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Abstract: This paper presents a machine learning approach to automatically classifying post-harvest
vegetal species. Color images of vegetal species were applied to convolutional neural networks
(CNNs) and support vector machine (SVM) classifiers. We focused on okra as the target vegetal
species and classified it into two quality types. However, our approach could also be applied to other
species. The machine learning solution consists of several components, and each design process
and its combinations are essential for classification quality. Therefore, we carefully investigated
their effects on classification accuracy. Through our experimental evaluation, we confirmed the
following: (1) in color space selection, HLG (hue, lightness, and green) and HSL (hue, saturation,
and lightness) are essential for vegetal species; (2) suitable preprocessing techniques are required
owing to the complexity of the data and noise load; and (3) the diversity extension of learning image
data by mixing different datasets obtained under different conditions is quite effective in reducing
the overfitting possibility. The results of this study will assist AI practitioners in the design and
development of post-harvest classifications based on machine learning.

Keywords: vegetal classification; machine learning; support vector machine (SVM); convolutional
neural network (CNN); color space

1. Introduction

Over the past few decades, machine learning approaches using imagery methodologies
have made significant progress in many practical areas, particularly in agriculture, such
as machine-learning-based plant species recognition [1,2], plant disease identification [3],
and medicinal plant leaf segmentation [4]. The field of agriculture has benefited immensely
from the growth of technologies, such as machine learning, the IoT, big data, networking,
and computer vision. These technologies have not only paved the way for better farming
approaches but also reinforced the backbone of agriculture by introducing more sustainable
approaches for harvesting and marketing, and they have contributed to increasing farmers’
revenues over time [5,6].

Compared to many other fields, the agricultural domain is subtle and more prone
to failure because of several factors that humans cannot control. For example, soil types
vary from place to place, and unpredictable weather and rainfall are correlated with the
propagation of certain bacteria and pests. Hence, implementing technologies in agriculture
is not a simple task, because scientists must ensure the reproducibility of their techniques.

However, using AI-based systems, farmers can save a significant amount of time and
achieve economic gains. As proven by Asif et al. regarding the economic impact of intro-
ducing climate-smart agriculture (CSA) to farmers [6], rural zones can benefit greatly from
developing crop disease detection systems and even post-harvest classification systems.

Several studies have been conducted to demonstrate the effectiveness of machine
learning algorithms in detecting and classifying multiple plant diseases [7]. These primarily
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use convolutional neural networks (CNNs) [8,9]. The authors of [9] considered the number
of CNN layers and attempted to design shallow layers. Outdoor environments can be
obstacles to accuracy because of uncertain lighting conditions. Therefore, Ref. [10] focused
on plant detection in dynamic outdoor environments. In [11], the authors proposed a
method to identify pests by using a residual CNN based on transfer learning because pests
are regarded as one of major causes of crop loss worldwide.

Although machine learning researchers have developed many models based on CNNs,
there is still room to improve the CNN model design or apply other models in each specific
problem domain. In [12], a disease detection technique for corn leaves was developed, in
which individual lesion features were extracted by image processing. In [13], a machine
learning approach incorporating qualitative feature analysis was developed, which utilized
support vector machines (SVMs) and the k-nearest neighbor (KNN) algorithm. The study
in [14] reviewed remarkable approaches to plant disease detection.

We consider a machine-learning-based post-harvest classification for vegetal species in
this paper. In our previous work [15], we proposed a machine learning approach to classify
okra into two categories and presented preliminary experimental evaluation results. The
machine learning solution consists of several components, and each design process and its
combinations are essential for prediction quality. Therefore, we carefully investigate their
effects on the classification accuracy in this study.

In this paper, we enhance the method in [15] using color space changes and several
other methods to extract useful vegetal features. The experimental evaluation shows the
following: (1) in color space selection, HLG and HSL are essential for vegetal species—
they are based on combinations of hue, lightness, and green factor for HLG as well as
hue, saturation, and lightness for HSL; (2) suitable preprocessing techniques are required
owing to the complexity of the data and noise load; and (3) the diversity extension of
learning image data by mixing different datasets obtained under different conditions is
quite effective in reducing the overfitting possibility. Finally, the images were passed to the
CNN and SVM classifiers. Using both classifiers, our model achieved accuracy exceeding
90%. The results of this study will assist AI practitioners in the design and development of
post-harvest classifications based on machine learning.

2. Post-Harvest Classification
2.1. Datasets

This study focused on the okra classification problem. Okra is divided into two quality
types, A and B, according to the Japan Agricultural Cooperatives’ (JA) standards. Table 1
lists the requirements for these two quality types. Type A refers to okra that meets the
highest requirements and is sold at the highest price. Type B refers to low- to mid-range
okra sold at lower prices targeting different customers.

Table 1. Okra quality types and size classes (relying on JA specification).

Quality
Type

Size
Class

Length (cm) Bent (cm) Dots Color

L 9.5 to 10.5
A

M 8.0 to 9.5
≤0.5 no dots dark green

L 9.5 to 10.5
B

M 8.0 to 9.5
≤1.0 ≤ten dots light green

As mentioned previously, the okra image dataset used in this study comprises two
quality types: A and B. Their numbers depend on the harvesting results; usually, the number
of type A images is greater than that of B. The dataset used in this study was obtained
under two conditions. Images of different okra products were captured at different dates
and times. The different conditions required to obtain image data affect the classification
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process. Therefore, to evaluate this effect, we distinguished the image datasets captured
under different conditions using the notations DS1 and DS2.

Table 2 summarizes the data for each quality type used in the experiment. Only minor,
but significant, differences were observed between the two subsets. For example, the
okra orientation is vertical on DS2 and horizontal on DS1. The lighting conditions also
differed between the two subsets. Additionally, okra colorization was different among the
two subsets.

Table 2. Data sizes in the experiments

Dataset Quality Type Number of Data

DS1
A 3293

B 3039

DS2
A 252

B 506

The images of okra had 640 × 480 pixels, regardless of their object orientation. Fur-
thermore, okra was not necessarily centered within the image frame. All okra images were
taken from the same distance and camera angles. Moreover, a white tray was used as a
unified background to limit noise and enhance the okra features. Practically, it is difficult to
obtain images under the same conditions at different dates and times. To avoid this bias,
we generated a new dataset from the raw dataset. In addition, the dataset contains multiple
types of background noise. In our experiment, shade constituted a major issue, as it was
often mistaken for okra. The shades of the objects in the shooting environment were also
included in specific images (Figure 1). These residues in the images are also considered
noise because they can potentially interfere with image processing. The data conversion is
explained later.

(a) Shade as noise (b) Background noises
Figure 1. Okra with background noises

2.2. Classification Algorithms

Algorithms are critical components of the classification pipeline used in this study.
They are described as finite sets of defined sequences that are used to solve problems or
classes of problems. These algorithms can be complex and help solve complex problems;
however, they always retain a set of logical and unambiguous sequences. Moreover, with
the improvements and contributions made in programming languages, such as Python and
MATLAB, they are straightforward to implement and design at the user’s will. Because our
study aims to address classification problems, we focused mainly on the most widely used
classifiers for image analysis and classification: ANN and SVM. We narrowed this down
to a CNN for ANN. We then compared its performance on accuracy metrics to the SVM
classifier and other predominant CNN models (through transfer learning and fine-tuning),
such as the residual network (ResNet-50).
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2.2.1. Convolutional Neural Network

Among the many machine learning algorithms used in image classification, the CNN
is one of the most recurrent and remarkably good-performing ones; it implements deep
learning to facilitate image processing [9,16,17]. It adds another layer of complexity and
hierarchical data representation that was not achievable with traditional machine learning.
This progress has been partly made possible by the development of hardware and informa-
tion processing technology, which allows the utilization of massive amounts of data [9].

In this study, we emphasize preprocessing techniques owing to the complexity of the
data and noise included. However, these algorithms are well built and consider several
classification factors. Specifically, we compared and evaluated multiple algorithms and
tested over 50 possible combinations of CNN architectures to identify the most suitable
architecture for our case study. The most important aspects of the CNN architecture that
we focused on are as follows:

1. Diversity within the training data (shuffling, data augmentation, dropout);
2. Performance metrics (accuracy);
3. Runtime environments;
4. Others (learning rate, early stopping).

Small datasets, such as the one used in this study, are susceptible to overfitting. To
eliminate this possibility, we combined a set of preprocessing and training techniques.
First, we shuffled the data by increasing their size from 2000 to 6332, adding 1000 at every
iteration. This shuffling ensured that the dataset remained diverse and unbiased. Moreover,
it allowed us to analyze the correlation between the training set size and accuracy. During
shuffling, we ensured that the training set was randomly selected from the data pool in
every loop. As a second measure to avoid overfitting, a data-augmentation layer was added
to the training layers. The principle of data augmentation using the Keras library involves
generating new images based on the current training images. Data augmentation can be
performed using various parameters. In this study, two parameters were selected: Random-
Zoom and RandomRotation. Using these parameters, the newly generated images were
rotated and zoomed versions of the input images. Therefore, there was greater diversity
within the training dataset. Finally, a dropout layer was added to the CNN architecture.

Figure 2 shows the architecture the models used in the experiments. Constructing
CNNs in Python offers several possibilities. To enhance the performance of our model, we
utilized certain functionalities offered by Keras, such as the learning rate for modulating
learning and the early stopping of monitored metrics.

OKRA
Image

128*128
Pooling

Convolution 
(128*3*3)

+
ReLU

Convolution
(64*3*3)

+
ReLU

2*Convolution
    (32*3*3)

+
ReLU

Fully
connected

+
ReLU

Flatten
+

ReLU

Pooling Pooling

Type
A

Type
B

Figure 2. CNN model architecture.

2.2.2. Support Vector Machine

One classifier that is often compared to neural networks in the leaf recognition lit-
erature [18,19] is the SVM. In this study, we compared our designed neural networks to
histogram of oriented gradients and support vector machines (HOG-SVMs). HOGs are
used for feature reduction; in particular, they are used to lower the problem’s complexity
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while maintaining as much variation as possible. A HOG, also known as a feature descrip-
tor, is a representation of an image or image patch that simplifies an image by extracting
useful information. Therefore, the complexity of the okra input was reduced to 15%, and
the classifier only worked with the 3600 most important HOG features. To calculate the
HOG, we split the inputs into blocks and grids. Similar to the grids in neural networks,
the image can be divided into 6 × 6 pixel blocks. The magnitude of the gradient in a
given number of directions was calculated for each block. We executed this conversion
or transformation by considering an array of data and transforming the items into the
final product. This requires grayscale input in advance. Grayscaling is described in the
preprocessing section.

We then proceeded to HOGTransformer and finished with StandardScaler. Before
proceeding to the HOG transformation, we split our data into test and training sets. We
used the train–test–split function from scikit-learn, with 80% of the total set for training and
the remaining for the test set. For the SVM, we did not shuffle the data as with the CNN but
used the stratified parameter of train–test–split to ensure equal distributions in the training
and test sets. The stratified parameter train–test–split ensures that the distribution of classes
within the training and testing data is well balanced. Furthermore, the train–test–split
function in scikit-learn provides a shuffle parameter to address this issue when performing
the split. The random state seeds the shuffle such that it is random but reproducible.

After these preprocessing steps, we used the stochastic gradient descent (SGD) ap-
proach to classify okra. SGD is used as a deep learning approach to optimize many convex
optimization problems. However, to optimize the model, we compared it with an SVM
(SVC) through a grid search using GridSearchCV on scikit-learn. The CV in GridSearchCV
stands for cross-validation. This technique combined with a train–test–split allowed us
to avoid bias as much as possible. Cross-validation consists of splitting the dataset into
k folds and each fold is used as a test set, whereas the rest is used as a training set and
provides the average. The grid search automates the process of optimizing the parameters.
Therefore, rather than manually optimizing the parameters individually, we utilized a grid
search and fed it into our parameters to obtain the best parameters for this classification.
The parameters used in the grid search were the HOG transformer and classifier. The
score method used to evaluate and compare different parameters is the “accuracy” metric.
Through this grid search, we obtained the best pipeline parameters within our settings and
the highest possible accuracy.

2.2.3. Fine-Tuned Convolutional Neural Network

ResNet-50+ is our okra classification version of the ResNet-50 to classify post-harvest
okra. ResNet-50 is a convolutional neural network with 50 layers pretrained on the Ima-
geNet database, which contains over a million images of multiple objects. It incorporates
many categories of plants and vegetables but not okra. However, the network learned
to detect many features within the plants and vegetables, which may be advantageous
for this study. The model was fine-tuned to fit the case study. Fine-tuning pretrained
models saves programming time and processing resources efficiently because they contain
crucial information.

We proceed to fine-tune by “freezing” all model layers except the output layer because
it was programmed for tasks specific to the previous model. Therefore, these layers
were marked as false. Next, new trainable layers were added before adding an output
layer specific to our classification. Our new model adds 10 new layers, including 4 batch
normalization layers. After these 10 layers, we added an output layer, which is specific
to this classification problem. It is also important to note that our dataset must match the
existing model datasets. Particularly, we needed to adapt the size of the images to ResNet’s
and did not use any other color spaces besides RGB.
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2.3. Image Segmentation

The goal of segmentation is to simplify and/or change the representation of an image
into an input that enhances the features [20]. In this study, we performed segmentation
through two processes. The first involved creating a new dataset and the second was used
as a preprocessing layer before training the inputs.

2.3.1. Image Segmentation for the Creation of Secondary Datasets

We created a new dataset from raw images using image segmentation techniques. The
images were resized, and noise was reduced. We generated a new dataset as follows:

• Grayscaling;
• Blurring;
• Edge detection;
• Center point calculation (from extreme points);
• Largest x and y axis values calculation;
• Attribution of largest values to all inputs.

Grayscaling images evaluate the amount of light on image pixels and convert the RGB
image into a gray monochrome image that goes from black for the weakest intensity to
white for the most vigorous intensity (this step is further explained in the next section).
After this conversion, we blurred the inputs, which removed high-frequency content such
as the noise and edges. Blurring the image will allow the machine to detect whatever object
is within the frame, rather than external edges.

We applied an edge detection algorithm using the OpenCV Library in Python. The
detection function returns a set of four extreme points. These points represent the lowest
and highest edges of x and y axes, respectively. Thus, the four edge coordinates of each okra
are named right, left, top, and bottom for the highest value on the x axis, the lowest value
on the x axis, the highest value on the y axis, and the lowest value on the y axis, respectively.
Using (right + left)/2 and (top + bottom)/2, we determined the coordinates of the center
point of each okra. We then compared the edge coordinates of all okra and cropped them
using the longest distance on the x axis (max((right+ left)/2)) and the longest distance on
the y axis (max((top + bottom)/2)). We have shown two examples of not-centered okras
in Figure 3. This segmentation technique centers the okra and simultaneously reduces
background noise.

(a) Not centered okra (b) Not centered okra
Figure 3. Emplacement of okras.

2.3.2. Image Segmentation for the Preprocessing Pipeline

We also applied different image segmentation techniques during preprocessing before
training the model. These segmentation techniques reduce background noise and partition
images according to their pixel values to detect certain features easily. The k-means cluster-
ing technique is used for image segmentation. It segments images into several clusters [21].
A single cluster is a set of pixels that are close to each other and different from the other
cluster values. In particular, it is a collection of data points aggregated because they share a
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particular set of similarities. We start by defining the number k, which refers to the number
of classes or clusters required. Then, we define the number of iterations of this process and
the proximity between points.

This process is repeated 100 times (100 iterations). Moreover, we varied the number of
clusters from 2 to 14 with only even numbers, as shown in Figure 4a–c, which include 3
examples. After comparing the number of clusters and their correlation with accuracy, we
noticed that beyond six clusters, the accuracy did not improve significantly. It peaked in six
clusters in almost all the experiments. Thus, in this study, we define the standard number
of clusters as k = 6.

(a) 2 clusters (b) 4 clusters (c) 10 clusters
Figure 4. Segmentation examples with k-means for k = 2, 4, and 10 (cluster number k was varied
from 2 to 14 in the experiment).

2.4. Image Preprocessing

Efficient preprocessing helps to detect and emphasize the most critical features. Con-
sidering the classification standards set by the Japan Agricultural Cooperatives (JA), we
implemented multiple preprocessing techniques and compared them to determine the best
fit. The first preprocessing layer consists of image cropping and resizing.

2.4.1. Image Resizing

The purpose of using image resizing is to reduce the number of pixels in an image.
Therefore, this process accelerates computation by reducing the number of pixels. However,
image resizing may also lead to poor performance. By reducing the number of pixels, we
also reduced the number of features or pieces of information contained in the images. Thus,
image resizing should be performed carefully, considering time efficiency and performance.
In addition, an unknown threshold exists for the image-resizing scale. However, resizing
the values proportionally to the initial image preserves the same proportional features.
Images used in DS1 and DS2 are 476 × 465.5 and 498.5 × 468 on average, respectively. For
faster computation, the images were resized to 128 × 128 pixels. For comparison, we also
tested other frames, such as 50 × 50 and 64 × 48.

2.4.2. Background Noise Removal

The dataset contains multiple types of background noise (Figure 1). In addition, the
white tray used as a unifying background contained patterns and textures that could
be detrimental to the feature detection of okra. Therefore, noise must be reduced with-
out infringing on proper feature detection. To remove maximum noise, we proceeded
as follows:

• Grayscaling;
• Binary transformation;
• Edge detection (of okras).

The grayscale conversion of the images into geometrical data was implemented to
optimize the contrast and intensity of the images [4]. The initial color image shown in
Figure 5a is converted into a grayscale image, as shown in Figure 5b. The thresholding
process creates a binary image from the grayscaled image to translate the value of the image
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to its closest threshold. Therefore, it has either one or two possible values for each pixel, as
shown in Figure 5c. Grayscaling also reduced the noise compared to the images in Figure 1.

(a) Initial color okra image (b) Grayscaled image

(c) Binary background image (d) Background-noise-removed
image (combined (a) and (c))

Figure 5. Background noise removal process.

After grayscaling the inputs and enhancing the pixels, we converted them into binary
images [4]. The output binary image was subjected to area labeling to produce an identified
region. Areas with pixel values above 0.46 out of 1 become equal to 1 (white), and the
rest are equal to 0 (black). The value of 0.46 differentiates the foreground and background.
Positive values were then substituted with their RGB counterparts. Figure 5c shows an
example of the binary transformation and Figure 5d depicts the combination of the binary
background and color okra image.

2.5. Effects of Color Space in Image Classification

Color spaces are widely considered in image classification [21–24] because they pro-
vide a variety of visual aspects, such as lightness, value, and saturation, which better depict
certain features within images. We used color space transformation algorithms to generate
other color spaces, such as HSL, YCrCb, and HSV, from the RGB dataset. We then compared
the performances of these color spaces with that of the original RGB.

Hue, saturation, and lightness (HSL) are alternative color representations that can be
obtained or deduced from RGB color space using conversion algorithms. This color space
is represented by a cylindrical shape with a hue in the angular dimension, starting at 0°
and ending at 360° in red (R). The starting and ending points were green (G) at 120 °and
blue (B) at 240°. From the center moving horizontally to the edges is the saturation (S), also
known as the intensity. This describes the degree of purity of hues. Throughout the vertical
axis, the lightness (L) ranges from top to bottom, with white (value 0) at the top and black
(value 1) at the bottom.

Hue, saturation, and value (HSV) are, similar to HSL, an alternative representation of
RGB. As a color space, it is commonly used in machine vision and shares many similarities
with HSL. It is represented by a half-cylindrical shape and is sometimes described as
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the bottom half of the HSL. Its hue is in the angular dimension, starting from 0° at R
and rotating by 360° to R. G and B are proportionally distributed in the middle at 120°
and 240°, respectively. The saturation of HSV also describes the purity of the hue. The
main differences between HSL and HSV are their lightness and value. This value can be
considered as the quantity of light thrown onto an object. The complete presence of light
turns an object white, whereas the total absence of light makes it dark or black. Compared
to lightness, which measures white or black mixed with a pure hue (representing RGB),
the value better represents the amount of light in an object. Thus, in some cases the color
intensity of the objects was better.

YCbCr is a family of spaces widely used in image processing and classification. Y is
the luma (brightness in an image) component to which the human eye is very sensitive,
and Cb and Cr are the blue- and red-difference chroma components, respectively. Similar to
the HSL color space, the values of Y, Cb, and Cr can be obtained through the mathematical
conversion of the RGB values. This color space can provide a large spectrum of information
regarding an image that cannot be accessed using the standard RGB color space. Moreover,
as mentioned in a study on explicit image detection [25], YCbCr can achieve better object
detection than RGB.

HLG is a combination of hue, lightness, and green. We consider this mix important
because it considers many important visual features among the JA features. For example,
green intensity and lightness are essential features because they differ between types A and B.

Using the Python library OpenCV, we created tuples containing each color space band
and merged them with other color space bands to reproduce a new color space combination
varying from three-dimensional to four-dimensional spaces. An example is the HRG image,
which is made by merging H for HSL and R and G from RGB. The experimental results
in the next section represent the best-performing color space mixes between RGB, HSL,
and YCrCb.

3. Experimental Evaluation

In this section, we compare the accuracy metrics for different combinations of color
spaces, image segmentation techniques, and datasets used in training and testing.

3.1. Summary of Experimental Results

Table 3 shows the experimental results for twenty-three cases from E1 to E23 in the
column “Case Ex”, where the five color spaces RGB, YCbCr, HSL, HLG, and HSV were
employed and two classifiers CNN and SVM were used. In the experiment, we utilized
two datasets DS1 and DS2, shown in Table 2, for training and testing, as shown in the
columns “Train DSx” and “Test DSx”, respectively. We split the dataset into training
and testing parts at a ratio of 80:20 when the same dataset was used for training and
testing. We compared inputs without and inputs with segmentation based on k-means
clustering for each combination indicated by the column “k6 Seg”. We only dropped the
backgrounds indicated in the column “BS” in the table for case E3 (Figure 5d). The table
cells show the classification accuracy as a percentage and are colored with a heat map,
with higher accuracy in deeper red and lower accuracy in deeper blue. White indicates
moderate accuracy.

Cases E1–E5 in Table 3 show the accuracy of the classification of the combinations of
either train DS1–test DS1 or train DS2–test DS2 with the CNN classifier. Meanwhile, cases
E6 to E9 correspond to the results of the combinations of either train DS1–test DS2 or train
DS2–test DS1. Similarly, for the SVM classifier, cases E10–E13 show the results of either
train DS1–test DS1 or train DS2–test DS2, while cases E14–E17 correspond to results of the
combinations of either train DS1–test DS2 or train DS2–test DS1. Finally, cases E18–E23
show the results when we use mixed datasets of DS1 and DS2 for training.

We used the ResNet-50+ model as a classification algorithm in the second experiment
and tested it on the mixed datasets DS1 and DS2. ResNet-50 was initially trained only on
RGB. Because RGB holds different information from other color spaces, only RGB images
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would fit this model. Therefore, only three experiments were conducted using ResNet-50+,
as listed in Table 4.

Table 3. Experimental results (accuracy for each experimental settings).

Case
Ex

Train
DSx

Test
DSx BS k6

Seg
Color Spaces

Model
RGB YCbCr HSL HLG HSV

E1
1 1

86.6% 92.4% 93.1% 98.1% 96.5%

CNN

E2 X 54.4% 97.8% 100.0% 95.0% 92.6%
E3 X 89.1% 93.5% 97.8% 93.5% -

E4 2 2 98.0% 93.4% 97.4% 98.0% 95.0%
E5 X 92.1% 96.0% 96.7% 96.2% 92.1%

E6 1 2 63.3% 63.3% 70.0% 67.9% 60.3%
E7 X 67.0% 67.0% 70.0% 80.0% 62.8%

E8 2 1 57.0% 48.0% 52.5% 56.6% 49.4%
E9 X 48.0% 48.0% 49.0% 48.9% 49.8%

E10 1 1 87.9% 87.8% 87.7% 86.7% 89.7%

SVM

E11 X 89.4% 87.1% 91.1% 90.5% 90.1%

E12 2 2 99.3% 96.7% 98.7% 98.0% 96.0%
E13 X 97.4% 96.0% 94.7% 91.4% 91.5%

E14 1 2 66.5% 66.5% 66.5% 64.1% 63.5%
E15 X 63.3% 63.3% 70.1% 67.9% 71.9%

E16 2 1 48.0% 48.0% 48.0% 51.0% 48.0%
E17 X 48.6% 48.1% 41.6% 48.8% 51.4%

E18
Mix

Mix 85.5% 92.1% 91.5% 89.8% 94.1%
CNNE19 1 95.4% 93.7% 97.5% 97.6% 97.6%

E20 2 78.4% 86.1% 84.6% 83.6% 80.5%

E21
Mix

Mix X 88.7% 90.5% 90.0% 89.1% 90.1%
CNNE22 1 X 96.4% 96.6% 98.2% 96.7% 96.6%

E23 2 X 78.2% 72.4% 82.9% 86.4% 79.7%

Avg. for all cases 77.3% 79.3% 81.3% 81.6% 79.1%
Avg. except for different DSs 87.8% 91.5% 93.5% 92.7% 91.6%

Table 4. Evaluation of RGB color space with the ResNet-50+ model (mixed dataset, DS1, and DS2).

Case
Ex

Train
DSx

Test
DSx

Color Spaces
Model

RGB YCbCr HSL HLG HSV

- 1 1 90.9% - - - -
ResNet-50+- 2 2 95.4% - - - -

- Mix Mix 92.9% - - - -

3.2. Comparison

This section compares the results shown in the above table from the five viewpoints:
color spaces, region-based segmentation, background-segmented images, datasets, and
classification algorithms.

3.2.1. Color Spaces

After comparing five color spaces over 110 experiments, we observed the significance
of the color space in image classification. In most comparisons between the CNN and SVM
models, the RGB color space had lower accuracy scores than the other color spaces. For
example, if we analyze cases E1 to E3 in Table 3, RGB scores approximately 10% less than
the best performant color space for cases E1 and E3. In the case of segmented images, E2
achieved a score that was over 40% lower. However, RGB performed as well as the other
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color spaces when DS2 was used as the training set in cases E4 and E5 and, in some cases,
slightly better.

The most effective color spaces for classifying okra were HSL and HLG. In cases
E1–E7, E11, E14, E16, E19, E22, and E23, these two color spaces achieved the highest scores
and approximately a 10% improvement in some cases compared with the standard RGB
color space. Moreover, even in cases where HSL and HLG did not perform the best, the
difference in accuracy between these color spaces and the best-performing color space was
not significant. Thus, by comparing the color spaces of multiple algorithms and training
datasets, we can confirm that color space transformation is highly beneficial for good image
classification. HSL and the combination of HLG emphasize lightness and color intensity
variations better than the other color spaces. Essential features, such as color and the
presence of dots, are better depicted by these colors, which could potentially explain why
they generally perform better.

3.2.2. Region-Based Segmentation

As with the color spaces, we analyzed the effectiveness of image segmentation in
solving image classification problems. We confirmed that the effects of image segmentation
vary depending on the training dataset based on the results presented in Table 3. When
DS1 was used for training, the use of segmentation led to a better accuracy in classification
compared to the results obtained without segmentation. Conversely, the classification
without segmentation achieved a better accuracy when DS2 was used for training. The
raw data for DS1 and DS2 were obtained from different products but from the same
farm on different dates. From a practical perspective, different datasets obtained under
different conditions must be used. Therefore, we need to use segmentation carefully as a
preprocessing step according to the characteristics of the datasets.

3.2.3. Background-Segmented Images

In many studies, the segmentation of the image background has often been correlated
with a higher accuracy. This technique helps reduce the amount of background noise.
Therefore, the less noisy the image, the better the classification. However, segmenting
backgrounds using the different techniques in this study did not prove effective. It always
performs lower than k-means clustering. Therefore, we drop the background segmentation
at the early stages and only maintain k-means clustering.

3.2.4. Datasets

We achieve a good classification accuracy when we use DS1(DS2) as a training set and
test it on unseen DS1(DS2) data. However, the train DS1–test DS2 or train DS2–test DS1
often led to low scores, as shown in cases E6-E9 and E14-E17. To address this issue, we
used the mixed dataset. As explained above, the mixed dataset contains both the DS1 and
DS2 datasets. Thus, the mixed dataset addresses the subtle differences between the two
categories. The results of the experiments show that using the mixed dataset for training
resulted in high scores on tests DS1, DS2, and mixed. Moreover, the mixed dataset did not
require as many images as the training set. Even when the training set was smaller than
the testing set, it scored over 90% for almost all categories. Furthermore, it still performed
better than the train DS1–test DS2 and train DS2–test DS1 even when the training size was
as small as 20% of the size of the testing dataset.

3.2.5. Classification Algorithms

In general, although by a small margin, the CNN classifier outperforms the SVM
classifier. One of the main reasons for this performance difference is that the CNN classifier
can consider the color space features and segmentation properties, which the HOG-SVM
cannot. We utilized HOG-SVM to accelerate the process and focus only on vital details.
This technique ignores region-based segmentation and only works with what is judged
as necessary throughout the HOG transformation. However, it is crucial to note that the



AgriEngineering 2023, 5 1016

SVM classifier performed as well or slightly better than the CNN when DS2 was used as
the training set.

By combining the results of 123 experiments, we confirmed that color spaces are
important in image feature detection and classification. In particular, hue, lightness, and
saturation performed better than other color spaces. Nonetheless, a color space combination,
such as HLG, can sometimes perform better than HSL. Thus, color space transformation is
necessary when dealing with data with a high emphasis on color intensity and different
lighting conditions, and combining color features can be more efficient. Furthermore, not
only do color spaces matter, but they also affect the classification better when combined
with region-based segmentation because this technique helps to split the foreground,
background, and necessary and unnecessary information. The results indicate that the
CNN is a better-fitting algorithm than the SVM for this case study.

4. Discussion

Throughout this study on image preprocessing and classification, we demonstrated
the effectiveness of using machine learning and image processing techniques to accurately
detect and classify vegetal species.

In the post-harvest okra classification, we observed some factors that contributed
to better classification. First, the color space transformation correlates with more feature
detections. Color spaces are not always considered in the image classification literature.
We agree that in some cases, such as the HOG-SVM classification, the transformation of the
color space does not have any noticeable difference. By contrast, this only lengthened the
preprocessing time. However, under similar conditions as the okra study, in which lightness
and color intensity are considered, it is valuable to execute color space transformation,
particularly the transformation to HSL, HSV, or, as in this study, a meaningful mix between
color spaces. Compared to the RGB color space, other color spaces led to higher accuracy
scores. Another important factor in this study was the background segmentation of images
or segmentation through k-means clustering. Combined with specific color spaces, it
segments the foreground from the background and extrapolates lightness and color-related
features. Therefore, combining this with a CNN classifier is valuable.

The CNN models performed better than the SVM models. We use a histogram of
oriented gradients (HOG) within our SVM models during preprocessing. This method
obliterates all features obtained through color space transformation. This result explains
why grayscaling is required to obtain HOG features. Moreover, the grayscale images
showed no noticeable differences between the color spaces. Thus, we can assume that color
space transformations are unnecessary when using HOG-SVM models. As mentioned
earlier, this process is time-consuming. However, a crucial finding is that the SVM classifier
outperformed the CNN classifier when the dataset and classes were small. As shown in
cases E12 and E13 of Table 3, the SVM model almost perfectly classified the DS2 dataset,
regardless of the color space. This result can be explained by CNNs needing to be trained
with diverse and large datasets to perform well. However, the HOG-SVM classifier reduces
the complexity of the problem while maintaining as much variation as possible. In this
sense, HOG-SVM classifiers seem less dependent on dataset size than CNN classifiers.

One of the reasons why the okra study tests the DS1 dataset on the DS2 dataset and
vice versa and the combination of both datasets is to evaluate the performance of the
models on different unseen data. However, DS1 and DS2 are considered to bear only
minor differences in appearance. Nonetheless, the accuracy scores were quite low when
DS1 was used as training for DS2 testing and DS2 was used for DS1. The divergence in
their crucial features may explain this discrepancy. To solve this problem, we propose the
following solutions:

1. The first solution is to prepare training datasets with enough divergence. It can be
accomplished by carefully combining different datasets. In our study, for example, we
prepared a mixed dataset containing 758 images when DS2 was the target for testing.
Even with small numbers for training, say 80% of it, we achieved a good performance,
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as shown in Table 3. The differences between DS1 and DS2 are seemingly small but
very critical. This demonstrates the importance of matching certain conditions and
diversifying the training data as much as possible. Moreover, it exhibits the possible
superiority of diversity oversize. Although the training dataset needs to be large
enough, it is equally essential for the dataset to be diverse enough. This fact is theoret-
ically straightforward, but it is not easy to achieve diversified datasets practically.

2. The second solution involves implementing fine-tuning methods. As shown in Table 4,
the ResNet-50+ model achieves good results in the three datasets (mixed, DS1, and
DS2), despite not having been initially trained to classify okras. The initial pretrained
model was used to classify over 1000 categories of images from a million images.
However, when used with its initial weights and layers, it performs poorly in the
binary classification of post-harvest okras. After adding a few convolutional layers, as
described in the okra classification method, the model achieved high accuracy. ResNet
and the other pretrained models contained a large amount of information and were
trained to detect features in over 1000 non-related categories. Therefore, using such
models can help reduce performance and time costs, particularly when not using
“high-spec” devices because deep learning is a resource-intensive task.

By utilizing different and diverse methods, we achieved fairly good results for post-
harvest image classification; however, we still have plenty of room for improving classifiers
and preprocessing techniques. Therefore, we propose the following for future studies.

4.1. Better Image Quality and Details Enhancement

The okra datasets were divided into two groups: DS1 and DS2. The photographs of
the two datasets were organized under slightly different conditions, with different okra
dimensions, lighting conditions, and positions. Moreover, noise did not affect the datasets
in the same way, and okra were not centered on many images, requiring us to execute time-
consuming preprocesses to prepare the image for training efficiently. Finally, the image
quality did not allow for the detection of black dots on the okra surface. The presence and
number of black dots are some of the JA’s classification features. Because of these factors,
the models built with DS1 could not be classified with high-accuracy DS2 and vice versa.
Such a situation is common from a practical perspective. Therefore, we must use datasets
obtained under different conditions. In future work, we will conduct more experimental
evaluations with more diverse datasets and propose an efficient design of mixed datasets
for training.

4.2. Testing in Real World

Using multiple preprocessing techniques and image segmentation through k-means
clustering, we achieved a perfect accuracy score for classifying the DS1 okra dataset. Fur-
thermore, the use of HSL and HLG color spaces led to higher classification accuracies than
RGB. In future work, we will consider implementing these models, techniques, and other
product classifications, as well as deploying and testing our models in real-world scenarios.

4.3. Building a Better-Performing Model

The CNN models designed in this study considered myriad factors. We avoided
overfitting and underfitting while training the models, shuffled the dataset at each iteration
to avoid bias, proceeded with data augmentation, and compared over 50 CNN architectures.
We compared this algorithm with the SVM algorithm and other popular CNN models.
However, there are multiple ways to improve the model. One method that we will consider
in future work is to implement and improve pretrained models, such as VGG19.

5. Conclusions

In this study, we designed and implemented machine learning solutions for the post-
harvest classification of okra. In our approach, we carefully created training datasets from
raw images. Raw data were obtained under different dates, times, and weather conditions.
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Therefore, the image data included biased shades, noise, and ambient light variations.
In the experiment, we used two different datasets, DS1 and DS2, and their combination
(the mixed dataset). Furthermore, we preprocessed the dataset using numerous image
processing techniques to depict the variations and features within each okra class. The
preprocessing included further cropping of the okra background, segmenting images with
k-means clustering, changing the color space, and resizing and reshaping. We then applied
the three algorithms as classifiers to compare the best-performing algorithms, considering
their accuracy scores. The classifiers included a CNN that we developed for this purpose,
a HOG-SVM classifier, and a fine-tuned neural network. We found that, by considering
color spaces, such as HSL and HSV, and image segmentation, we achieved accuracies of
90.0% for testing the mixed dataset, 98.2% for DS1, and 86.4% for DS2 with our CNN when
using the mixed dataset as a training set. The benefit of using the mixed dataset was that it
required less training data than the other datasets, provided that it had sufficient diversity.
Furthermore, it performed well in classifying all three sets (DS1, DS2, and mixed dataset).

When the image data in DS1 were utilized for training, almost 100% accuracy was
achieved in classifying unseen data in the same DS1 (with HSL color space image and
segmentation). However, it scored only 80% when classifying data in DS2 using the HLG
color space. Finally, when DS2 was utilized for training it achieved 99.3% (with RGB)
accuracy on itself and only 57% (with RGB) for testing DS1 at best. Thus, we emphasize the
importance of diversifying the datasets and changing the color spaces. We also mentioned
the benefit of implementing a fine-tuned deep learning algorithm (ResNet-50+) to classify
okra because it achieves 90% accuracy on all datasets and requires only a few layers
to be trained. In conclusion, while comparing the accuracy metrics, fine-tuning was
found to be the best-performing method for classification while considering the time cost.
However, the diverse mixed dataset obtained using our CNN model provided the most
accurate predictions.

Machine learning (ML) is a promising solution for smart agriculture. However, there
are many issues to be solved in real farm applications owing to their uncertainty. This
paper presents essential points for AI practitioners in agriculture to design and develop
their post-harvest classification effectively. In future work, we will develop an automatic
parameter-tuning technique with lower computational costs to enhance its applicability on
real farms.
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