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Abstract: Piling behavior (PB) is a common issue that causes negative impacts on the health, welfare,
and productivity of the flock in poultry houses (e.g., cage-free layer, breeder, and broiler). Birds
pile on top of each other, and the weight of the birds can cause physical injuries, such as bruising
or suffocation, and may even result in death. In addition, PB can cause stress and anxiety in
the birds, leading to reduced immune function and increased susceptibility to disease. Therefore,
piling has been reported as one of the most concerning production issues in cage-free layer houses.
Several strategies (e.g., adequate space, environmental enrichments, and genetic selection) have been
proposed to prevent or mitigate PB in laying hens, but less scientific information is available to control
it so far. The current study aimed to develop and test the performance of a novel deep-learning model
for detecting PB and evaluate its effectiveness in four CF laying hen facilities. To achieve this goal,
the study utilized different versions of the YOLOv6 models (e.g., YOLOv6t, YOLOv6n, YOLOv6s,
YOLOv6m, YOLOv6l, and YOLOv6l relu). The objectives of this study were to develop a reliable
and efficient tool for detecting PB in commercial egg-laying facilities based on deep learning and test
the performance of new models in research cage-free facilities. The study used a dataset comprising
9000 images (e.g., 6300 for training, 1800 for validation, and 900 for testing). The results show that the
YOLOv6l relu-PB models perform exceptionally well with high average recall (70.6%), mAP@0.50
(98.9%), and mAP@0.50:0.95 (63.7%) compared to other models. In addition, detection performance
increases when the camera is placed close to the PB areas. Thus, the newly developed YOLOv6l
relu-PB model demonstrated superior performance in detecting PB in the given dataset compared to
other tested models.

Keywords: egg production; animal welfare; behavior monitoring; machine learning

1. Introduction

Piling behavior (PB) is a common issue that can adversely affect the welfare, productiv-
ity, and overall health of the flock in any housing, including breeder, broiler, and cage-free
layer facilities. Poultry piling is a phenomenon where birds densely cluster together, often
resulting in birds being piled on top of one another [1,2]. Piling one over another can
result in the birds becoming trapped, which can lead to suffocation and death [2,3]. In
Australia, in free-range or cage-free laying hens, PB accounts for up to 40% of mortality [4].
The location and timing of smothering tend to be unpredictable and may vary between
farms. According to surveys, over 50% of free-range or cage-free farms in the United
Kingdom (UK) reported smothering at some point in their flocks [5]. The UK egg industry
is estimated to lose £6.5 million annually due to smothering caused by PB [6]. However,
PB behavior has been primarily observed in loose-housed layer flocks and is a significant
animal welfare and economic concern for producers and the egg-laying industry [2,3,5,7,8].

The PB in laying hens is considered an animal welfare issue because it can negatively
impact the birds’ physical and psychological well being, resulting in stress, overheating,
injuries, feather pecking, and reduced mobility and natural behaviors [3,6]. Increased
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stress levels in birds result in reduced egg production [3] and egg quality [9,10], decreased
immune function [11], and increased susceptibility to disease [3]. Birds piled one over
another can result in overheating, leading to heat stress, suffocation, and even increased
mortality. Similarly, overcrowding causes physical injuries, such as fractures [3]. In addition,
birds piled on top of each other may limit mobility, leading to muscle atrophy and other
health issues [12]. Piling can also prevent birds from accessing feed, water, and other
resources. Sometimes, PB can also lead to feather pecking [13], increasing the cause of
cannibalism in poultry. Piling can also reduce chickens’ ability to express their natural
behavior, such as foraging, dust bathing, and socializing with other birds [1,2]. The
threshold at which a pile turns into a smothering event is currently unknown [3], and
understanding the biological causes of PB is necessary for effective mitigation.

The causes of PB are not well understood, and there is a lack of research in this area.
However, several potential factors have been recorded. High stocking density is one of the
most common factors contributing to PB [3,5,14]. Hens living in high-density environments
may become stressed and develop abnormal behaviors, such as piling. Furthermore, laying
hens’ nesting behavior and competition in nest use could lead to PB [14–16]. In poultry
houses, a social hierarchy can develop, with dominant birds having first access to resources
such as food, water, and nest boxes, leading to PB as subordinate birds attempt to access
these resources [2,17]. In addition, environmental factors such as lighting, temperature,
and ventilation may also influence PB [2,13,14]. For instance, hens may pile up due to low
temperatures or poor ventilation. Finally, layer strains can differ in their patterns of nest
use and PB with brown hens often mislaying eggs on the floor or grids of an enclosure
more often than white hybrids [18,19]. This floor-laying behavior also becomes a cause of
PB in cage-free layer facilities. Therefore, different prevention strategies may be required to
address the multifactorial nature of this issue.

Mitigation strategies for PB in laying hens include increasing space per bird, provid-
ing enrichment, such as perches and nesting boxes, and reducing flock size [2,3,14,20].
Increasing space per bird [3] and providing perches [2,21] reduced PB in laying hen houses.
Furthermore, providing enrichments (e.g., toys, natural materials, and different feed types)
in poultry houses encourages birds to perform natural behaviors and, thus, reduces stress
and PB [2,20,22]. Another way to mitigate PB is to establish a social hierarchy by providing
additional resources, such as feeders and nesting boxes, to allow all birds access to the
best resources. In addition, providing nest boxes for hens to lay eggs reduces PB as it
fulfills their innate need for nest-building behavior [15]. Furthermore, adequate space,
environmental enrichment, social hierarchy, nest boxes, improved ventilation, and light
adjusting are important in mitigating PB. Adequate ventilation maintains a comfortable
temperature and humidity level and reduces PB. Hens are photoperiodic animals, meaning
their behavior is influenced by the amount and duration of light they receive [2].

Research on PB has focused on identifying potential environmental and management
factors that contribute to its occurrences [1–3,15]. However, the unpredictability and disrup-
tion caused by the presence of an observer make it challenging to conduct experiments and
obtain accurate data on PB in commercial settings [5,8]. Therefore, regularly monitoring
the flock to identify any issues contributing to PB is important for maintaining the health
and well-being of the birds. PB can signify a more serious underlying issue, such as disease
or poor nutrition, and should be addressed accordingly. More in-depth research is needed
to fully comprehend the reasons for PB and develop effective strategies to prevent its
occurrence. Studies incorporating observational and experimental methods in commercial
settings and considering the influence of genetics and individual variation in behavior
can provide valuable insights into the underlying causes of PB in laying hens. Thus, early
detection of PB is required with the help of image analysis.

Image analysis is a powerful technique that uses cameras to estimate the object present
in a given area. One of the most effective methods for object detection is the use of machine
learning (ML) algorithms which have been successful in detecting not only hens [23,24]
but also their behaviors [25–28]. In particular, these algorithms have been developed to
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measure animal welfare by identifying both comfort and undesired behaviors [27]. For
example, a convolutional neural network was used to classify the behaviors of broiler
chickens based on images obtained by a depth camera, achieving a high accuracy rate of
99.17% in classifying flock behaviors [29]. Another study used the YOLOv3 algorithm to
identify six distinct behaviors in a wire cage system consisting of two pens under varying
stocking-density conditions [30]. The study accurately classified behaviors, such as mating,
standing, feeding, spreading, fighting, and drinking. However, this model’s accuracy was
lower in high-density cages due to the occlusion effect among the birds.

High-density housing of hens can lead to overcrowding or PB, which can cause
negative consequences, such as an increased risk of smothering and significant losses. This
risk is particularly high when the birds cluster together in certain areas of their living
space. Although YOLOv4 and YOLOv4-tiny have detected behaviors, they often fail to
recognize important comfort behaviors in detail [27]. This study focuses on detecting
overcrowding behavior in hens which can lead to potential issues called PB. Although the
research mentions overcrowding, it only focuses on behaviors, such as movements, laying,
and dustbathing on the floor, and suggests this behavior might lead to overcrowding
behavior. No detailed research focuses on detecting PB and PB in different situations and
camera settings. However, recently, FELB detection research has been conducted using
the YOLOv5 model and found higher performance in detecting FELB [28]. This FELB
research was somewhat related to PB as hens gather to lay eggs on the floor. The researcher
mentioned that PB during the daytime mostly occurs for performing FELB. To decrease
floor eggs and FELB, it is important to recognize PB and build the best detection machine
learning model.

Improving the recognition performance of the various behaviors using machine learn-
ing technology in the past could be a promising direction for detecting PB in hens. Improv-
ing detection could involve investigating new algorithms, data pre-processing techniques,
or training strategies to enhance the accuracy of behavior recognition. Furthermore, by
improving the detection of PB, we could gain a deeper understanding of the welfare of
hens and develop effective interventions to improve their living conditions. For example,
over the past few years, the YOLO algorithm successfully identified laying hens on the
floor [23–28,30] regardless of their activity which could help control challenging PB during
rearing and alert farmers early to potential issues. Therefore, this study used YOLOv6
to detect PB detection, expanding upon previous research to detect PB and identify the
area where hens frequently perform PB. The objectives of this detection study were to
(a) develop and test the best PB detection models and (b) compare the performance of deep
learning models in research cage-free facilities. In the future, after finding the area, the
producer or researcher can find its potential reason and issues related to overcrowding
in hens.

2. Materials and Methods

The materials and methods section provides better organization and explains how
image data were collected, processed, and used to train a YOLOv6 network for object
detection in this study. The section is divided into several sections that discuss the housing
and management of the animals involved in the study, the methods used to collect image
and data samples, the techniques used to manipulate the image data, and the software
and hardware used in the analysis. The section also includes a description of the YOLOv6
network architecture and the metrics associated with PB detection to evaluate its accuracy.

2.1. Experimental Housing and Management

This experiment was conducted in four CF research houses at the University of Georgia
in Athens, GA, USA (Figure 1). A total of 200 Hy-line W36 birds were raised from day 1
to day 300 in each house, and each house measures 7.3 m in length, 6.1 m in width, and
3 m in height. The houses were equipped with lights, perches, nest boxes, feeders, and
drinkers, and the floor was covered with pine shavings. The indoor conditions, such as
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light intensity and duration, ventilation rates, temperature, and relative humidity, were
controlled using a Chore-Tronics Model 8 controller, and an in-detail housing system was
described in the previous research [23]. This experiment followed the animal care and use
guidelines established by the University of Georgia’s Institutional Animal Care and Use
Committee (UGA IACUC).
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Figure 1. Experimental cage-free hen house used in this study.

2.2. Image and Data Collections

This study recorded the hens’ behaviors using six night-vision network cameras
(PRO-1080MSB, Swann Communications USA Inc, Santa Fe Springs, CA, USA) mounted
about 3 m above the litter floor in each room. In addition, two cameras were placed 0.5 m
above the ground floor. The data acquisition was performed daily for 24 h and recorded in
a digital video recorder (DVR-4580, Swann Communications USA Inc., Santa Fe Springs,
CA, USA). The recorded video files were stored in .avi format with a 1920 × 1080 pixels
resolution and 15 frames per second sampling rate. The data acquisition took place between
46–50 weeks of age.

2.3. Image Processing

The video data was converted into individual image files in .jpg format using the Free
Video to JPG Converter App version 5.0. The resulting images were filtered based on PB
presence and high-quality image datasets. In order to expand our dataset and improve
detection accuracy, this study used various techniques, such as geometric transformations,
brightness and contrast adjustments, and data normalization to process the newly obtained
images. This technique allows us to create multiple new image datasets with more samples.
Thus, obtained images were labeled using Makesense.AI in the YOLO format. Our findings
indicated that implementing these techniques resulted in a notable increase in the final
accuracy rate. This study uses image datasets of 9000 images (Pbnighttime, PBdaytime,
Pbground, and Pbceiling image datasets), where 70% of the total image datasets were used
for training, 20% for validation, and 10% for testing (Table 1). Different categories of classes
used to compare in this study are illustrated in Figure 2.
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Table 1. Data pre-processing for PB model detection.

Class Original Dataset Train (70%) Validation (20%) Test (10%)

PBceiling 1500 1050 300 150
PBground 1500 1050 300 150
PBdaytime 3000 2100 600 300

PBnighttime 3000 2100 600 300
PBmodel 3000 2100 600 300

Note: PBceiling and PBground represent PB observed at camera height of 3 m and 0.5 m, respectively, above the
litter floor; PBdaytime and Pbnighttime represent PB during the light period and dark period, respectively.
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2.4. YOLOv6 Network Description

YOLOv6 is the latest object detection algorithm launched and developed by
Meituan in 2022 [31]. YOLOv6 is designed to be a single-stage object detection frame-
work, meaning that it uses a single pass through the network to perform both object
detection and classification, making YOLOv6 faster and more efficient than multi-stage
object detection frameworks [32]. In addition, the YOLO model, such as YOLOv6, is de-
signed to be hardware efficient, which makes it suitable for industrial applications where
real-time object detection is required [33]. Furthermore, YOLOv6 is optimized for GPUs
and can run on devices with limited computing resources, making it a popular choice for
embedded systems and Internet of Things (IoT) devices. Furthermore, compared to its
predecessor YOLO models, YOLOv6 has improved detection accuracy and inference speed,
making it a more suitable choice for object detection tasks [31]. In this study, different
YOLOv6-PB models, i.e., YOLOv6n-PB (nano), YOLOv6t-PB (tiny), YOLOv6s-PB (small),
YOLOv6m-PB (medium), YOLOv6l-PB (large), and YOLOv6l relu-PB (large relu) were
compared for PB detection. These YOLOv6-PB models differ in size and parameters. First,
YOLOv6 models were compared with PBmodel image datasets and identified the best
PB detection model. Later, the best model was compared with different camera settings
(PBceiling and PBground) and photoperiod (PBnighttime and PBdaytime) conditions. Each
model or class was run at 300 epochs and batch size 16. The higher the epochs, the higher
will be the performance results.
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YOLOv6-PB is a complex neural network architecture consisting of several parts, each
of which plays a specific role in object detection (Figure 3). Some of the main parts of
YOLOv6-PB are:
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2.4.1. Model Input

The pre-trained PB image datasets were fed into the model for making predictions
through the input part of the YOLOv6-PB model. Input images and labels were then passed
into the neural network, which usually occurs in another part of the YOLOv6-PB model.
The size of the input image depends on the YOLOv6-PB architecture of the network, but it
is usually expected to be a fixed size, for example, 640 × 640 × 3 pixels as the default size.
Therefore, in this study, a default size of the images is taken for analysis.

2.4.2. Model Backbone

The backbone extracts feature from the input PB image. In YOLOv6-PB, the backbone
network is typically a pre-trained Convolutional Neural Network (CNN) that has been fine-
tuned for object detection. The specific architecture of the backbone network in YOLOv6-PB
can vary, but it typically consists of several convolutional layers, followed by max-pooling
layers, which helps to reduce the feature map’s spatial dimensions. The convolutional
layers detect low-level features in the PB image, such as edges and textures. Spatial pyramid
pooling (SPP) helps max-pooling layers reduce the feature map’s size and maintain the
most important features for object detection [34]. Similarly, The EfficientRep Backbone
used in YOLOv6-PB is designed to both effectively use the computational resources of
hardware, such as GPUs, and possess robust feature representation abilities as compared to
the CSP-Backbone utilized by YOLOv5 [33].
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2.4.3. Model Neck

The neck connects the backbone network to the rest of the network. It takes the PB
output of the backbone network and performs additional processing to produce the final
feature map used for PB object detection. In general, the purpose of the neck in YOLO-
PB architectures is to provide intermediate feature maps suitable for the heads to make
accurate predictions. Feather maps are often achieved through a series of convolutional,
pooling, and up-sampling layers that manipulate the features from the backbone network
to the desired scale and resolution for the heads. Regarding its neck design, YOLOv6-PB
introduces a more efficient feature fusion network, known as the Rep-PAN Neck [35], to
improve hardware utilization and the balance between accuracy and speed. This design is
based on the hardware-aware neural network architecture concept [36].

2.4.4. Anchor Boxes

Anchor boxes are predefined bounding boxes that represent PB objects in the image.
They provide priori information about the location and size of PB objects in the image.
During training, the network learns to adjust the anchor boxes to fit the PB objects in the
image better.

2.4.5. Detection Head

The detection head is responsible for predicting the PB objects in the image. It takes
the output of the neck network and produces a set of class probabilities and bounding
boxes for each targeted PB object in the image [37]. The detection head uses anchor boxes
as a starting point and adjusts them to fit the PB objects in the image better. YOLOv6-PB
utilizes a decoupled head structure, simplifying the head design while carefully balancing
the representation capabilities of the relevant operations with the computational demands
on the hardware [33].

2.4.6. Loss Function

The loss function trains the network by measuring the difference between the predic-
tions made by the network and the ground truth annotations. The loss function measures
the error between the predicted bounding boxes and the ground truth boxes and the error
between the predicted class probabilities and the ground truth class labels of PB.

Loss = λ1Lcls + λ2Lobj + λ3Lloc (1)

where Lcls, Lobj, and Lloc represent class loss, PB object loss, and location or bounding box
loss, respectively, λ is constant for respective loss.

2.4.7. Post-Processing

The final step in the PB object detection process is post-processing which involves
refining the predictions made by the network and filtering out low-confidence detections,
rescaling the bounding boxes to the original PB image size, and drawing the final PB
detections on the image.

Each of these parts of YOLOv6-PB works together to perform object detection in real-
time, allowing for the efficient and accurate detection of PB objects in images and videos.

2.5. Computational Parameters

To perform PB detection, a high-performing computational configuration is used. This
detection study used the Oracle cloud with different configurations to train, validate, and
test the image datasets (Table 2). The higher number of computational parameters increases
the speed and detection accuracy of the model [26,28].
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Table 2. Computational parameters used for the PB model evaluation.

Configuration Parameters

CPU 64 core OCPU
GPU (4 counts) 4 × NVIDIA® A10 (24 GB)
Operating system Ubuntu 22.10
Accelerated environment NVIDIA CUDA
Memory 1024 GB
Drive (2 counts) 7.68 TB NVMe SSD
Libraries Torch 1.7.0, Torch-vision 0.8.1, OpenCV-python 4.1.1, NumPy 1.18.5

2.6. Performance Metrics
2.6.1. Precision

This metric measures the fraction of the total number of PB made by the PB object
detection system that was correct. It is calculated by all positive detections, such as true
positive (TP, image contains PB, so the model predicts it correctly) and false positive
(FP, the image does not contain PB, but the model detects PB). The formula of precision is
given below.

Precision =
TP

TP + FP
=

true piling behavior detection
all detected bounding boxed

(2)

The overall positive and negative PB detection is made clear with the help of the
confusion matrix in Figure 4.
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2.6.2. Recall

This metric measures the fraction of the total number of PB objects in an image
correctly detected by the PB object detection system. It is calculated based on TP and false
negative (FN, image contains PB but unable to detect PB) detection results obtained from
the YOLOv6-MD model.

Recall =
TP

TP + FN
=

true piling behavior detection
all ground truth bounding boxed

(3)

2.6.3. Mean Average Precision

This metric measures the average precision of the PB object detection system over
multiple object classes at a threshold of 0.50 (mAP@0.50) or 0.50:0.95 (mAP@0.50:0.95). The
mAP is calculated as the average of the precision values for each class, considering the
number of true positive PB detections and the number of false positive PB detections.

mAP =
∑C

i−1 APi
C

(4)

where APi is the average precision of the ith category and C is the total number of categories.

2.6.4. Intersection over Union

In YOLOv6, the model used an Inter-section over Union (IoU) metric to determine
whether an object was correctly detected. This metric calculates how much the detected
bounding box overlaps with the ground truth bounding box given in Equation (5). A
threshold value of 0.5 was used in the previous study to determine if the detection was a
TP [38]. If the overlap between the detected and ground truth bounding boxes was at least
50%, it was considered a TP. However, if the overlap was less than 50%, it was labeled as
an FN, meaning the object was undetected. The FP detections occurred when the model
predicted a PB where none existed. On the other hand, TN cases occurred when the model
correctly avoided making such predictions.

IoU =
Area of overlap
Area of union

(5)

3. Results

The study’s findings on hen PB were compared under various models and settings.
Therefore, the result section is divided into three subsections which cover the performance
comparison of YOLOv6-PB models and the performance of PB under different photoperiods
and camera settings. In addition, the section provides an overview of the results on how
different factors influence PB and includes an evaluation of the YOLOv6-PB model’s
performance in detecting this behavior.

3.1. Performance Comparison of YOLOv6-PB Models

This study compared all YOLOv6-PB models to determine which model performs
better in detecting PB, and the results are shown in Table 3 and Figure 5. Among all
YOLOv6-PB models, YOLOv6l relu-PB performed better in terms of performance metrics,
such as average recall (70.6%), mAP@0.50 (98.9%), mAP@0.75 (74.6%), and mAP@0.50:0.95
(63.7%). Similarly, after the YOLOv6l relu-PB model, YOLOv6n-PB shows higher av-
erage recall (69.8%) and mAP@0.50 (98.9%) but lowest training time after YOLOv6t-
PB model (2.03 h). However, YOLOv6t-PB performs lowest with 67.6% average recall,
67.3% mAP@0.75, and 60.7% mAP@0.50:0.95. Furthermore, the training time to complete
2100 labeled image datasets at 300 epochs of batch size 16 was found in increasing order
from smaller to bigger YOLOv6 models because the bigger YOLOv6 model consumes more
time to perform and accurately detect the PB, as shown in Table 3. Thus, the YOLOv6t-PB
and YOLOv6n-PB perform faster to train 2100 images and validate 600 images (almost
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2.04 h), while YOLOv6l relu-PB acts slow in training and validation (4.24 h) at the same
time. If this study compares based on training time, then YOLOv6n-PB performs faster and
more accurately in detecting PB. However, other performance metrics are more important
compared to training time. Thus, the YOLOv6l relu-PB outperforms and can be used in
the future to detect PB, which ultimately helps to find the actual reason for PB so that it
can be reduced on time. Since YOLOv6l relu-PB performs better, so we used this model for
comparison within photoperiods and camera settings.

Table 3. Comparison of performance of the different models with different performance metrics.

Performance
Metrics YOLOv6t- PB YOLOv6n-PB YOLOv6s-PB YOLOv6m- PB YOLOv6l- PB YOLOv6l relu- PB

Average Recall (%) 67.6 69.8 69.1 70.2 69.8 70.6
mAP@0.50 (%) 97.6 98.9 98.5 98.1 96.3 98.9
mAP@0.75 (%) 67.3 70.6 70.1 73.9 73.5 74.6

mAP@0.50:0.95 (%) 60.7 62.8 62.2 63.4 62.4 63.7
Training time (hrs) 2.03 2.04 2.07 2.97 3.23 4.24

mAP—mean average precision; hrs—hours; PB—piling behavior.
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In Figure 6, YOLOv6-PB models were compared with training and validation datasets.
Each model generated graph data based on the performance at each epoch. Since each
model’s performance metrics are almost close, but when zoomed in and run non-parametric
statistical analysis, then YOLOv6l_relu outperforms in mAP0.50:0.95. However, when
comparing mAP@50, the results seem insignificant at a 0.05 level of significance. Although
there is no significant difference among them, we can consider the highest mAP value
YOLO model because every percentage increase in object detection is the most important.
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Figure 6. Comparison of piling behavior detection results between different YOLOv6-PB models
based on (a) mAP@0.50 and (b) mAP@0.50:0.95 with 300 epochs and 16 batch size.

3.2. Performance of Piling Behavior under Different Photoperiods

The YOLOv6l relu-PB was used to compare PB during nighttime and daytime, and the
PB detection was found highest during nighttime compared to daytime with an average
recall, mAP@0.50, mAP@0.75, and mAP@0.50:0.95 as shown in Table 4. Similarly, the model
performance of results based on photoperiods and epochs to identify the performance level
is shown in Figure 7. The performance metrics were found to be increased as the number of
epochs increased, possibly due to more training, large architecture size, higher parameters,
and more learning phenomenon. The graph shows that the performance metrics were
highest during nighttime because of the largest PB flock size, and it is easy to detect a
particular group by differentiating large groups of hens from individual hens, as shown in
Figure 8.
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Table 4. Comparison of piling behavior during daytime and nighttime using the YOLOv6l relu
model.

Data Summary Average Recall
(%) mAP@0.50 (%) mAP@0.75 (%) mAP@0.50:0.95

(%)

YOLOv6l
relu-nighttime 89.4 98.9 98.8 87.0

YOLOv6l
relu-daytime 70.6 98.0 72.0 63.5

mAP—mean average precision.
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Based on Figure 9, it can be observed that the IoU loss decreases as the number of
training epochs increases. Furthermore, the YOLOv6-PB daytime model had a lower IoU
loss than the YOLOv6-PB nighttime model, indicating that the nighttime model performed
better in detecting PB.
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Figure 9. Comparison of IoU loss during training between YOLOv6-PB nighttime and YOLOv6-PB
daytime models at 300 epochs and 16 batch size.

3.3. Performance of Piling Behavior under Different Camera Settings

According to the results of this study, the YOLOv6l relu ground camera model (at the
height of 0.5 m) showed the highest performance metrics for PB detection with an average
recall of 66.8%, mAP@0.50 of 96.4%, mAP@0.75 of 56.9%, and mAP@0.50:0.95 of 57.6% due
to the clear view it provides (Table 5). As a result, this model can be recommended for
ground-level PB detection, as shown in Figure 10. In conclusion, the ground camera proved
more effective for PB detection based on the test datasets and, thus, was recommended for
this purpose.

Table 5. Comparison of piling behavior under different camera settings using the YOLOv6l relu model.

Camera
Settings

Average Recall
(%) mAP@0.50 (%) mAP@0.75 (%) mAP@0.50:0.95

(%)

YOLOv6l
relu-ceiling 63.8 93.1 54.0 54.5

YOLOv6l
relu-ground 66.8 96.4 56.9 57.6

Ceiling—3 m; ground—0.5 m; mAP—mean average precision.

Figure 11 shows that the IoU loss decreases as training epochs increase. Additionally,
the results show that the YOLOv6-PB camera ground model had a lower IoU loss than the
YOLOv6-PB ceiling model, indicating that the former performed better in detecting PB.
Therefore, based on the lower IoU loss, it can be concluded that the YOLOv6-PB camera
ground model was more effective in detecting PB than the YOLOv6-PB ceiling model.
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Figure 11. Comparison of IoU loss during training between YOLOv6-PB ceiling and YOLOv6-PB
ground models at 300 epochs and 16 batch sizes.

4. Discussion

In the present study, we aimed to evaluate the performance of various YOLOv6 models
for the detection of PB in poultry. The PB is a serious concern in commercial poultry farming,
as it can lead to decreased welfare [2,20,22] and other negative consequences. In addition,
PB has been linked to floor eggs [15,28] and FELB [28], so accurate detection can also help
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reduce these issues. This study focused on using computer vision techniques to detect
PB accurately, which could help reduce its occurrence and improve poultry welfare. We
analyzed several YOLOv6 models and found that the YOLOv6l relu-PB model performed
the best on the available datasets, likely due to the model’s larger architecture consisting
of several convolutional layers and parameters used [31,39]. Accurately detecting PB can
help reduce false detections and lead to more effective identification and reduction of
PB. However, it is important to consider that factors, such as housing systems and bird
numbers in commercial farming, may impact the accuracy of PB detection. Therefore, the
YOLOv6l relu-PB model will be further tested and optimized for commercial farm settings
to increase its accuracy.

Piling behavior detection is crucial in various environmental situations, such as differ-
ent photoperiod conditions and camera heights. This study has shown that detecting PB
is crucial in maintaining animal welfare, especially during nighttime. Our results suggest
that larger group sizes contribute significantly to the occurrence of PB at night. The PB
was highest during nighttime as hens tend to pile together in a large group to secure safety
through social contact [40]. Furthermore, our study has shown that without the use of night
vision cameras, detection performance decreases during nighttime. Therefore, night vision
cameras are recommended to enhance detection precision in both daytime and nighttime
monitoring. The YOLOv6l relu-PB nighttime model was the most effective in accurately
detecting PB during nighttime. Similarly, this study highlighted the significance of camera
settings and heights in improving the accuracy of PB detection and found that the closer the
camera was to the targeted objects, the higher the detection accuracy. While a camera close
to the target object can help detect an object within short parameters, a ceiling camera can
provide a whole room overview. In the future, a ceiling camera can aid in room overview
and transmit PB signals to a ground robot which will enable the robot to navigate the PB
area and locate the cause of PB, helping to reduce the gathering of hens in a specific place.
Therefore, both camera heights are required to improve the PB detection model. To achieve
this, training in more image datasets under various environmental conditions and settings
is necessary.

In evaluating object detection models, Intersection over Union (IoU) has been recom-
mended as a standard metric for assessing the quality of segmentation [41]. By analyzing
IoU values separately, it was observed that segmenting fewer sampled classes was particu-
larly challenging, even when using focal loss. A lower IoU loss signifies better detection
accuracy, thereby supporting the conclusion that the YOLOv6-PB nighttime and YOLOv6-
PB camera ground models performed better during testing. This information is crucial in
evaluating the effectiveness of detection models and can help researchers identify areas
that require further improvement. In summary, our study highlights the importance of
considering IoU values in assessing detection accuracy, particularly when fewer classes are
being segmented.

This study investigated the effectiveness of the YOLOv6 model in detecting behaviors,
such as PB, in real-world settings. We found that the model performed well in various
scenarios and could handle unpredictable situations. However, collecting enough image
data for training PB detection models can be challenging, leading to data imbalance or
overfitting issues that can affect the model’s accuracy [42]. To address this, we used
data augmentation techniques, such as geometric transformations, brightness/contrast
enhancement, and data normalization to increase the training dataset size and improve
accuracy rates. Extending the training dataset through data augmentation is essential
for accurate PB model detection, as accuracy depends heavily on the dataset’s size and
resolution. We can overcome these challenges by improving the training procedure, pre-
processing images, and achieving more accurate detection results.

This study has some limitations. For instance, Figure 12 highlights that it is not
appropriate to evaluate a model’s effectiveness based solely on one aspect, rather, it should
be assessed based on its overall performance. Unfortunately, our proposed model has
some significant limitations. During the test phase, it occasionally misclassified behaviors,
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such as dustbathing, feeding, perching, foraging, and drinking activities, in a group as
PB. Similarly, sometimes the model detects feeder as PB might be because of similar hen
color. We intend to enhance the model by training it on additional datasets to address this
issue. This study’s custom dataset includes many images of PB with classes for dustbathing,
feeding, perching, foraging, drinking, or feeding. Therefore, if a hen was just gathering
or coming closer to each other during these activities, the model waited until it detected
PB before registering an identification. However, sometime model mistakenly detects the
hens when more hens come close to each other. Moreover, nighttime detection proved
challenging, leading us to replace regular cameras with night vision cameras. Without
night vision capabilities, it is tough to identify birds. We also discovered that camera height
significantly impacts detection accuracy. As the camera height increases, the sensitivity,
resolution, signal-to-noise ratio, and field of view decrease, which could cause detection
errors. However, the camera placed close to the hen also causes false detection problems by
making the camera blur or detecting objects PB nearby. In addition, the cameras need to be
cleaned daily to obtain the best quality videos because CF housing consists of higher dust
particles [43,44]. Overall, the image quality decreases as the camera height increases or is
too close to hens, and the camera’s periodic cleanliness is required. These limitations are
the most noteworthy findings of our study.
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(c) feeder presence, and (d) perching.

In the future, detecting and preventing PB in hens is an important research area,
and several promising directions exist to explore. One of these directions involves using
advanced computer vision techniques, such as the YOLOv6 model, which can accurately
identify and differentiate between objects and their behaviors. By analyzing videos, the
YOLOv6 model can simultaneously evaluate multiple categories or classes and provide
unique identifiers for each detected object, making it a good choice for detecting PB.
Researchers could also explore the use of multi-sensor systems to obtain a complete view
of hen behavior and develop non-invasive methods for detecting PB to reduce stress on
the hens. Additionally, investigating the impact of environmental factors on PB and using
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machine learning algorithms to analyze large datasets could provide valuable insights into
this issue. Finally, we could better understand the hen’s behavior and welfare by integrating
data from multiple sensors, such as cameras, microphones, and pressure sensors.

To prevent PB, it is important to understand its underlying causes and motivations.
Studying the social dynamics of hen groups, their individual personalities, and preferences
can help develop targeted interventions to prevent or mitigate this behavior. Automated
feedback systems can provide real-time information to farmers or caretakers about the
prevalence and severity of PB, allowing them to intervene when necessary and improve
welfare outcomes for hens. Improving an understanding of PB and the environmental
and social factors that drive it can help to develop more effective strategies to improve the
welfare and overall health of hens in both commercial and non-commercial settings.

5. Conclusions

This study tested different deep-learning models for detecting PB in research CF
houses. The model development used 9000 images for training, validation, and testing. The
results show YOLOv6l relu-PB model has a higher performance in detecting PB with higher
mAP@0.50 (98.9%), mAP@0.50:0.95 (63.7%), and average recall (70.6%) than other models.
Similarly, ceiling and ground cameras are important to detect PB more precisely. However,
ground camera results in higher precision for detecting PB. The camera with inbuild night
vision technology can help in increasing detection accuracy. The camera placed at the ceiling
has shown higher precision in detecting PB during nighttime. However, we encountered
some common problems, such as inaccurate detection and difficulty recognizing objects that
were too close or far away. To address these problems, we propose several deep-learning
techniques for training the YOLOv6 model, such as linguistic transition, spontaneous
geometric transition, and spontaneous color dithering.

Our research proposed the YOLOv6 model, which leverages efficient net to extract
features from input images, thus enhancing the model’s feature learning and boosting
the network’s performance. By detecting PB quickly and accurately, we can minimize the
negative impact on animal welfare and reduce FELB, leading to better health outcomes
and production. However, we noticed some limitations in real-time applications, such
as the model’s inability to classify images containing groups of hens or those too close
together. As a result, future research should focus on improving the approach’s accuracy
and addressing these types of datasets. Overall, the YOLOv6l relu-PB detection model is
recommended for monitoring PB and will be tested in commercial houses.
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