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Abstract: Poultry farming plays a significant role in ensuring food security and economic growth in
many countries. However, various factors such as feeding management practices, environmental
conditions, and diseases lead to poultry mortality (dead birds). Therefore, regular monitoring of
flocks and timely veterinary assistance is crucial for maintaining poultry health, well-being, and
the success of poultry farming operations. However, the current monitoring method relies on man-
ual inspection by farm workers, which is time-consuming. Therefore, developing an automatic
early mortality detection (MD) model with higher accuracy is necessary to prevent the spread of
infectious diseases in poultry. This study aimed to develop, evaluate, and test the performance of
YOLOv5-MD and YOLOv6-MD models in detecting poultry mortality under various cage-free (CF)
housing settings, including camera height, litter condition, and feather coverage. The results demon-
strated that the YOLOv5s-MD model performed exceptionally well, achieving a high mAP@0.50
score of 99.5%, a high FPS of 55.6, low GPU usage of 1.04 GB, and a fast-processing time of 0.4 h.
Furthermore, this study also evaluated the models’ performances under different CF housing settings,
including different levels of feather coverage, litter coverage, and camera height. The YOLOv5s-MD
model with 0% feathered covering achieved the best overall performance in object detection, with the
highest mAP@0.50 score of 99.4% and a high precision rate of 98.4%. However, 80% litter covering
resulted in higher MD. Additionally, the model achieved 100% precision and recall in detecting hens’
mortality at the camera height of 0.5 m but faced challenges at greater heights such as 2 m. These
findings suggest that YOLOv5s-MD can detect poultry mortality more accurately than other models,
and its performance can be optimized by adjusting various CF housing settings. Therefore, the
developed model can assist farmers in promptly responding to mortality events by isolating affected
birds, implementing disease prevention measures, and seeking veterinary assistance, thereby helping
to reduce the impact of poultry mortality on the industry, ensuring the well-being of poultry and the
overall success of poultry farming operations.
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1. Introduction

Poultry mortality refers to the death of domestic birds within a flock or population,
which might occur due to various reasons, which include diseases (infectious and non-
infectious) [1,2], management practices [2–4], and environmental factors [4–6]. Among
these various mortality-causing factors, the main cause of mortality is infectious disease.
Common infectious diseases that can cause high mortality rates are avian influenza, New-
castle disease, infectious bronchitis, infectious bursal disease, and coccidiosis [5]. Infectious
diseases must be diagnosed early to control disease spread across a flock and provide
treatment to decrease substantial mortality rates. On the other hand, non-infectious fac-
tors such as overcrowding [6], neoplasia [1], extreme temperatures [7], poor nutrition [1],
and poor ventilation [7] might also contribute to mortality inside poultry housing. For
example, heat stress can cause chickens to die in large numbers, especially during hot
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weather conditions [8]. Similarly, overcrowding can lead to stress, disease transmission,
and poor air quality, resulting in high mortality rates [6]. Preventing mortality requires a
comprehensive approach that involves good management practices, adequate nutrition,
and disease prevention and control. For example, farmers should ensure that birds have
adequate food, water, and a clean house with a well-ventilated environment. It is also
important to implement biosecurity measures, such as limiting access to the flock to prevent
the introduction of infectious agents. Therefore, understanding the factors contributing to
mortality and implementing good management practices can help reduce mortality rates
and improve health and welfare.

In order to stop the spread of infectious diseases and reduce the influence of other fac-
tors that can cause mortality, early mortality detection (MD) in poultry is crucial. According
to Wibisono et al. [9], infectious diseases are the primary causes of bird mortality. Therefore,
early detection of sick or dying birds can help farmers promptly isolate affected birds,
implement preventive disease strategies, and seek veterinary assistance when necessary.
Additionally, early MD allows farmers to minimize further losses by culling remaining
birds to prevent the spread of disease or other risk factors. Therefore, regularly monitoring
flocks and seeking veterinary assistance at the first sign of illness or mortality is critical in
ensuring the health and well-being of poultry and the success of poultry farming operations.
That is why a good MD model is required for early MD and removing dead birds from
the farm.

Automatic identification of dead birds in commercial poultry production can save
time and labor while providing a crucial function for autonomous mortality removal
systems, which eliminates the need for manual identification and helps streamline the
identification process. High-resolution thermography has been investigated as a potential
method for early MD in poultry production [10]. Previous studies that have utilized MD
in broilers involved extracting features and utilizing a pairwise approach to capturing
thermal and visual spectrum images [11]. Similarly, Zhu et al. [12] developed a detection
model based on Support Vector Machine (SVM) and achieved 95% accuracy in identifying
dead birds. The combination of artificial intelligence and sensor networks using five
classification algorithms (SVM, K-Nearest Neighbors, Decision Tree, Naïve Bayes, and
Bayesian Network) achieved a 95.6% accuracy in identifying dead and sick chickens [13].
However, equipping sensors to each bird in commercial cage-free (CF) housing is not a
feasible or cost-effective approach. Comparative studies have shown that the YOLO model
outperformed the SVM model in balanced object datasets [14], emphasizing the importance
of implementing image analysis techniques for early mortality detection in the industry
using the YOLO model.

YOLO models have proven to be highly effective in detecting small objects such
as laying hens [15–18] and eggs [19]. For instance, these models have successfully de-
tected individual hens and their distribution [15,18], and achieved higher accuracy in
identifying problematic behaviors such as pecking [16] and mislaying [17]. In the context
of dead chicken removal, the implementation of YOLOv4 reached a system accuracy of
95.24% [20]. Another study utilized YOLOv4 and a robot arm under specific lighting
conditions (10–20 lux), resulting in a precision range of 74.5% to 86.1% [21]. While the
YOLOv5 model demonstrated high precision with an accuracy decrease of 0.1% in detecting
dead broilers in a caged broiler house [22], it lacked comprehensive details, and the hous-
ing conditions and bird type differed significantly from our current study. Therefore, our
research aimed to compare the performance of the YOLOv5-MD and YOLOv6-MD models
in detecting dead hens in CF housing settings, considering factors such as camera height,
litter condition, and feather coverage. The objectives of this study were to (a) develop
and test the performance of different deep learning models; and (b) evaluate the optimal
YOLO-MD model’s (e.g., the YOLOv5-MD and YOLOv6-MD models) performance under
different CF housing settings.
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2. Materials and Methods
2.1. Experimental Design

This study was conducted at the University of Georgia (UGA) in Athens, GA, USA,
which involved four identical CF research facilities measuring 7.3 m L × 6.1 m W × 3 m H
each. These facilities house approximately 200 Hy-line W36 birds raised from
day 1 to day 420. The houses were equipped with feeders, drinkers, perches, nest boxes,
and lighting, and the floors were covered with pine shavings measuring 5 cm in depth
(Figure 1). The ventilation rates, temperature, relative humidity, and light intensity and
duration were all automatically controlled using the Chore-Tronics Model 8 controller
(Chore-Time Equipment, Milford, IN, USA). Previous research studies have described the
housing system details [15,16]. The animal management and utilization in this study were
carefully monitored and approved by the Institutional Animal Care and Use Committee
(IACUC) at the UGA, demonstrating a commitment to ethical and responsible research
practices.
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2.2. Image Data Acquisition and Pre-Processing

The primary data acquisition tool used in this study to record the mortality of hens was
a night-vision network PRO-1080MSB camera (Swann Communications USA Inc., Santa
Fe Springs, CA, USA) with six cameras installed in each room, mounted at approximately
3 m above the litter floor. Additionally, two cameras were placed at 0.5 and 1 m above
the ground floor. The video recording was performed every day for 24 h using a digital
video recorder (DVR-4580) from 50 to 60 weeks of age (WOA), while mortality data was
collected when birds were found dead. Eight hens were found dead during that period,
and video was recorded of those hens. The video files were saved in .avi format, with a
1920 × 1080-pixel resolution and a sampling rate of 15 frames per second (FPS). This data
acquisition method provided a comprehensive and high-quality dataset for analyzing the
behavior of the hens, which was instrumental in drawing meaningful conclusions from
this study.
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The CF housing consists of litter and feathers on the floor [23,24], which might affect
the MD of hens. In addition, dustbathing or other hen activities might cover the dead bird
fully or partially, so this research considers every scenario. To accurately represent the
conditions in CF housing, this study employed video recording to capture the dead hens
in different environmental conditions with varying degrees of litter and feather coverage.
This research selected three litter and feather coverage levels—0% (no litter or feather
coverage), 50% (50% of hen’s body covered with litter or feathers), and 80% (80% of hen’s
body covered with litters or feathers)—as detailed in Table 1. The decision to not exceed
80% was motivated by the potential discrepancies between actual hen mortality and the
appearance of hen images beyond that level of coverage. The resulting dataset accurately
depicts the different litter and feather covering levels in CF housing, enabling the deep
learning model to perform effective MD.

Table 1. Experimental settings for evaluating the optimal YOLO mortality detection models.

Settings Parameters Levels

Camera Height 0.5 m, 1 m, 3 m
Feather Feather covering 0%, 50%, 80%
Litter Litter covering 0%, 50%, 80%

In order to expand our image dataset and increase the number of samples, we em-
ployed various strategies. Firstly, we positioned the dead birds in different orientations,
including vertical, horizontal, upward-facing, and downward-facing positions. Secondly,
we placed the birds in various locations within the hen house, such as near perches, drinkers,
feeders, walls, and in between perches, feeders, and drinkers. Additionally, we varied
the housing conditions by covering the birds with different depths or percentages of litter
or feathers. Finally, each time we encountered a dead bird, we recorded 10-min videos
capturing the different orientations, placements, and housing conditions.

The video data collected in this study were processed by converting them into in-
dividual images in .jpg format using the Free Video to JPG Converter App (version 5.0).
Subsequently, the obtained images were augmented to create a large image dataset. Tech-
niques such as rotation, blurring, flipping, and cropping were employed in this study for
image augmentation. These methods allowed the generation of additional variations of the
collected images, increasing the diversity and size of the dataset for training, validating,
and testing the detection models. The images were then labeled in YOLO format with the
assistance of the image labeler website (Makesense.AI). This labeling process was essential
in ensuring the images were correctly identified and classified for use in the deep learning
model. Furthermore, the resulting labeled dataset was essential in developing and training
the model for effective and accurate MD (Figure 2). The labeled-image dataset consisting
of 9000 images was divided into three sets for training, validation, and testing purposes,
with approximately 70%, 20%, and 10% of the total images allocated to each set, respec-
tively (Table 2). The MDModel image dataset was used to compare YOLOv5s, YOLOv5m,
YOLOv5x, YOLOv6s, YOLOv6m, and YOLOv6l-relu models.

Table 2. Labeled-image datasets used for mortality detection models under various settings.

Class Original Dataset a Train (70%) Validation (20%) Test (10%)

MDLitter 3000 b 2100 600 300
MDFeather 3000 b 2100 600 300
MDHeight 3000 b 2100 600 300
MDModel 2200 1540 440 220

a Original datasets comprise images containing live and dead hens, with the number of live hens ≥ the number of
dead hens in each image; b 1000 image datasets for each level; MD—mortality detection.
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2.3. YOLO Architecture

Object detection has been an active area of research in computer vision. Among
the popular algorithms in this domain, YOLO (You Only Look Once) algorithms have
successfully detected objects such as hens with higher accuracy and in real time [15–17,19].
YOLOv5 and YOLOv6 are two variants of the YOLO algorithm, each with its unique
network architecture. In this study, the best YOLOv5-MD (YOLOv5s-MD, YOLOv5m-MD,
and YOLOv5x-MD) and YOLOv6-MD (YOLOv6s-MD, YOLOv6m-MD, and YOLOv6l-
relu-MD) models were used to compare. Both the YOLO-MD models’ architectures were
mainly classified into three major parts: backbone, neck, and head. These YOLOv5-MD
and YOLOv6-MD models differ in parameters within types. The detailed architecture
of YOLOv5-MD and YOLOv6-MD used for this research is shown in Figures 3 and 4,
respectively.

2.3.1. Backbone

The main difference between YOLOv5-MD and YOLOv6-MD is the backbone net-
work architecture. YOLOv5-MD uses a variant of the efficientNet architecture, while
YOLOv6-MD uses a pre-trained CNN with an efficientRep backbone or CSP-Backbone
for MD. EfficientNet is a family of neural networks designed for efficient and effective
model scaling [25]. YOLOv5-MD’s backbone uses convolutional layers at different scales
to perform feature extraction from labeled MD image datasets with the help of Spatial
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pyramid pooling (SPP), which helps it achieve good performance on object-detection tasks
while being lightweight and efficient [26]. On the other hand, YOLOv6-MD’s backbone net-
work is typically a pre-trained CNN with SPP and efficientRep architecture [27]. SPP helps
max-pooling layers reduce the feature map’s size while maintaining the most important fea-
tures for MD. EfficientRep backbone is designed to both effectively use the computational
resources of hardware such as GPUs and possess robust feature representation abilities
compared to the CSP-Backbone utilized by YOLOv5 [28]. In summary, YOLOv5-MD and
YOLOv6-MD use different backbone network architectures for feature extraction, affecting
their efficiency and performance on object-detection tasks.
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2.3.2. Neck

The neck component is essential in YOLOv5-MD and YOLOv6-MD for connecting
the backbone to the MD head. YOLO-MD versions employ convolutional layers in their
necks, but their specific architectures differ. YOLOv5-MD’s neck utilizes a Feature Pyramid
Network (FPN) that includes a top-down and bottom-up path, which captures multi-
scale objects with high accuracy [29]. In contrast, YOLOv6 features a more efficient neck
design known as the Rep-PAN Neck [30] that utilizes convolutional, pooling, and up-
sampling layers to manipulate the backbone network’s features to the desired scale and
resolution for the heads. This Rep-PAN Neck design is based on hardware-aware neural
network architecture concepts that balance accuracy and speed while optimizing hardware
resources [31]. Therefore, YOLOv5-MD and YOLOv6-MD differ in their neck designs,
with YOLOv5-MD using an FPN and YOLOv6-MD utilizing a more efficient Rep-PAN
Neck design.

2.3.3. Head

The head component in YOLOv5-MD and YOLOv6-MD is responsible for the fi-
nal stage of object detection by generating predictions from the extracted features. In
YOLOv5-MD, the head comprises fully connected layers and a convolutional layer that
predicts the detected mortality objects’ bounding boxes and class probabilities. In addition,
it has three output layers: a detection layer that predicts object class probabilities, a localiza-
tion layer that forecasts bounding box coordinates, and an anchoring layer that defines the
prior box shapes and scales [32]. The YOLOv5-MD head is designed to be resource-efficient,
enabling real-time object detection across a range of devices. On the other hand, YOLOv6’s
Decoupled Head design focuses on improving hardware utilization while maintaining



AgriEngineering 2023, 5 1027

high detection accuracy [28]. Overall, YOLOv5-MD and YOLOv6-MD have different head
structures, but they aim to generate accurate and efficient object detection predictions.

2.4. Performance Metrics
2.4.1. Precision

Precision measures how many MDs the system made were correct and is calculated
by dividing the true positives (TP) and the sum of TP and false positives (FP).

Precision =
TP

TP + FP
or

true mortality detection
all detected bounding boxes

(1)

where TP, FP, FN, and TN represent true positives (mortality is present in the image, and
the model predicts it correctly), false positives (mortality is not in the image, and the model
detects it), and false negatives (mortality is present in the image but the model unable to
detect it), and true negatives (mortality is not present in the image and not detected by the
model). In detail, visualization for evaluation metrics is mentioned in Figure 5.
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2.4.2. Recall

Recall measures how many of the actual mortality hens in an image were correctly
identified by the system. It is calculated as the ratio of TP to the sum of TP and false
negatives (FN):

Recall =
TP

TP + FN
or

true mortality detection
all ground truth bounding boxes

(2)
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2.4.3. Mean Average Precision

Mean Average Precision (mAP) is a widely used metric in object-detection tasks that
measures the system’s overall accuracy across multiple object classes [33]. It is calculated
based on the precision and recall values at a certain threshold or over a range of thresholds.
The most common mAP calculation is based on the area under the precision–recall curve
and is calculated as follows:

mAP =
∑C

i−1 APi
C

(3)

where APi is the average precision of the ith category, and C represents the total number of
categories of MD.

2.4.4. F1-Score

The F1-score is a harmonic mean of precision and recall and is a widely used metric in
machine learning for evaluating the performance of binary classification models [34]. It
combines precision and recall metrics into a single value that indicates the balance between
them. The formula for the F1-score is as follows:

F1 Score =
2× Recall × Precision

Recall + Precision
(4)

In other words, the F1-score gives equal importance to precision and recall, with a
higher score indicating better performance. For example, a perfect F1-score of 1.0 indicates
that the model has both perfect precision and recall, while a score of 0 indicates that the
model has either low precision or recall or both.

2.4.5. Loss Function

The YOLO-MD object-detection algorithm trains the model using a custom loss func-
tion called the “YOLO Loss” (Figure 6). The YOLO-MD Loss combines several different loss
terms that penalize the model for incorrect predictions and encourage it to make accurate
predictions [35]. For example, the YOLO-MD Loss consists of the following loss terms:

• Objectness loss: This loss term encourages the model to correctly predict whether a
mortality object is present in each grid cell. Objectness loss (λobj) is computed between
the predicted and ground truth objectness scores by the binary cross-entropy loss [36].

• Classification loss: This loss term encourages the model to correctly classify the
detected mortality objects into their respective classes. Classification loss (λcls) is
computed as the cross-entropy loss between the predicted class probabilities and the
ground truth class labels [36].

• Regression loss: This loss term penalizes the model for incorrect predictions of the
bounding box coordinates and dimensions [36]. Regression loss (λreg) is computed
as the sum of the smooth L1 loss between the predicted and ground truth x and
y coordinates, the smooth L1 loss between the predicted and ground truth width
and height, and the focal loss between the predicted and ground truth confidence
scores [29]. The YOLO-MD Loss is computed as the weighted sum of the mortality
objectness loss, classification loss, and regression loss. In general, the importance of
each term in the loss function is determined by the user, who sets the corresponding
weights accordingly. The YOLO Loss is minimized during the training process using
backpropagation and gradient descent, with the goal of reducing the overall prediction
error of the model [37].

Loss = λ1Lcls + λ2Lobj + λ3Lloc (5)

Smooth L1 (x) = 0.5 ∗ x2, i f |x| < 1 (6)
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|x| − 0.5, otherwise (7)
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2.5. Computational Parameters

A high-performance computational configuration was utilized to detect mortality.
This study employed various configurations on the Oracle cloud to train, validate, and test
the image datasets. It has been observed that a higher number of computational parameters
can enhance the model’s speed and detection accuracy. The system configuration comprises
a 64-core OCPU for CPU processing and four NVIDIA®A10 GPUs, each with 24 GB of
memory, for GPU acceleration. The operating system employed is Ubuntu 22.10 (Kinetic
Kudu), and the accelerated environment is NVIDIA CUDA. The system has ample storage
capacity with 1024 GB of memory and two 7.68 TB NVMe SSD drives. Torch 1.7.0, Torch-
vision 0.8.1, OpenCV-python 4.1.1, and NumPy 1.18.5 were the libraries utilized in the
system. Together, these components create a high-performance system capable of efficiently
running deep learning models for various applications, including MD. In addition, the
YOLO model underwent 100 epochs of training with a batch size of 16.

3. Results
3.1. Model Comparison

This study proposed the YOLO-MD model as an effective solution for detecting dead
hens in the CF housing system. Table 3 shows the performance and results obtained
from validating the proposed models’ effectiveness in this experiment. When comparing
different object-detection models, it is important to consider various metrics such as recall,
FPS, mAP, GPU usage, and time taken [16,17]. For example, YOLOv5x-MD achieved the
highest recall rate of 100%, indicating that it can recall target objects in an image, while
YOLOv5s-MD had a recall rate of 98.4%. On the other hand, frames per second (FPS)
measures the number of frames processed by the model per second, indicating the speed
at which the model can operate. YOLOv5s-MD had the highest FPS (i.e., 55.6) among the
models we developed, which means faster image processing than other models, while
YOLOv5x-MD had the lowest FPS (i.e., 29.6), indicating slower processing. In terms of
accuracy, mAP is a common metric that measures the model’s ability to detect objects of
different sizes and types [15]. YOLOv5-MD models achieved higher mAP scores of 99.5%
than YOLOv6 models at a confidence threshold of 0.5. However, at higher confidence
thresholds, the mAP scores decreased for YOLOv6 models, indicating that the models
struggled to detect smaller or more complex objects. Lastly, GPU usage and time taken
are important factors when selecting a model [16,17]. YOLOv5x-MD required the most
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GPU usage of 4.95 GB, while YOLOv5s-MD required the least at 1.04 GB. YOLOv5s-MD
also processed data in the least amount of time at 0.4 h, while YOLOv6l_relu-MD took the
longest at 1.2 h. The training time was lowest because of the model with a smaller size and
parameters used [16,17]. Thus, when selecting a model with higher performance, speed
and efficiency are crucial, and YOLOv5s-MD is the preferred option in this study. This
study’s findings might provide researchers and producers with assistance in selecting the
best MD model or choosing the model for their specific object detection. In addition, they
can select based on their priorities for detection performance metrics such as speed, GPU
usage, and efficiency.

Table 3. Performance metrics of different YOLO Models used for mortality detection using
2200 images in each of the six models.

Data Summary YOLOv5s-MD YOLOv5m-MD YOLOv5x-MD YOLOv6s-MD YOLOv6m-MD YOLOv6l_relu-MD

Recall (%) 98.4 99.6 100.0 81.6 82.4 82.8
mAP@0.50 (%) 99.5 99.5 99.5 98.9 99.0 98.8

mAP@0.50:0.95 (%) 82.3 81.9 81.1 77.1 78.2 78.3
GPU usage (GB) 1.04 1.83 4.95 - - -

FPS 55.6 42.9 29.6 51.3 43.8 40.9
Training time (hrs) 0.4 0.5 1.0 0.5 0.8 1.2

where, GPU—graphics processing unit; GB—Gigabyte; mAP—mean average precision; FPS—frame per second;
MD—mortality detection; hrs—hours.

3.2. Environmental Condition

The CF houses mainly consist of litter and broken feathers from the birds [23]. How-
ever, in the presence of such litter, the dead bodies of the birds can get covered or buried,
making it difficult to detect them accurately. This situation can lead to the decay of hens,
resulting in unpleasant odors and various other issues. Therefore, early MD is crucial
to prevent such problems, especially if a bird dies due to a severe issue. Therefore, this
study considers the factors of litter and feathers in detecting dead birds with deep learning
models in research CF houses.

3.2.1. Feathers Covering

Table 4 summarizes the performance of YOLOv5s-MD with different feather percent-
ages (e.g., 0%, 50%, and 80%). Precision remains relatively consistent across all three models,
with recall being the highest at 100% for 50% feather covering. The mAP and F1-scores also
show a slight decrease with an increased feathering percentage. The mAP@0.50 score is
highest for 0% feather covering at 99.4% and decreases to 98.0% for 80% feathered covering
(Figure 7a). The mAP@0.50:0.95 score shows a significant decrease in performance with
increased feathering, with 0% feather covering achieving a score of 65.5%, compared to
41.6% for 80% feather covering (Figure 7b). Hence, 0% feather covering resulted in higher
MD rates (Figure 8). The mAP scores always increased with increasing epochs from 0
to 100 with batch size 16. However, there is a trade-off between feathering and overall
mAP performance, with higher feathering resulting in decreased performance. Therefore,
early mortality detection or proper cleaning and maintenance of CF housing is required to
increase detection.

Table 4. Performance of YOLOv5s model on mortality detection at different feather conditions.

Data Summary YOLOv5s-MD 0% Feather YOLOv5s-MD 50% Feather YOLOv5s-MD 80% Feather

Precision (%) 98.4 97.4 97.5
Recall (%) 97.5 100.0 96.6

mAP@0.50 (%) 99.4 97.7 98.0
mAP@0.50:0.95 (%) 65.5 47.7 41.6

F1-score 98.0 98.0 95.0

where, mAP—mean average precision; MD—mortality detection; 0% feather—no feather coverage; 50%
feather—feather covered up to half of the whole body of the hen; 80% feather—feather covered up to 80%
of the whole body of the hen.
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3.2.2. Litter Coverage

In this study, the performance of YOLOv5s-MD was evaluated in litter detection
scenarios with three different levels of litter coverage in the image: 0%, 50%, and 80%
(Table 5). YOLOv5s-MD achieved the highest precision rate of 99.9% when the litter
coverage was 80%, indicating its accurate detection of dead hens on the litter floor through
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image analysis. Conversely, the models with 50% litter coverage had the lowest precision
rate of 97.1%, suggesting difficulties in accurately detecting dead hens when clutter is in the
image. However, all models demonstrated high recall rates ranging from 97.5% to 100%,
indicating their ability to accurately recall target objects in the image. YOLOv5s-MD with
80% litter coverage achieved the highest mAP@0.50 (Figure 9a) and F1-score of 99.5 and
100%, respectively, indicating overall better detection performance. Similarly, models with
higher litter coverage (80%, Figure 9b) exhibited higher mAP@0.50:0.95 scores, suggesting
potential challenges in detecting smaller or more complex objects due to behaviors such
as resting, sitting, and dustbathing, which may appear similar at certain points. The 80%
litter coverage model performs better, providing more visibility of a small hen’s body
parts. Models for the hens with no or less litter coverage may interpret their activities as
dustbathing, sitting, or sleeping, which can affect the model’s overall performance. Overall,
the results indicate that YOLOv5s-MD can effectively detect litter-covered dead birds in
images, but the level of litter coverage in the image may impact its performance (Figure 10).

Table 5. YOLOv5s model performance on mortality detection across various litter accumulation
conditions.

Data Summary YOLOv5s-MD 0% Litter YOLOv5s-MD 50% Litter YOLOv5s-MD 80% Litter

Precision (%) 98.4 97.1 99.9
Recall (%) 97.5 100.0 100.0

mAP@0.50 (%) 99.4 98.6 99.5
mAP@0.50:0.95 (%) 65.5 40.8 65.6

F1-score 98.0 99.0 100.0

where, mAP—mean average precision; MD—mortality detection; 0% litter—no litter coverage; 50% litter—litter
covered up to half of the whole body of the hen; 80% litter—litter covered up to 80% of the whole body of the hen.
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3.2.3. Camera Settings

Camera height plays a crucial role in determining object-detection performance. When
comparing the performance of YOLOv5s-MD at various camera heights from the dead
hen, the model achieved the perfect precision, recall, and F1 score of 100% when detecting
objects at the height of 0.5 m (Table 6). As the camera height increased to 1 m and 3 m, the
recall rate decreased to 99% and 94.8%, indicating the model’s difficulty detecting objects
at greater heights. Regarding accuracy, YOLOv5s-MD demonstrated high mAP@0.50 at
two camera heights, with the highest mAP of 99.5% achieved at 0.5 m and 1 m (Figure 11a).
However, the model’s ability to detect smaller or more complex objects decreased at
higher confidence thresholds, as evidenced by the declining mAP@0.50:0.95 from 85.3%
to 59.9% (Figure 11b). Overall, the YOLOv5s-MD model performed well across different
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camera heights, with the best results achieved at 0.5 m (Figure 12). Nevertheless, the
model’s performance deteriorated at greater camera heights, which should be considered
for specific applications. For instance, additional labeled-image datasets are necessary to
enhance the model’s performance at higher or ceiling heights. In addition, the ceiling-height
camera plays a significant role in capturing a larger portion of the CF house compared
to the ground camera [17]. Therefore, integrating the optimal ground height and ceiling
height in a system can contribute to better detection and removal of dead birds from the
farm.

Table 6. YOLOv5s model performance on mortality detection at different camera heights from the
dead hen.

Data Summary YOLOv5s-MD Height 0.5 m YOLOv5s-MD Height 1 m YOLOv5s-MD Height 3 m

Precision (%) 100.0 99.8 99.0
Recall (%) 100.0 99.0 94.8

mAP@0.50 (%) 99.5 99.5 98.2
mAP@0.50:0.95 (%) 85.3 72.4 59.9

F1-score 100.0 99.0 97.0

where, mAP—mean average precision; MD—mortality detection; height 0.5, 1 m, and 3 m—camera height placed
above the mortality hen.
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The limitation of this study was the use of limited mortality image datasets, which
might not fully represent the variable conditions found in commercial CF housing. How-
ever, these datasets provide an overview of such conditions. Additionally, there were
instances where resting birds were mistakenly identified as dead birds, highlighting the
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need to introduce a thermal camera for accurate identification. The thermal camera would
measure the hen’s body temperature, allowing differentiation between live and dead birds.
In future research, it would be valuable to test and implement this study in real-world
commercial CF houses, evaluating the model’s performance under authentic conditions.
Furthermore, to enhance the MD model, further work can be conducted using larger im-
age datasets incorporating a thermal camera and temperature and humidity sensors as
additional tools.

4. Conclusions

This study developed and tested different YOLO deep learning models and identified
that YOLOv5s-MD had higher accuracy, faster processing time, and lower GPU usage
compared to other models. Additionally, this study revealed that feathering percentage
and litter coverage impacted the model’s performance, with 0% feather covering achieving
the highest mAP@0.50 and 80% litter covering reaching the highest precision, recall, and
mAP. Furthermore, the model’s performance varied with camera height from the target
object, with the best precision, recall, and mAP achieved at 0.5 m.

The main achievement of this study is establishing a foundation for developing a mor-
tality scanning system specifically designed for commercial CF houses. The YOLOv5s-MD
model, developed and validated in this research, shows promise for accurately detecting
and monitoring mortalities within the CF housing system. In the future, the focus will be
on implementing the YOLOv5s-MD model in a robot or utilizing a movable camera device
capable of navigating commercial CF housing systems. This implementation will enable
real-time testing and evaluation of the model’s performance in practical scenarios. Addition-
ally, as necessary, the model will undergo further refinement and improvement to enhance
its accuracy and reliability. This study aims to successfully integrate the YOLOv5s-MD
model into a functional mortality scanning system for commercial CF houses through these
future investigations. This contribution will lead to improved monitoring and management
of mortalities, ultimately enhancing welfare and productivity in the poultry industry.
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