well as normal build.
Of note is that increasing the area-threshold criterion to 500 resulted in a reduction of 4%
efficacy that is exchanged for the elimination of false-positives, “FP (FP increases to 3 for
2400 image calibration set). It is the authors’ belief that this is an important trade-off as
over a two-minute window, an FP rate of 3 is 1.5 plastic ejections per minute (90 per hour),
which causes too much work for the gin personnel, which then runs the risk of having gin
personnel just turning off the system. As such, the area threshold of 500 is the current value
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that has been used in commercial prototypes as well as the units that were transferred to
commercial partners for sale into the ginning industry. It is one area, though, that would
be of interest to examine further if one were trying to get a bit more performance out of
the system.

Table 3. List of the number of false positives, from Monte-Carlo testing of an auto-calibration
generated classifier (two-minute window size) for a range of calibration images.

Number of Calibration Images 2400 1500 1200 900 600

False-Positives 0 1 1 2 2
1 1 1 1 2
0 1 1 1 2
0 1 1 1 1
0 1 1 3 3

Average 0.2 1 1 1.6 2

In summary, it appears that the main limiting feature, to the auto-classifier construction,
is not due to the Poisson-Process threshold to entry. But rather lies in the limitation of the
sample size of the images used for building the classifier. Given the large number of images
needed to eliminate the false positives, it is not surprising this is the case as k = 45 is very
much less than the 2500 images used in the construction of the classifier. So there are ample
opportunities for color duplication in the normal cotton constituents. It should be noted,
however, that the optimal number of images used to build the classifier will depend upon
the level of various constituents in a particular batch of cotton. If sticks or burs are at a
high level, their high occurrence level will provide ample opportunities to calibrate them
out; however, should they occur at a much lower level, then more images will need to be
sampled to find the rarer color occurrences. Of question is if there might be a situation
where a sporadically occurring cotton constituent begins to encroach upon the scarcity of
plastic, which would render it non-discriminable. Future research, with further commercial
field trials, will have to explore if this is an issue of concern for use of the auto-calibration.
An example image classified by the LUT created with the auto-classifier algorithm is shown
in Figure 9.
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In future work, one may find it of interest to use a longer cluster window, in order to
increase the opportunity to detect rarer cotton constituents. From the experimental cluster
statistics, from the cotton-gin stand that was found to have the highest occurrence rate for
plastic events, Table 4 provides the experimentally observed cluster statistics for various
window durations. Setting k = maximum cluster size will help to eliminate the potential
for clusters to occur that might exceed that number of events and is anticipated to be a
safe threshold criterion for color entry into an auto-classifier LUT for the window duration
of interest.
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Table 4. List of the cluster-count statistics for various window durations.

window (minutes) 30 20 10 5 2
count 55 61 78 88 110
mean 10.5 8.5 8.2 6.4 4.7

median 5.0 4.0 4.0 4.0 3.0
SD 19.0 14.0 13.8 9.7 5.0

P97.5 76.7 57.5 49.5 27.8 19.8
maxima 105.0 80.0 82.0 61.0 29.0

4. Conclusions

The auto-calibration algorithm was tested on images collected on a cut-down, 305 mm
width, version of a commercial gin-stand feeder using one of the machine-vision detection
nodes from the authors previously reported on machine-vision plastic-inspection-detection
and ejection system, “PIDES” (Pelletier et al., 2021 [9]). The auto-calibration system has the
potential to substantially alleviate all the work required to calibrate and tune the system by
eliminating the bulk of the required labor involved in the calibration process. The prelimi-
nary algorithm assessment confirms the approach can produce a quality classifier while also
avoiding the accidental introduction of an image containing plastic contamination, which
would render the classifier ineffective. A Poisson-Process model was developed based upon
an entire ginning season’s worth of observations at commercial gins. The performance
of the classifier produced by the auto-classification was found to produce a false-positive
rate of 0.2 per hour, which is deemed suitable for inclusion of upcoming field testing and
commercial trials for more rigorous experimental validation. Future research will examine
the efficacy of the classifier produced by the auto-calibration routines in comparison to
the original semi-automated classification process that requires personnel to manually
search image files to find suitable calibration images free from plastic contamination. The
auto-calibration system is anticipated to save gin personnel a significant amount of work
as well as ensure optimal operation of the PIDES camera nodes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriengineering5030079/s1. The software source code files are
available along with this technical note online and are released into the public domain as Open-Source
Software, following the licenses of the Open-Source libraries that were utilized in the crafting of the
source code. Typically they are under an MIT or GNU Open-source license, check import module
licenses for details. The code is written in python and utilizes standard Open-Source numerical,
statistical, and machine-learning libraries.

Author Contributions: Conceptualization, M.G.P., G.A.H. and J.D.W. and N.K.; methodology, M.G.P.,
G.A.H., J.D.W. and N.K.; software, M.G.P.; validation, M.G.P.; formal analysis, M.G.P.; investiga-
tion, M.G.P., G.A.H. and J.D.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received funding from Cotton Incorporated, Cary, NC 27513, USA. under
Grant 18–239.

Data Availability Statement: See Supplementary Materials.

Conflicts of Interest: Mention of a product or trade name in this article does not constitute an
endorsement by the USDA-ARS over other compatible products. Products or trade names are listed
for reference only. USDA is an equal opportunity provider and employer.

References
1. Pelletier, M.G.; Holt, G.A.; Wanjura, J.D. A Cotton Module Feeder Plastic Contamination Inspection System. AgriEngineering 2020,

2, 280–293.
2. Devine, J. Cotton Incorporated Economist. Interview 6 January 2020.
3. Barnes, E.; Morgan, G.; Hake, K.; Devine, J.; Kurtz, R.; Ibendahl, G.; Sharda, A.; Rains, G.; Snider, J.; Maja, J.M.; et al. Opportunities

for Robotic Systems and Automation in Cotton Production. AgriEngineering 2021, 3, 339–362.

https://www.mdpi.com/article/10.3390/agriengineering5030079/s1
https://www.mdpi.com/article/10.3390/agriengineering5030079/s1


AgriEngineering 2023, 5 1258

4. Blake, C. Plastic Contamination Threatens U.S. Cotton Industry. Southwest Farm Press. 24 May 2013. Available online: https:
//www.farmprogress.com/node/319085 (accessed on 5 July 2020).

5. Adams, G. A Very Serious Matter. Cotton Farming. 3 August 2017. Available online: https://www.cottonfarming.com/cottons-
agenda/a-very-serious-matter/ (accessed on 5 July 2020).

6. Ramkumar, S. Plastic Contamination Not Just a Cotton Problem. Cotton Grower. 13 September 2018. Available online: https:
//www.cottongrower.com/opinion/plastic-contamination-not-just-a-cotton-problem/ (accessed on 5 July 2020).

7. O’Hanlan, M. With Cotton Harvest Underway, Farmers Fear Grocery Bags, and Plastic Contamination. Victoria Advocate. 25
August 2019. Available online: https://www.victoriaadvocate.com/news/local/with-cotton-harvest-underway-farmers-fear-
grocery-bags-plastic-contamination/article_9f8c90b0-c438-11e9-9c61-03c92ae351a7.html (accessed on 5 July 2020).

8. Adams, G. A Reputation at Stake. Cotton Farming. 1 October 2019. Available online: https://www.cottonfarming.com/cottons-
agenda/a-reputation-at-stake/ (accessed on 5 July 2020).

9. Pelletier, M.G.; Holt, G.A.; Wanjura, J.D. Cotton Gin Stand Machine-Vision Inspection and Removal System for Plastic Contami-
nation: Software Design. AgriEngineering 2021, 3, 494–518.

10. Schanda, J. Colorimetry Understanding the CIE System; Wiley-Interscience, John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; p. 61,
ISBN 978-0-470-04904-4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.farmprogress.com/node/319085
https://www.farmprogress.com/node/319085
https://www.cottonfarming.com/cottons-agenda/a-very-serious-matter/
https://www.cottonfarming.com/cottons-agenda/a-very-serious-matter/
https://www.cottongrower.com/opinion/plastic-contamination-not-just-a-cotton-problem/
https://www.cottongrower.com/opinion/plastic-contamination-not-just-a-cotton-problem/
https://www.victoriaadvocate.com/news/local/with-cotton-harvest-underway-farmers-fear-grocery-bags-plastic-contamination/article_9f8c90b0-c438-11e9-9c61-03c92ae351a7.html
https://www.victoriaadvocate.com/news/local/with-cotton-harvest-underway-farmers-fear-grocery-bags-plastic-contamination/article_9f8c90b0-c438-11e9-9c61-03c92ae351a7.html
https://www.cottonfarming.com/cottons-agenda/a-reputation-at-stake/
https://www.cottonfarming.com/cottons-agenda/a-reputation-at-stake/

	Introduction 
	Technical Decision Process 
	Economic Drivers 

	Materials and Methods 
	Statistical Basis: Poisson-Process 
	Algorithm 
	Test Protocol 

	Preliminary Algorithm Assessment 
	Conclusions 
	References

