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Abstract: Agrometeorological models are great tools for predicting yields and improving decision-
making. High-quality climatic data are essential for using these models. However, most developing
countries have low-quality data with low frequency and spatial coverage. In this case, two main
options are available: gathering more data in situ, which is expensive, or using gridded data, obtained
from several sources. The main objective here was to evaluate the quality of two gridded climatic
databases for filling gaps of real weather stations in the context of developing agrometeorological
models. Therefore, a comparative analysis of gridded database and INMET data (precipitation and air
temperature) was conducted using an agrometeorological model for sweet orange yield estimation.
Both gridded databases had high determination and concordance coefficients for maximum and
minimum temperatures. However, higher errors and lower confidence coefficients were observed
for precipitation data due to their high dispersion. BR-DWGD indicated more accurate results and
correlations in all scenarios evaluated in relation to NasaPower, pointing out that BR-DWGD may
be better at filling gaps and providing inputs to simulate attainable yield in the Brazilian citrus belt.
Nevertheless, due to the BR-DWGD database’s geographical and temporal limitations, NasaPower is
still an alternative in some cases. Additionally, when using NasaPower, it is recommended to use a
measured precipitation source to improve prediction quality.

Keywords: gridded data; NasaPower; BR-DWGD; sweet orange; data quality

1. Introduction

The latest assessment report of the Intergovernmental Panel on Climate Change [1]
indicated significant changes in the concentration of greenhouse gases and global temper-
ature [2]. Changes in air temperature, CO2 concentration, rainfall, and relative humidity
alter the rates of chemical reactions in all living organisms, especially plants [3].

Therefore, food production is highly dependent on environmental conditions, result-
ing from the complex interaction between the components of the soil–plant–atmosphere
system. These facts emphasize that agriculture is a high-risk economic activity, requiring
correct management strategies to reduce the impacts of extreme weather-related events
and optimize the use of natural resources. The increasing temperature for citrus species can
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even anticipate phenological events that depend on degree-day accumulation [4], which
can reduce production and increase water demand and CO2 consumption, leading to better
photosynthesis, water use efficiency, and productivity [5].

Understanding the variations of edaphoclimatic data and their relationship with
crop physiology and yield becomes fundamental to improving food production systems’
resilience. In this sense, exploratory data analysis allows for the processing of such data
and the finding of abnormalities, outliers, and connections between them [6]. Then, these
data can be used in yield forecasting models, considering different scenarios and contexts.

Processed and thoroughly analyzed data are essential to providing vital information
for decision-making on the farm and throughout the agrifood chains. Studies involving
yield prediction using climatic variables and past yields as inputs demand high-quality
data since the result depends on reliable input data. This is especially true for models
that demand a significant amount of data, such as deep learning models [7], which are
state-of-the-art approaches to predicting yields for several crops, such as corn, wheat,
sugarcane, and oranges, among others [8–10].

In Brazil, the official weather station system supplies measured data and belongs to the
National Institute of Meteorology (INMET). These stations provide solar radiation, wind
speed, precipitation, relative humidity, and maximum, minimum, and mean temperatures.
The data collected are open to the public and comprise the most widely used climatic input
source for predicting yields for several crops in the country. Despite the high number of
available stations (almost 1000 stations in 2022), the data collected present several gaps.
Additionally, due to the low density of these stations in certain regions, sometimes only
data from distant ones are available [11]. For example, works by [11,12]) utilized data from
INMET weather stations to predict the yields of different citrus varieties.

An alternative to in-site data, such as are provided by INMET, is gridded weather
data [13,14]. Gridded data can be summarized as data covering a specific area, and they
are presented with regularly spaced point values [15]. Although there are several method-
ologies for generating gridded data, the most common one is to interpolate data collected
in situ, due to its longer temporal extension and higher precision [16]. Additionally, grid-
ded data can result from reanalysis, simulation models’ outputs, and different datasets’
manipulations [16].

The NasaPower online database is an important example of a gridded dataset. It is
an open dataset that provides several daily weather variables important for crop yield
prediction and has a resolution of 0.5◦ × 0.5◦ with weekly updates. Its main variables are
solar radiation, maximum, minimum, and average air temperatures, precipitation, dew
point, and relative humidity.

Another vital gridded dataset is the Brazilian Daily Weather Gridded Data (BR-
DWGD; [17]). It contains Brazil’s climate data (maximum and minimum temperatures,
precipitation, solar radiation, relative humidity, wind, and evapotranspiration) from 1961
to 2020 in a resolution of 0.1◦ × 0.1◦. The authors calculated the data by interpolating
observed data from thousands of weather stations and rain gauges [17]. These datasets will
both be evaluated in this work.

In order to predict yield in sweet orange groves in Brazil, there are two main alterna-
tives of climatic inputs: (i) using in situ weather stations data, which have a low density and
gaps in the data; and (ii) using gridded data, which may not be as precise as the weather
stations data due to interpolation and the data collection and processing techniques used.

In this work, our main objective was to identify the gaps in the literature related to the
evaluation of the climatic data inputs from those three main datasets (INMET, NasaPower,
and BR-DWGD) in order to predict sweet orange yield in different regions of the Brazilian
citrus belt. For this purpose, a widely used agrometeorological model for sweet orange
yield prediction was considered [18], with the following scenarios: (i) using data from the
NasaPower database; (ii) using data from the INMET database; and (iii) using data from
the BR-DWGD database.

This work, therefore, had two main research questions (RQ):
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• RQ1: Do gridded data present a high correlation with in situ climatic data, allowing
them to serve as a substitute or to fill potential gaps in measured data?

• RQ2: How do gridded data impact simulated sweet orange yield, using in situ data as
a baseline for comparison?

The main objectives of this work are (i) to compare the main climatic data inputs
options for predicting sweet orange yield in Brazil (which could also be used for other
crops and areas); and (ii) to conduct a case study to evaluate the potential impacts of
substituting in situ weather station data for gridded data (allowing better spatial and
temporal coverage by filling gaps in the available in situ data). Both contributions may
have a direct impact on improving the predictions in areas with lower weather station
densities. Additionally, the same methodology could be applied to other crops, areas,
and countries.

The work was organized into the following sections: Section 2. presents the materials
and methods used in the case study; Section 3. describes and discusses the main results
obtained in the case study; and Section 4. concludes the work, presenting the final remarks,
limitations, and recommendations for future works.

1.1. Citrus Yield Prediction: Concepts and Models

A critical aspect of improving the decision-making processes of all links in the citrus
supply chain is to predict the fruit volume produced in each season [19]. To account for
different problems to estimate this volume, such as differences in planted areas between
years, technologies, and processes used in different regions and the impact of extreme
weather events, it is more beneficial to predict the yield instead of the total volume produced.
A better yield prediction would allow the farmers to plan his/her processes better, the
industries that produce inputs to better plan their production processes, the processing
industries to estimate production and input sourcing, and the distribution agents to plan
their logistics [20].

Predicting citrus yield is a challenging task. As perennial crops, they consist of several
species and cultivars with different characteristics and resilience towards soil characteristics,
pests, diseases, and the impact of extreme weather events, among other factors. Therefore,
it is difficult to determine which variables should be used in a yield prediction model. Most
studies used correlations of yield data with raw climatic data, mainly precipitation and
temperature [21,22]. Additionally, it is crucial to observe that few works in the literature
used correlations of processed data and model outputs, such as evapotranspiration and
water deficit [20,23].

The use of processed data and climate indices (instead of the raw physical variables
such as precipitation and temperature) should generate better prediction models because
they capture more information from the original data [20,23]. For example, indices such as
the Standardized Precipitation Index (SPI) and The Standardized Precipitation Evapotran-
spiration Index (SPEI) better capture the potential impact of droughts on crop yield than
the use of only temperature and precipitation [24]. The work by Da Silva et al. [25] is an
example of using an unsupervised machine learning model to predict sugarcane crop yield
in different cities in São Paulo state, Brazil, using the SPI as one input of a prediction model.

One interesting aspect is that only some studies in the literature developed models
with sequential equations that result in estimating yield. Several works, such as Ruß
et al. [6] and Everingham et al. [8], used machine learning and artificial intelligence models,
which are data-driven models that do not depend on sequential equations and extract
information from the dataset. However, due to the data-driven nature of this approach, it
does not incorporate important knowledge accumulated through decades of experimental
studies and in situ crop yield research.

Agrometeorological models, on the other hand, tend to incorporate this knowledge in
the equations that constitute the model [18–20,23,26]. This allows for better predictions in
scenarios with a small volume of data but tends to finetune the model for a specific crop, va-
riety, area, and weather pattern [27]. Nevertheless, using agrometeorological models based
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on sequential equations is the traditional approach for citrus yield prediction [18–20,23,26].
Therefore, this approach will be used in this work.

Despite similar objectives, five of the most important yield prediction models utilized
in sweet oranges show different outputs, encompassing yield, fruit volume, fruit quality,
and water productivity (Table 1).

Table 1. Characteristics of five of the most important yield prediction models for sweet oranges.

Reference Cultivar Inputs Data Source Outputs

[28] ‘Natal’ sweet orange Tmax, Tmin, CO2 In situ WP (g/m2 mm)
[18] ‘Valencia’ sweet orange Tmax, Tmin, P In situ Yield (fruits/box)
[29] ‘Valencia’ and ‘Navel’ sweet oranges Tmax, Tmin, P, SR, W, RH Gridded NF and FS
[26] ‘Valencia’ sweet orange Tmax, Tmin, P In situ Yield (fruits/box)

[19,21] ‘Valencia’ and ‘Navel’ sweet oranges Tmax, Tmin, P, SR, W, RH In situ NF and FS

Legend: Tmax—maximum temperature; Tmin—minimum temperatures; P—precipitation; CO2—gas carbonic
air concentration; SR—solar radiation; W—wind velocity; RH—relative humidity; WP—water productivity;
NF—number of fruits; FS—fruit size.

Camargo et al. [26] and Martins and Ortolani [18] adapted the Jensen [30] model for
the ‘Valencia’ sweet orange. However, with the use of precipitation and temperature data
to calculate potential (PET) and actual evapotranspiration (AET), the calculation method
decided by the authors penalized the yield according to the water conditions in critical
phenological stages of the crop.

The approach to correlate fruit yield and water deficit using AET and PET as central
components of yield estimation is not new for crop yield prediction, especially in regions
that experience droughts. An important agrometeorological model, the AEZ-FAO [31],
adapted for maize, sugarcane, wheat, and other crops, has in its base equation the evap-
otranspiration (referred to as ET). Fadel [32] applied the AEZ-FAO model to predict the
yield of seven mandarine cultivars, using different indices of sensitivity to water stress for
each critical phenological stage.

Considering the water balance effect on yield and seeking to develop a simulation
model for growth responses to climate change, Pereira et al. [28] studied the implications
of atmospheric concentrations of CO2 and variations in air temperature on water use
efficiency. The authors developed the model using ‘Natal’ sweet orange and obtained a
practical model to analyze several potential climate change scenarios. This is essential to
improve the quality of decision-making throughout the supply chain and the resilience of
citrus production.

Tubiello et al. [29] applied the yield estimation model of ‘Valencia’ sweet oranges
developed by Ben Mechlia and Carroll [19] to predict the potential yield in relevant future
climate scenarios for 2030 and 2090. This model estimates the number of fruits and final
fruit size, as well as the growth of ‘Navel’ and ‘Valencia’ sweet oranges, using as inputs the
orchard’s age, planting density, previous year yield, and meteorological variables such as
temperature, precipitation, and cold and heat-related indices.

Most studies and model applications have used in situ sources of input data [18–20,26,27].
However, other important studies have used a gridded database as a source for input
data [33–36].

Except for the Ben Mechlia and Carroll [19,37] model, all the cited works were elab-
orated based on data collected from cities and States located in Brazil, involving lower
weather station densities than those in developed countries. Using datasets with a broader
spatial coverage could result in models for yield prediction in lower-density areas, improv-
ing those countries’ decision-making regarding citrus supply chains.

1.2. In Situ and Gridded Data for Crop Yield Prediction

As observed throughout this work, high-quality input data is essential to provide
accurate yield predictions. This is the case for both traditional agrometeorological models
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based on sequential equations and machine learning models based on complete data-driven
methods. This also applies to hybrid models (also called physics-based machine learning
models), which are starting to be explored in the literature.

Actual data obtained from correctly calibrated and well-maintained physical weather
stations are always the best choice to provide high-quality inputs since they are real-time
collected information [11]. Data from simulations and interpolations may contain several
errors due to the assumptions used [38].

However, weather stations or in situ data can present gaps in the datasets and potential
outliers that may be difficult to detect. Additionally, in many situations in developing
countries, it is possible to observe both a lack of spatial coverage (due to the low density of
weather stations in some areas) and of temporal coverage (due to station malfunction or
stations that may have been only recently installed) [39].

Gridded databases provide an alternative for addressing the lack of spatial and tem-
poral coverage. Additionally, this resource can be used to correct outliers and fill data
gaps. Several works in the literature have explored using gridded datasets for crop yield
prediction [28,40–42]. However, only a few studies, such as Bai et al. [38]; Bender and
Sentelhas [43]; Battisti et al. [44] and Duarte and Sentelhas [11], aimed to compare in situ
and gridded data, which is essential for helping the modeler or decision-maker to choose
which data sources to use on his/her crop yield prediction model. In this work, we aimed
to address this gap and to provide a methodology for other researchers and practitioners to
compare and to choose databases for crop prediction models.

Bai et al. [38] and Duarte and Sentelhas [11] compared NasaPower data with weather
station data to simulate maize yield in China and Brazil, respectively. Both authors identi-
fied problems in using only the NasaPower data in the model application, demanding other
sources to complement NasaPower temperature and precipitation data. Monteiro et al. [12]
also analyzed the NasaPower data as input in a sugarcane prediction model. The authors
indicated the need for several adjustments, since this database did not provide satisfactory
quality for wind speed, relative humidity, and precipitation estimation.

Other databases were also tested for yield modeling in substitution for real weather
stations, such as AgMERRA (AgMIP Modern-Era Retrospective Analysis for Research and
Applications) [44,45] and BR-DWGD [11,44]. AgMERRA and NasaPower were considered
satisfactory in estimating soybean yield in Brazil [44].

2. Materials and Methods

This work was elaborated in two phases (Figure 1). In Phase 1, called Scenario
Evaluation, we generated and evaluated three relevant scenarios: (i) all data (without
removing potential outliers); (ii) data without potential outliers; and (iii) all data, but
separated into one dataset per state. Those scenarios encompass different traditional
approaches for processing the inputs of the agrometeorological model and are essential for
better extracting information from the data.

These scenarios also help to answer two critical questions: (i) What is the impact
of removing potential outliers from the data? (ii) Should the analysis consider all data
available, or should it separate the data considering spatial factors? Both are relevant for
Brazil due to the significant differences between weather, soil, and agricultural processes in
the different citrus-producing regions.

Phase 2 was called Input Evaluation. It consisted of evaluating and comparing three
different options of inputs for the agrometeorological model: (i) in situ weather stations,
which are traditionally used (and will be considered the baseline for comparison in this
work); (ii) NasaPower gridded data; and (iii) BR-DWGD gridded data Using gridded data
would allow better coverage of the production sites. It is essential to observe that Phase 2
also considered an in-depth exploratory data analysis and an analysis of outliers and gaps
in the data for all considered scenarios and inputs.
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Figure 1. Main components of this research [18].

2.1. Study Area

The location selection was based on two relevant parameters for citrus production:
(i) volume produced (an indication of the importance of an area); and (ii) physical-related
variables, mainly focusing on climate variables. We aimed to encompass Brazil’s most
important citrus-producing regions while considering areas with different climate patterns.
Therefore, for the citrus belt (São Paulo and Minas Gerais states), more than one location
was selected within each of the five production regions (north, northwest, center, south,
and southwest).

Then, the available years and the elevation above sea level were considered within
these regions. When there was no weather station close to the location, another site was
selected, which was recurrent for the Northeast of Brazil. This was essential because the
baseline for comparison was using INMET weather station data.

We have collected data from São Paulo, Minas Gerais, Bahia, and Sergipe states from
ten, five, four, and one locations, respectively (Figure 2, Table 2). This data collection region
distribution roughly reflects each state’s importance for citrus production. The time interval
of data collection was from 1 January 2010 to 12 December 2020, resulting in 10 years of
daily observations for climate data. Usable data from 20 stations were obtained, resulting
in 73,521 observation points for each climate variable.

2.2. Data Collection

Daily data of maximum temperature (Tmax—◦C), minimum temperature (Tmin—◦C),
and precipitation (P—mm) inputs for Phases 1 and 2 were obtained from the following
three different sources: INMET, NasaPower (NasaPower data available at: https://power.
larc.nasa.gov/data-access-viewer/ accessed on 13 September 2022), and BR-DWGD (BR-
DWGD data available at: https://utexas.box.com/Xavier-etal-IJOC-DATA accessed on
14 September 2022). The observed data, used as a reference, were obtained from INMET
weather stations for each location (Table 2).

The gridded data were obtained from two databases: NasaPower and BR-DWGD [17].
NasaPower data were downloaded via the Internet from the NasaPower website. The
BR-DWGD data were downloaded using a Python script and archives (nc) prepared and
provided by the authors using Python.

All data were inserted into a single dataframe for processing and knowledge extraction.

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://utexas.box.com/Xavier-etal-IJOC-DATA
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Figure 2. Map with the locations selected for the study. Legend: each number represents the city’s
ID, also present in Table 2.

Table 2. Characterization of the selected locations for the case study, grouped by state.

State City/ID Lat (◦) Long (◦) Alt (m) Y
(t/ha)

Tmax
(◦C)

Tmin
(◦C)

P
(mm)

SP

Avaré/1 −23.1 −48.9 766 44.82 27.4 21.1 977.8
Bauru/2 −22.4 −49.0 537 31.32 29.7 17.7 839.8

Bebedouro/3 −20.9 −48.5 573 32.38 31.3 24.5 1362.6
Franca/4 −20.6 −47.4 1040 32.38 28.3 18.5 1304.4
Itapeva/5 −24.0 −48.9 717 44.82 26.8 16.3 1257.6

Jales/6 −20.2 −50.6 478 25.69 31.7 18.8 694.0
Piracicaba/7 −22.7 −47.6 554 33.28 29.1 16.8 1059.2

Porto Ferreira/8 −21.9 −47.5 559 33.28 29.3 15.8 1078.2
São Carlos/9 −22.0 −47.9 856 31.32 28.0 16.9 1408.2

Votuporanga/10 −20.4 −50.0 525 25.69 32.5 18.9 1125.4

MG

Campina Verde/11 −19.5 −49.5 532 32.38 31.8 24.5 1284.8
Planura/12 −20.2 −48.7 492 32.38 31.9 21.2 2522.1

Sacramento/13 −19.9 −47.4 832 32.38 29.5 22.5 1299.4
Uberaba/14 −19.7 −48.0 823 32.38 30.1 17.9 1661.6

Uberlândia/15 −18.9 −48.3 863 32.38 29.9 19.4 1260.0

BA

Euclides da Cunha/16 −10.5 −39.0 472 13.07 31.8 20.9 446.0
Feira de Santana/17 −12.2 −39.0 234 13.07 31.3 20.5 736.4

Itiruçu/18 −13.5 −40.1 820 13.07 28.1 17.2 683.4
Ribeira do Amparo/19 −11.1 −38.4 186 13.07 32.9 20.6 476.2

SE Brejo Grande/20 −10.5 −36.5 30 13.97 31.6 26.4 1040.2

Source: INMET (INMET Weather stations available at: https://bdmep.inmet.gov.br/ accessed on
13 September 2022) dataset. Legend: SP—São Paulo; MG—Minas Gerais; BA—Bahia; SE—Sergipe; Lat—latitude;
Long—longitude; Alt—altitude; Y—estimated production for the 2021/22 harvest by Fundecitrus (SP and MG)
and IBGE (BA and SE); Tmax—maximum temperature average for 2019; Tmin—minimum temperature average
for 2019; P—total precipitation for 2019.

https://bdmep.inmet.gov.br/
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2.3. Data Processing and Scenario Generation

As previously described (Section 2.1.), three relevant scenarios were analyzed in
the case study: (i) all available data (without removing potential outliers); (ii) data with
outliers removed using the Boxplot method [46]; and (iii) data separated by states (without
removing potential outliers).

In scenario (ii), the outliers of each city were identified using the interquartile (IQR)
method, also known as the Boxplot method [46]. The IQR is the difference between the 75th
and the 25th percentiles. For maximum and minimum temperatures, a multiple of 3× IQR
was used. For precipitation, a multiple of 5× IQR was used, as 3× IQR still encompassed
data that were not identified as outliers. All potential outliers were eliminated from the
dataframe in this scenario. The Climpact R package was used to analyze the data, and
outliers were eliminated using a Python script.

The agrometeorological model developed by Martins and Ortolani [18] was then
applied to each scenario. Linear regressions were used to analyze the results and compare
the models’ outputs using INMET climate data and gridded data (NasaPower and BR-
DWGD). Our main objective was to explore the results of the agrometeorological model
using two different gridded datasets as inputs compared to the INMET baseline as input.

The regressions were analyzed using the following statistical metrics: mean error
(ME); mean absolute error (MAE); root mean square error (RMSE); agreement index (d) [47];
coefficient of determination (R2); and confidence index (C) [48]. The main Python libraries
used in this step were Pandas (https://pandas.pydata.org/ accessed on 20 September 2022)
and Numpy (https://numpy.org/ accessed on 20 September 2022).

2.4. Data Quality Analysis

After determining the best data processing scenario, a data quality analysis was
applied to the gridded data in Phase 2, following the methodology by [11]. For each climatic
variable (Tmax, Tmin, and P) and Eto calculated, a linear regression analysis was conducted
between observed data (INMET baseline) and gridded data. Besides daily analysis, the
data were aggregated and analyzed monthly and annually in order to better identify trends
in the data. All the results were analyzed using the metrics described above. The main
Python libraries used in this step were Pandas and Matplotlib (https://matplotlib.org/
accessed on 20 September 2022).

2.5. Agrometeorological Model Application

We used the agrometeorological model described by Martins and Ortolani [18] for
‘Valencia’ sweet orange (Citrus sinensis Osbeck) to simulate the relation between attainable
yield and potential yield. As already mentioned, this is an important and thoroughly
validated model to predict citrus yield in Brazil, notably in the Southwest region.

First, for each location and year, the potential (PET) and actual evapotranspiration
(AET) were calculated by the Thorthwaite and Mather [49] method considering a soil
moisture storage capacity of 100 mm, a standard used value [18,26]. The WaterbalANce
app [50] was used to calculate PET and AET.

The agrometeorological model was then applied for each location, using the second
combination of phenological phases tested by the authors, which showed the best perfor-
mance [18]. All the results were analyzed using the error metrics described in Section 2.3.

Lastly, a spatial analysis of the results was conducted, generating and analyzing
evapotranspiration and yield maps for each input data method only in the citrus belt
region, considering the mean values of the locations selected within each region. Mean
error maps were also elaborated, comparing model outputs with mean values for each
citrus belt region for eight harvests from the sweet Orange Crop Forecast (Fundecitrus).
Those maps allow a better spatial analysis of the models’ results, generating further insights
to help decision-making.

https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
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3. Results

The results presented herein were based on scenario (i), in which all regions were
considered together, and no potential outliers were removed. This is the most common
scenario analyzed in the literature, as in the works by Battisti et al. [44] and Duarte and
Sentelhas [11].

Except for Tmin, the BR-DWGD data showed the best performance compared with
the INMET data in all time scales (Table 3 and Figure 3). That means that the BR-DWGD
data provides higher-quality results than the NasaPower data, considering the agrometeo-
rological model and the specific regions. The higher precision of BR-DWGD data is due to
a methodology that interpolates weather station data from INMET and the National Water
Agency (Agência Nacional de Águas—ANA), which are more accurate than satellite data.

Table 3. Phase 2: Comparison between INMET and gridded weather data on daily, monthly, and
annual time scales and their respective errors and performance indices.

Source Variable Scale Mean (±s.d.) C.V. r R2 d C

NasaPower

P
Daily 3.3 (±6.2) 1.88 0.39 0.15 0.57 0.22

Monthly 95.4 (±83.1) 0.87 0.85 0.72 0.91 0.78
Annual 1047.7 (±384.6) 0.37 0.83 0.68 0.89 0.74

Tmax
Daily 28.9 (±3.8) 0.13 0.77 0.59 0.88 0.67

Monthly 28.9 (±3.1) 0.11 0.80 0.65 0.89 0.72
Annual 29 (±1.9) 0.07 0.71 0.51 0.84 0.60

Tmin
Daily 17.9 (±3.9) 0.21 0.77 0.59 0.86 0.66

Monthly 17.9 (±3.5) 0.19 0.80 0.64 0.87 0.69
Annual 18 (±2.4) 0.13 0.69 0.48 0.79 0.55

BR-DWGD

P
Daily 3.5 (±7.9) 2.24 0.84 0.70 0.90 0.76

Monthly 101.8 (±95.8) 0.94 0.95 0.90 0.97 0.92
Annual 1121.3 (±434.4) 0.39 0.94 0.88 0.97 0.91

Tmax
Daily 29.3 (±3.7) 0.13 0.99 0.97 0.99 0.98

Monthly 29.3 (±2.7) 0.09 0.99 0.97 0.99 0.98
Annual 29.3 (±1.7) 0.06 0.98 0.96 0.98 0.96

Tmin
Daily 18.1 (±3.3) 0.18 0.80 0.64 0.87 0.70

Monthly 18.1 (±2.8) 0.15 0.77 0.60 0.85 0.66
Annual 18.2 (±1.7) 0.09 0.61 0.37 0.61 0.44

Legend: s.d.—standard deviation; C.V.—coefficient of variation; d—agreement index; r—Pearson coeffi-
cient; R2—coefficient of determination; C—confidence index; P—precipitation; Tmax—maximum temperature;
Tmin—minimum temperature.

Specifically for the minimum air temperature, the BR-DWGD database reduced the r, d,
and C indices. Six of the twenty cities studied here presented statistical indices lower than
0.5 for this variable. Xavier et al. [51] identified that Tmin and wind speed variables have
the highest number of days with inhomogeneous data. The authors could not establish
a single cause. Some potential causes were defective instruments and using different
units [51]. Although they did not find a reason for this specific problem on Tmin, the
stations from those six cities probably presented a homogeneity problem, influencing the
BR-DWGD calculation method. This resulted in better results for the NasaPower database
in the final dataset.

The differences between INMET and NasaPower databases are probably related to
several factors, such as sensor resolutions, pixel size from the satellites, or even geographical
differences between satellite records and weather station measurements [38]. A large
dispersion was observed for P daily data (Figure 3c), especially when using NasaPower,
resulting in the worst R2 (0.15), d (0.57), and C (0.22).

On the other hand, the P daily data provided by the BR-DWGD database (Figure 3f)
presented better performance and indices (R2 = 0.70, d = 0.90, and C = 0.76). This agrees
with several previous research articles, such as Monteiro et al. [12] and Van Wart et al. [13],
who observed that p values estimated by NasaPower always showed the worst correlation
with measured data. These results occur due to the difficulty of estimating light and
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extreme precipitations and avoiding false positives for precipitation clouds in simulation
methods [52].

Figure 3. Phase 2 results: Comparison of daily maximum temperature (a,d), minimum temperature
(b,e), and precipitation (c,f) data from the NasaPower database (a–c) and BR-DWGD database
(d–f) versus INMET for ten-years from twenty Brazilian locations. Legend: each black circle represents
a daily data point. The equation and determination coefficient of each variable is presented inside
each chart.

Our findings agree with other works which evaluated the quality of weather data for
different modeling applications [11,12,38,43,44,53]. A possible explanation for the errors
is the topographic influence in temperature estimation, as White et al. [53] observed in
mountainous regions.

The aggregation of P data on monthly and annual scales increased the correlation
indices for both gridded databases due to the reduction of data dispersion (Table 3). It is
important to emphasize that the primary variable considered by the model is AET, which
is highly affected by soil water balance and precipitation. The PET and AET calculated in
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the model by Martins and Ortolani [18] applied the Thorthwaite and Mather [49] methods,
which use monthly data as an input.

The PET and AET estimated by the BR-DWGD database (r = 0.92) presented better
results than the NasaPower database (r = 0.85) compared to INMET evapotranspiration
values (Figure 4). Additionally, those values were significantly lower than the original
daily data.

Figure 4. Potential evapotranspiration (PET) (mm) (a–c); and actual evapotranspiration (AET) (mm)
(d–f) maps of citrus belt regions output using INMET (a,d), the NasaPower database (b,e), and the
BR-DWGD database (c,f). Legend: darker colors indicate higher values.

The variations between PET (125 mm maximum) and AET (90 mm maximum) are
the main factors responsible for the relations between attainable yield (Yr) and potential
yield (Yp) (Figure 4). It is possible to observe an underestimation of PET and AET when
using a gridded database compared to the baseline in all citrus belt regions (Figure 4). This
is probably due to those databases’ temperature and precipitation estimation errors [44].
Therefore, as expected, it is essential to use high-quality data since it will directly affect PET
and AET determination.

In the present study, the BR-DWGD database presented better results regarding pre-
cipitation and, consequently, AET, which was observed in other applications [44]. An
alternative to using the NasaPower database is using other sources such as the ANA
database to substitute the precipitation data [12]. Duarte and Sentelhas [11] obtained better
results for maize yield simulation using NasaPower and ANA precipitation data rather
than only NasaPower data. This could be a strategy to improve the quality of the results
observed in this work.

In order to answer our first question, i.e., if gridded data were good enough for
filling gaps or substituting measured data, the BR-DWGD database presented significant
correlation indices with the INMET baseline. It could be used to fill data gaps or even for
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locations with little data in Brazil since the database is limited to this country. However,
this gridded database includes only data from 1961 to 2020, making it necessary to use
NasaPower for more recent years. Additionally, the NasaPower interface is easier to use
for non-programmers since the BR-DWGD database requires more advanced knowledge in
this field.

Table 4 illustrates the comparison results using the NasaPower, BR-DWGD, and IN-
MET data as inputs for the Martins and Ortolani [18] agrometeorological model. It contains
the error metrics and correlation results for the four scenarios. Due to the high dispersion
observed in p values when using the NasaPower database and the better temperature data
correlations with INMET, the BR-DWGD database resulted in a better yield estimation
using the agrometeorological model.

Table 4. Phase 1: Comparison between Yr output from Martins and Ortolani [18] model using
INMET and gridded database and their respective errors and performance indices, considering
three scenarios.

Source Scenario
Index

RMSE ME ME
(kg/Plant) MAE MAE

(kg/Plant) d r R2 C

NasaPower (i) All data 0.21 0.03 9.86 0.15 43.77 0.91 0.83 0.69 0.76
(ii) Outliers removed 0.12 0.07 21.15 0.07 21.53 0.39 0.49 0.24 0.19
(iii) Separated by
states—SP 0.22 −0.01 −4.14 0.14 42.45 0.8 0.64 0.4 0.51

(iii) Separated by
states—BA + SE 0.21 0.04 11.46 0.14 41.55 0.6 0.37 0.14 0.22

(iii) Separated by
states—MG 0.3 0.15 43.27 0.24 71.7 0.77 0.66 0.43 0.51

BR-DWGD (i) All data 0.17 0.04 10.6 0.1 28.67 0.95 0.91 0.82 0.86
(ii) Outliers removed 0.03 0.01 2.61 0.01 3.96 0.9 0.84 0.71 0.76
(iii) Separated by
states—SP 0.16 0.05 15.44 0.09 27.43 0.89 0.81 0.66 0.73

(iii) Separated by
states—BA + SE 0.15 −0.04 −11.41 0.09 27.49 0.66 0.54 0.29 0.36

(iii) Separated by
states—MG 0.21 0.09 27.15 0.15 44.07 0.88 0.83 0.69 0.73

Legend: the scenario with the best performance for data quality analysis is highlighted. SP—São Paulo;
MG—Minas Gerais; BA—Bahia; RMSE—root mean square error; ME—mean error; MAE—mean absolute error;
d—agreement index; r—Pearson coefficient; R2—coefficient of determination; C—confidence index.

Regarding the relation between attainable yield (Yr) and potential yield (Yp) outputs
considering the NasaPower and BR-DWGD inputs, besides the input sources, the method-
ology for processing the input data is also relevant (Figure 5). Herein, the best scenario
for data quality analysis was using all locations together and not removing the outliers
identified in the analysis (Table 4).

When removing the outliers (scenario (ii)), the errors were reduced, especially RMSE,
which is closely related to outliers. However, as the main outliers identified were from
P data as extreme values, removing them resulted in underestimating attainable yield
(Yr), reducing the Yr/Yp relation. It is vital to observe that estimating extreme values is a
problem in satellite precipitation estimation by algorithms [54]. Different remotely sensed
products for P estimation show substantial differences in representing P extremes [54,55].
Overall, there is always a tendency to miss a significant P volume when using those
algorithms [54].

When applying the agrometeorological model separately for each State (scenario (iii)),
there was a reduction in the quality of results (R2 < 0.45 and C < 0.51 for NasaPower
and R2 < 0.7 and C < 0.75 for BR-DWGD), using gridded data, comparing to applying the
model for all States simultaneously (R2 = 0.69 and C = 0.76 for NasaPower and R2 = 0.82
and C = 0.86 for BR-DWGD). The worst results were for Bahia State, probably due to the
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low density of stations, leading to a smaller quantity of data and reducing the quality of
data interpolations.

Figure 5. Phase 2 results: Comparison of the relation between Yr and Yp output from Martins and
Ortolani [18] model using the NasaPower database and INMET (a), and the BR-DWGD database and
INMET (b) for twenty Brazilian locations. Legend: each black circle represents a Yr/Yp year value for
one location. The black line indicates the correlation between the outputs, with the respective equation.

Figure 6 illustrates the maps of the attainable and potential yields and the mean errors
for the agrometeorological model using the different inputs analyzed in this work. First,
there was a tendency to overestimate the yield when using the agrometeorological model,
inherent to the model itself, as identified by its authors [18]. Our results indicate that this
is even more pronounced when using the gridded databases. In Figure 6e,f, it is possible
to observe that the peripherical regions of the citrus belt (north and southwest) presented
higher errors. This was mainly due to the PET underestimation, which reduced the Yr/Yp
relation and increased the errors.

Therefore, to answer our second question, i.e., if gridded data presented similar quality
to measured data in simulating yield, the answer is yes. The BR-DWGD database presented
significant correlation indices with the INMET baseline. Nevertheless, in specific scenarios,
the NasaPower database can also be used as an input source when analyzing recent years
or locations outside Brazil.

Using agrometeorological models is essential for agricultural decision-making, and
high-quality input data are crucial for satisfactory results [38]. As already discussed,
there are different types of climatic databases, each with advantages and flaws [56]. An
alternative to obtaining accurate outputs is to use the best sources, which makes data
quality analysis an essential step in this process. The methodology used in this work could
be adapted for use on other crops, areas, and periods.



AgriEngineering 2023, 5 937

Figure 6. Phase 2 results: Attainable yield (boxes per plant) maps of citrus belt regions output from
Martins and Ortolani [18] model using INMET (a), the NasaPower database (b), and the BR −DWGD
database (c). Mean error of estimated attainable yield maps of citrus belt regions when using Martins
and Ortolani (2007) model with different climate input in relation to Orange Crop Forecast from
Fundecitrus: INMET (d), NasaPower database (e), and BR −DWGD database (f).

4. Conclusions

High-quality data are essential for agricultural decision-making. One crucial aspect
that depends directly on data and processing quality is yield prediction, which is essential
for decision-making in citrus supply chains. However, many areas lack climate data, which
are primary inputs of the different agrometeorological models.

In this work, we analyzed the potential use of the two gridded databases to fill gaps in
historical climate variables series, considering both areas with higher and lower weather
station density. An agrometeorological model was used to predict the yield of ‘Valencia’
sweet orange in different regions in Brazil.

Our results suggest that the BR-DWGD database is better than the NasaPower database
at filling gaps and being used as an input to simulate attainable yield in the Brazilian
citrus belt. However, due to the geographical and temporal limitations of the BR-DWGD
database, NasaPower is still an alternative in some specific cases. Additionally, when
using NasaPower, it is recommended to use a measured precipitation source (such as
INMET, ANA, or a weather station available on site) for obtaining outcomes with the
lowest errors and highest precision and accuracy since the main limitation of this database
is poor precipitation simulation.
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Despite the low quality of precipitation data from NasaPower, this database is more
accessible and easier to use than BR-DWGD. Combining its data with data from other
databases may provide better insights for decision-making. Lastly, a data quality analysis,
such as the one presented in this work, must be conducted for every yield prediction task.

Alongside the conclusions described above, this study testifies the data quality of
gridded databases for citrus yield research in the Brazilian citrus belt region, the second
biggest producer of citrus and the biggest producer of sweet orange of the world. We also
analyze the recent actualization of the BR-DWGD database for agroclimatic research.

The limitations of this study were as follows: (i) only one agrometeorological model
was used; (ii) no machine learning yield prediction model was used; and (iii) the model
used was based on yield penalization by water deficit, which is very relevant for the
Brazilian context. Future works must focus on the following: (i) evaluating more gridded
databases; (ii) conducting case studies for other crops, varieties, regions, and countries;
(iii) evaluating the use of other agrometeorological and machine learning models; and
(iv) evaluating other important model inputs, such as solar radiation. Additionally, it
would be interesting to explore the quality of the results when combining multiple gridded
databases or using model ensembles.
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