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Abstract: Makeup water constitutes a key component in the water management of microalgal
cultivation systems. However, the effect of makeup water addition on microalgal growth remains
largely unexplored. This study compared two deionized water addition intervals (1 day and 4 days) for
their effect on the growth of Scenedesmus dimorphus (S. dimorphus hereafter) in 2000 mL Pyrex bottles
under controlled conditions. Cell counts and dry algal biomass (DAB) were measured to characterize the
microalgal growth rate. Water addition intervals impacted algal cell counts but had little effect on DAB.
Adding makeup water every day resulted in a higher growth rate (8.80 ± 1.46 × 105 cells mL−1 day−1;
p = 0.22, though) and an earlier occurrence of the peak cell count (day 9) than adding it every 4 days
(6.95 ± 1.68 × 105 cells mL−1 day−1 and day 12, respectively). It is speculated that water loss over an
extended period and the following makeup water addition posed stress on S. dimorphus. Surpassing
the peak cell count, S. dimorphus continued to grow in DAB, resulting in an increased cell weight as a
response to nutrient starvation. Optical density at 670 nm (OD670) was also measured. Its correlation
with DAB was found to be affected by water addition intervals (R2 = 0.955 for 1 day and 0.794 for
4 days), possibly due to a water loss-induced change in chlorophyll a content. This study is expected
to facilitate the makeup water management of photobioreactor and open pond cultivation systems.
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1. Introduction

The cultivation of microalgae as a renewable resource continues to receive intensive
attention due to their fast growth, superior photosynthetic efficiency, low nutrient require-
ments, etc. [1,2]. Microalgae have also been utilized for cleaning up contaminated water [3]
and air [4], recovering precious or rare earth metals [5], and capturing CO2 from the atmo-
sphere or flue gas [6]. Water management is critical for microalgal cultivation—producing
1 kg of dry microalgal biomass requires approximately 5–10 kg of water [7]. Meanwhile,
water is an invaluable resource, and water conservation represents an increasing chal-
lenge [8]. For water management, factors—including the volume of water needed for
algal cultivation, water loss, and makeup water (i.e., water added to restore a desired
volume or level)—must be properly assessed and controlled. These factors are further
related to target biomass productivity, cultivation system design, cultivation conditions,
etc. Numerous efforts have been made to examine the water footprint of microalgal pro-
duction systems, through experiments [9] and modeling [10,11]. Despite the importance of
makeup water in overall water balance, the effect of makeup water on microalgal growth is
largely unexplored.
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Makeup water compensates for water loss from cultivation systems, and various
processes can lead to substantial water loss. For photobioreactors (PBRs), the factors
affecting water loss include aeration, water circulation, temperature, relative humidity,
light intensity, and a PRB’s surface area-to-volume ratio. Many of the factors are related
to evaporation, a primary cause of water loss from a PBR [7]. For open ponds (e.g.,
raceways), the additional factors affecting water loss include wind, mixing, solar radiation,
and leakage [12]. However, for cultivating microalgae in PBRs, many researchers assume
evaporation water loss to be negligible and present their data without any correction [13].
For open ponds, water loss is usually more pronounced, and an evaporation rate can be
estimated through modeling [11,14] or a simple pan evaporation method [7]. To estimate the
volume of makeup water required for open pond systems, precipitation must be considered,
and it is highly variable with time and location. Precipitation (e.g., rainfall and snowfall)
contains mostly pure water relative to a cultivation medium. Thus, evaporation loss and
precipitation (plus makeup water addition) will result in a fluctuation in parameters such
as pH, salinity, nutrients, and microalgal concentrations in a pond. It remains poorly
understood if and to what degree such water loss-gain cycles affect microalgal cultivation.

To fill the knowledge gap, S. dimorphus was cultivated under lab conditions simulating
the water loss-gain cycles in open ponds or PBRs. The hypothesis was that the time interval
for makeup water addition would affect microalgal growth. It is noteworthy that the
time interval is generally proportional to the amount of water loss and, accordingly, the
amplitude of parameter fluctuations. The specific research objectives were to (1) cultivate
S. dimorphus in a medium for an extended period to make it well adapted to the medium as
well as lighting, mixing, etc., and maintain stable growth; (2) compare S. dimorphus growth
rates in cell counts and dry algal biomass between different water addition time intervals;
and (3) examine the optical density (OD) of the microalgal culture during the experiments
and its correlation with S. dimorphus concentrations. Deionized water was selected as the
makeup water due to its similar composition to precipitations. In reality, frequently refilling
a PBR or open pond with nutrient-rich cultivation media is difficult to manage. A realistic
way to maintain water levels is adding tap or other relatively pure water, in combination
with less frequent addition of cultivation media.

2. Materials and Methods
2.1. Algal Strain

The S. dimorphus strain UTEX 1237 was obtained from the UTEX Culture Collection of
Algae at the University of Texas at Austin (Austin, TX, USA). The strain was selected due to
its adaption to a wide pH range, efficient ammonia removal, and high growth rate [15,16].
It has been researched in Dr. Anderson’s (note: a co-author) lab for years, with extensive
experience gained concerning its cultivation, maintenance, and troubleshooting. It was
cultured and maintained in four PBRs for six months before the makeup water experiments
started. A Bold’s Basal Medium (BBM)—widely used for freshwater green algae [17]—was
selected for algal cultivation. The composition of the medium can be found in Ref. [4].
The prepared BBM was adjusted for pH (to 6.4 ± 0.5) and was autoclaved for 40 min at
121 ◦C before use. The cultivation started from a 100 mL algal culture in a 500 mL glass
flask. With the growth of S. dimorphus, the culture was doubled every 7 days with a freshly
prepared BBM (at a 1:1 dilution ratio). The time interval of doubling was selected to be
consistent with a previous study by the authors [4]. Cell count and OD were monitored
during the doubling process, but they were not used for determining the time interval of
doubling. During cultivation, the culture was continuously aerated with air at an airflow
rate of 0.5 LPM per liter of culture. Fluorescent lamps were placed near the vessels to offer
a light intensity of 60–70 µmol m−2 s−2. All glassware was autoclaved before use.

2.2. Algal Cultivation with Makeup Water and Growth Medium

An algal culture (1200 mL) was evenly distributed into three 2000 mL Pyrex bottles.
Autoclaved BBM (1600 mL) was then added to each bottle. The 2000 mL algal culture in
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each bottle was continuously aerated at an airflow rate of 1 LPM. The same light source
(fluorescent lamps) and intensity (60–70 µmol m−2 s−2) were applied. Aeration and water
evaporation led to a loss of water in the bottles. The initial water level in each bottle was
marked using a permanent marker after the 2000 mL algal culture was transferred in,
and the water loss was determined as the volume of makeup water added to restore the
marked level. The makeup water was added using 25 and 10 mL graduate pipettes so that
the volume of the water could be quantitated. To study the effect of water makeup, two
separate batches of experiments were conducted:

• Add makeup water every day (1D). Autoclaved deionized water was added to com-
pensate for water loss and to maintain a 2000 mL algal culture in each bottle. Be-
fore water addition, several parameters were measured, including temperature, pH,
algal biomass, OD, and cell counts. The tests consumed ~26 mL of algal culture.
This volume was also included in the water loss calculation. The entire experiment
lasted 14 days.

• Add makeup water every four days (4D). The experiment started with another 1200 mL
healthy algal culture that was independent of the previous batch. Again, deionized
water was added to maintain a 2000 mL algal culture in each bottle. Temperature, pH,
algal biomass, OD, and cell counts were measured every day, and on the day when
water was added, the measurement was performed right before water addition. The
entire experiment lasted 21 days.

The pH of the algal cultures was monitored with an Oakton PC-450 pH meter and
maintained at 6.0–7.0 using 0.5 M HCl or NaOH. However, pH adjustment (on the day of
makeup water addition) was rarely needed in reality. The temperature was measured with
the same meter and was found to be relatively stable (21 ± 4 ◦C) during the experiments.
Temperature control largely relied on the building’s heating, ventilation, and air condition-
ing (HVAC) system with a set point of 21 ◦C (70 ◦F). No supplemental cooling or heating
was used. The Pyrex bottles were directly exposed to room air, with no surrounding shield
or the like (Figure 1). The radiation heat due to lighting was dissipated to the room space
through convection.
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(a) (b) 

Figure 1. (a) A schematic diagram of experimental setup and (b) a photo of the real setup. Note that
the bottle plugs were made from polystyrene foams, allowing moist air to go through (besides the
outlet tubing). In the background is a LED panel for a 1000 L photobioreactor.

2.3. Analytical Methods

Dry algal biomass (DAB; mg mL−1) was gravimetrically determined [18]. In brief, a
25 mL algal culture sample was taken and vacuum-filtered through a pre-weighed 70 mm
glass fiber filter (Fisherbrand G4, Fisher Scientific International, Inc., Waltham, MA, USA).
During the vacuum filtration, the sample was rigorously washed with deionized water
using a wash bottle. The algae-laden filter was dried in a lab oven at 105 ◦C for 1 h and
then cooled for 3 min in a desiccator before being weighed on an analytical balance (read-
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ability: 0.1 mg). For the pre-weighed filter, the same drying condition was followed before
weight determination.

Algal cell counts (N; cell mL−1) were measured using a Neubauer hemocytometer
under an Olympus CX41 LEEDS optical microscope (Olympus Corp., Tokyo, Japan). Algal
suspension samples were imaged with no further dilution. Images were taken using the
Infinity Analyze software that came along with the microscope. Algal cells on the acquired
images (totaling nine squares, occupying an area of 3 mm × 3 mm) were counted using
ImageJ. No replicate counting was conducted for each sample.

The optical density (absorbance) of algal cultures at 670 nm (OD670) was measured using
a Hach DR3900 spectrophotometer (Hach Company, Loveland, CO, USA). The wavelength
is characteristic of chlorophyll a, and OD670 is often selected as an indirect measure of algal
biomass [19]. A BBM without algae was used as a lab blank for absorbance measurement.

2.4. Data Analysis

DAB (mg mL−1) was calculated as

DAB =
W f ,t − W f ,0

V
(1)

where Wf,t is the dry weight of an algae-laden filter (mg), Wf,0 is the dry weight of the
filter without algae (mg), and V is the volume of the algal culture sample taken for DAB
measurement (25 mL). An average dry cell weight was calculated by dividing the DAB
by the cell count (N) of the same sample and is presented in the unit of picogram per cell
(pg cell−1). It is noteworthy that the algae-laden filter could capture solid substances other
than algal cells, such as extracellular substances (EPS) and cell debris. As a result, the
calculated DAB and, subsequently, average cell weight, could carry uncertainties. Because
algae did not exponentially grow during the makeup water experiments, an arithmetic
average growth rate was calculated for algal biomass (µm; mg mL−1 day−1) and cell counts
(µn; mg mL−1 day−1):

µn =
Nt − N0

t − t0
(2)

µm =
DABt − DAB0

t − t0
(3)

where Nt is the cell count on the day of measurement (t), N0 is the initial cell count at day 1
(t0), DABt is the DAB on the day of measurement (t), and DAB0 is the initial DAB at day 1
(t0). No DAB or OD analyses were conducted on day 0 (for system setup, including algal
culture transfer and dilution) due to time constraints. To be consistent, µm and µn were
calculated from day 1.

A Shapiro–Wilk test revealed that most of the measured and calculated parameters did
not follow the normal distribution. As a result, a Kruskal–Wallis test (a non-parametric one-
way ANOVA method) was used to compare 1D versus 4D experimental results and further
compare them with those acquired from the six-month cultivation experiment. Linear
regression was performed to assess a correlation between different algal concentration
measures (DAB, cell counts, and OD670). Microsoft Excel and PAST [20] were used to
perform the above analyses.

3. Results and Discussion
3.1. Algal Cell Counts

The time interval for makeup water addition showed an effect on algal cell counts
(Figure 2). For daily water addition (1D), the maximum cell counts occurred on day 9 in all
three Pyrex bottles (1.07 × 107, 1.06 × 107, and 9.12 × 106 cells mL−1 in bottles A, B, and C,
respectively). After that, the algal cell counts started to drop, likely due to the depletion
of nutrients. In comparison, for every four-day water addition (4D), the maximum cell
counts occurred on day 12 (1.11 × 107, 1.01 × 107, and 7.94 × 106 cells mL−1 in bottles A, B,
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and C, respectively). A consistently lower algal cell concentration in bottle C was possibly
related to a difference in air diffusers and, accordingly, bubble sizes. Although no significant
difference in the maximum cell counts was seen between 1D and 4D (p = 0.22), 4D resulted in
a more pronounced fluctuation in algal cell counts. In particular, on the day following makeup
water addition (e.g., days 5, 8, and 12), a dip in algal cell counts was observed in all the bottles.
The dip was largely attributed to dilution by makeup water. Due to continuous aeration and
lighting, the algal bottles lose 8.1–25.0% of water volume after four days (versus 1.3–4.1%
after one day). This substantial water loss could impose stress on S. dimorphus, resulting in a
slightly slower growth rate (µn) than 1D (8.80 ± 1.46 × 105 cells mL−1 day−1 for 1D versus
6.95 ± 1.68 × 105 cells mL−1 day−1 for 4D) before the algae reached the maximum cell counts.
However, no significant difference was seen from the ANOVA test (p = 0.22).
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Figure 2. Cell count concentrations of S. dimorphus with different time intervals of makeup water
addition: (a) every day (1D) and (b) every four days (4D). For the 4D experiment, data on days 6 and
10 were missing due to lab accessibility issues.

A control experiment was conducted with BBM added every four days. Algal cell counts
continued to increase during the experiment and reached 1.97 ± 0.23 × 107 cells mL−1 on
day 21 in the three bottles. A time-average growth rate (µn) of 9.31 ± 1.02 × 105 cells mL−1

day−1 was achieved, greater than that of 1D or 4D, but no significant difference was noted
(p = 0.12 versus 4D).

3.2. Dry Algal Biomass (DAB)

In contrast to cell counts, algal biomass continued to increase until the end of the
experiments for both 1D and 4D (Figure 3). A linear increase pattern was seen, and a
time-average growth rate (µm) was calculated to be 0.054 ± 0.004 mg mL−1 day−1 for 1D
(over 14 days) and 0.052 ± 0.003 mg mL−1 day−1 for 4D (over 21 days). Continual growth
of algal biomass was also observed during the control experiment. A time-average growth
rate of 0.078 ± 0.008 mg mL−1 day−1 was achieved (over 21 days), ~50% greater than that
in 1D or 4D (p < 0.05). Thus, keeping enough nutrients in the cultivation medium is critical
for maintaining the fast growth of algal biomass. The time interval for makeup water
addition showed little effect on the growth of algal biomass.

During both the 1D and 4D experiments, the average cell weight slightly decreased at
the beginning and then became relatively stable for days (Figure 4). However, it increased
after day 9 in 1D and day 12 in 4D, the same days on which algal cell counts reached the
maximum and started to decrease. At the end of the experiments, the average cell weight
reached 130.7 ± 9.6 pg cell−1 for 1D and 170.5 ± 22.0 pg cell−1 for 4D. As a comparison,
the average cell weight was 93.3 ± 19.5 pg cell−1 for the control experiment, similar to that
during the “stable stage” of 1D (days 2–9) and 4D (days 2–12).
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3.3. OD670 as a Surrogate for Algal Biomass

The time interval for makeup water addition was found to affect the applicability of
OD670 as a surrogate measure for algal biomass. A greater coefficient of determination (R2)
indicates a better prediction of algal biomass (DAB) from OD670 measurement. As shown
in Figure 5, OD670 would be a better predictor when makeup water was added every day
(1D) than every four days (4D). The reason is uncertain but likely related to the chlorophyll
a content in algal cells. Without frequently adding makeup water, the water loss-induced
stress on algal cells could lead to a change in their chlorophyll a content per DAB basis. It is
noteworthy that for both 1D and 4D, high DAB concentrations occurred towards the end of
the experiments when depleted nutrients could have resulted in enlarged algal cells and
changes in the content of chlorophyll a. The greater slope from the 1D experiment suggests
that the algal cells were overall greener than those in 4D.

No OD measurement results were available for the control experiment. To further
examine the effect of nutrient constraints, the cell count and DAB data were retrieved from
the six-month cultivation of S. dimorphus. During the cultivation, the algal culture doubled
every seven days and the BBM was periodically added to ensure sufficient nutrient supply
for the microalgae and to maintain water levels. Only a moderate R2 value (0.659) was
obtained (Figure 6), indicating the relatively poor performance of OD670 as a surrogate
measure for DAB during long algal cultivation experiments. The regression coefficients
(slope = 0.249 and intercept = 0.203) acquired from the six-month cultivation were consider-
ably different than those from 1D or 4D (a greater slope indicating greener cells than 1D
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and 4D), suggesting a large effect of nutrients on the chlorophyll a content per DAB basis.
Caution must be taken when using OD670 as a measure of algal biomass, and a frequent
and case-specific calibration may be necessary.
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Figure 6. Correlation between OD670 and dry algal biomass concentration of S. dimorphus during
six-month algal cultivation with periodic nutrient addition.

A correlation analysis was also conducted between cell counts and OD670 readings. Only a
moderate correlation was seen for the makeup water experiments (R2 = 0.611 for 1D and 0.682 for
4D). The (relatively) highest R2 value (0.715) was derived from the six-month cultivation.

3.4. Discussion

The DAB concentrations of S. dimorphus from 1D (0.96 ± 0.05 mg mL−1 on day 14)
and 4D (1.26 ± 0.05 mg mL−1 on day 21) were lower than that from the control experiment
(1.82 ± 0.11 mg mL−1 on day 21). These results were similar to those reported by Ref. [21]
(0.96 mg mL−1 on day 16), in which S. dimorphus was cultivated in a BBM but with
no makeup water or BBM added during cultivation. In that study, a decrease in DAB
concentrations was seen after day 16. Amending the BBM with nitrates raised the maximum
DAB concentration (up to 1.69 mg mL−1 on day 16); however, the concentration still
decreased after day 16. The addition of makeup water (4D) appears to benefit the continual
growth of S. dimorphus biomass. A DAB concentration of 1.2 mg mL−1 was reported by
Ref. [22], which is also close to the values derived from these makeup water experiments.
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No exponential growth in cell counts or DAB concentrations was observed in this
study. According to Ref. [23], S. dimorphus ended exponential growth when its cell counts
exceeded 1.2 × 105 cells mL−1, substantially smaller than the cell count range in this study
(Figure 2). This supports the use of arithmetic average growth rates in Equations (2) and (3).
Ref. [23] also reported an average dry cell weight of 194 pg cell−1, larger than our observed
values. The reason for different cell weights is uncertain but likely related to differences in
algal strains, cultivation media, and cell counts (a strain isolated from rivers and cultivated
in a WC medium, with counts of 1.2 × 104–2.9 × 105 cells mL−1 in Ref. [23]).

For both 1D and 4D, algal cell counts declined after surpassing a peak value. The
decrease was ascribed to nutrient depletion. With limited nutrients, microalgal cells would
stop dividing and start to accumulate triacylglycerides for survival [24]. Assuming that the
average nitrogen content of S. dimorphus cells is 8.75% by weight [25], the nitrogen in the
BBM (0.0413 mg mL−1) could sustain the growth of DAB concentrations by 0.472 mg mL−1.
This is lower than the actual DAB concentration (0.77 ± 0.03 mg mL−1) on day 9 during the
1D experiment and that (0.78 ± 0.04 mg mL−1) on day 12 during the 4D experiment. Thus,
the occurrence of nutrient depletion is anticipated. Nutrient starvation has been explored for
enhanced lipid production from microalgae, including S. dimorphus [26,27]. During nutrient
starvation, photosynthesis still occurs but towards the conversion to—and accumulation
of—lipids in a cell, resulting in a continuous increase in DAB concentrations [21,24]. Fre-
quent addition of makeup water appears to speed up the coming of such a “flip point”
(peak cell counts in Figure 2). An analysis of lipid contents in S. dimorphus is needed to
further verify the enhancement of lipid production.

OD readings at various wavelengths have been measured as a surrogate for S. dimor-
phus concentrations. However, few studies included enough data to validate the adopted
OD method. Ref. [21] took OD550 readings, but no correlation with DAB concentrations
was attempted. Ref. [23] measured OD438, OD540, OD678, and OD750 and found a strong
correlation of OD438 with S. dimorphus cell counts (R2 = 0.992). However, only five data
points were used to establish the relationship. Ref. [28] reported a strong correlation of
OD400, OD500, and OD680 with S. dimorphus cell counts (R2 = 0.883, 0.916, and 0.994, respec-
tively). However, for each OD, only ten data points were available. Ref. [29] used OD600
to measure S. dimorphus cell counts. A calibration curve (R2 = 0.999) was built through
the dilution of a microalgal culture to four dilution ratios (accordingly, only four data
points). Other adopted wavelengths include OD730 [30] and OD690 [31]. The only study
including a large data set was reported by Ref. [32]. A strong correlation of OD680 was
found with UTEX B72 (R2 = 0.966) and UTEX 1237 DAB concentrations (R2 = 0.972). No
detailed calibration information, however, was provided. According to Ref. [29], nitrogen
starvation could change the chlorophyll content of S. dimorphus. This may explain the low
R2 values calculated from the makeup water experiments.

High winds, elevated temperatures, low relative humidity, and strong aeration can
lead to significant evaporation water loss from outdoor open ponds (e.g., raceways), while
for PBRs, aeration and artificial lighting may result in substantial water loss [7]. The loss, if
not compensated for in a timely manner with makeup water or growth media (the latter
being expensive), could cause a surge in salinity, toxic/inhibitory substances (e.g., metals),
and algal count concentrations, thereby affecting microalgal growth. The findings from
this study support that the frequent (daily) addition of makeup water benefits microalgal
growth in PBRs by possibly buffering the changes in those parameters. A similar benefit
is expected for open pond systems. This, however, demands further investigation due
to different water management challenges faced by open pond systems. For open ponds,
precipitation is a factor affecting the water balance and it contains relatively pure water.
This makes the use of deionized water in these experiments valid and relevant. It is
noteworthy that the PBRs and open ponds discussed herein are suspension systems in
which microalgal cells are suspended in a cultivation medium. For immobilized (biofilm)
systems in which microalgal cells are immobilized and grown on a solid medium, water
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management, including makeup water, can also be a challenge [33]. However, the findings
and discussions acquired from this study may not necessarily apply.

4. Conclusions

Makeup water is needed to compensate for water loss from a microalgal cultivation
system. This study compared two makeup water addition time intervals (1D and 4D)
for their effects on S. dimorphus cell counts and dry biomass. Results showed that the
daily addition of makeup water resulted in faster growth of algal cell counts, but it had
a negligible effect on the growth of algal biomass. S. dimorphus cell counts decreased
after surpassing a peak value, but the accumulation of algal biomass continued for days,
leading to a greater cell weight. The time interval also affected the performance of the OD
method. OD670 offered a better estimate of dry algal biomass when makeup water was
added more frequently. This was ascribed to the water loss-induced stress on S. dimorphus
and associated changes in chlorophyll a content in algal cells. For future use of the OD
method, frequent and case-specific calibration is recommended. The findings from this
study are expected to raise awareness of the importance of makeup water management for
PBRs and open pond systems. To further study the effect of makeup water addition, water
quality parameters (e.g., total dissolved solids [TDS], pH, and nitrate) should be closely
monitored, along with water loss and algal concentrations.
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