
Citation: Krug, S.; Hutschenreuther,

T. A Case Study toward Apple

Cultivar Classification Using Deep

Learning. AgriEngineering 2023, 5,

814–828. https://doi.org/10.3390/

agriengineering5020050

Academic Editor: Travis Esau

Received: 29 March 2023

Revised: 26 April 2023

Accepted: 27 April 2023

Published: 2 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

AgriEngineering

Article

A Case Study toward Apple Cultivar Classification Using
Deep Learning
Silvia Krug 1,2,* and Tino Hutschenreuther 2

1 Department of Computer and Electrical Engineering, Mid Sweden University, Holmgatan 10,
851 70 Sundsvall, Sweden

2 System Design Department, IMMS Institut für Mikroelektronik-und Mechatronik-Systeme Gemeinnützige
GmbH (IMMS GmbH), Ehrenbergstraße 27, 98693 Ilmenau, Germany; tino.hutschenreuther@imms.de

* Correspondence: silvia.krug@imms.de

Abstract: Machine Learning (ML) has enabled many image-based object detection and recognition-
based solutions in various fields and is the state-of-the-art method for these tasks currently. Therefore,
it is of interest to apply this technique to different questions. In this paper, we explore whether it
is possible to classify apple cultivars based on fruits using ML methods and images of the apple in
question. The goal is to develop a tool that is able to classify the cultivar based on images that could
be used in the field. This helps to draw attention to the variety and diversity in fruit growing and to
contribute to its preservation. Classifying apple cultivars is a certain challenge in itself, as all apples
are similar, while the variety within one class can be high. At the same time, there are potentially
thousands of cultivars indicating that the task becomes more challenging when more cultivars are
added to the dataset. Therefore, the first question is whether a ML approach can extract enough
information to correctly classify the apples. In this paper, we focus on the technical requirements and
prerequisites to verify whether ML approaches are able to fulfill this task with a limited number of
cultivars as proof of concept. We apply transfer learning on popular image processing convolutional
neural networks (CNNs) by retraining them on a custom apple dataset. Afterward, we analyze
the classification results as well as possible problems. Our results show that apple cultivars can be
classified correctly, but the system design requires some extra considerations.

Keywords: apple cultivar recognition; deep learning; challenges

1. Introduction

Apples are a fruit with a high genetic variation and seeds that produce new individuals
with different gene combinations, leading to new varieties whenever a seed is allowed to
grow and bear fruit. As a result, thousands of apple cultivars have been developed over
time by selecting the most promising variants. Some of them are already forgotten or have
been replaced by newer versions. Today, commercial apple farmers tend to grow a limited
number of 10–25 cultivars only. Older variants still exist but are not as suitable for intensive
farming. However, these cultivars are still important because they are typically well
adapted to local environmental conditions and are robust without the need for pesticides.
These features render it important to maintain genetic resources in order to be able to breed
cultivars for the future [1,2].

In recent years, several collections of old cultivars (e.g., [3,4]) have been established
all over Europe. The goal is to preserve the genetic pool for the future by collecting old
cultivars and keeping them as live trees [5]. However, most of the traditional old cultivars
are grown in traditional orchards with large trees. These habitats are very common all over
Europe and are a vital element in biodiversity preservation [6,7]. Often, these orchards lose
their purpose when fruit production shifts to specialized farming. As a result, many are
abandoned or removed. In recent years, the attention of conservation of natural resources
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has shifted toward these traditional orchards to revitalize the natural habitat. The apple
cultivars planted there are vital to this, and thus, it is important to classify and add them to
the collections. To achieve this, in-field classification by experts is frequently performed
for the remaining orchards. However, the state of the trees and their potential age render
the classification task difficult. Collecting probes for later comparison and analysis can
be error-prone if batches become mixed or labels lost. An option for in-field assessment,
similar to popular plant-classification apps, would help here.

To achieve this, it is important to classify the cultivar correctly based on images with
limited equipment in the field. The challenges here are the similarities between different
apples, the high number of cultivars, as well as a high variability of the apples from one
cultivar. Therefore, apples are similar and variable at the same time, and small differences
become very important.

Experts require 5–10 fruits at an optimal ripeness state in order to classify them mainly
based on experience and so-called descriptors that represent the phenotypic characteristics
of the cultivar [8]. The process involves collecting the fruit, documenting the tree in
question and performing an expert analysis. At each step, mistakes and misclassifications
can happen. A direct classification close to the tree would help to avoid some of them and
save time.

Classifying cultivars based on fruit requires good observation skills, since only few
features can separate one cultivar from another. This is another challenge because common
apple cultivar descriptions are experience based and thus contain a certain amount of
subjectivity and may vary from expert to expert based on their own experience. As a result,
human experts can only classify cultivars they have had access to previously and were
provided a proper reference. Even in collections, this is an important problem to date, as
shown in [9].

Machine learning and computer vision object recognition and detection methods work
in a very similar way by learning a set of features per object and by classifying it based
on corresponding labels. Given enough images, the algorithm should be able to focus on
relevant feature sets per class without any subjective description of the features. Thus,
given the correct label and a large number of images, classifying cultivars in field based on
images should be possible.

Thus far, cultivar classification has been studied by only a few authors. More often,
the simpler task of classifying species is explored, and there are applications that accom-
plish this task. The few studies focusing on cultivar classification do not focus on expert
classification as a base, and the results will be hard to generalize. The authors in [10] use
only three cultivars that are easy to distinguish since these are green, red, and red with
yellow variants. Using such a dataset leads to a model that is able to distinguish apples
based on color but neglects that there are many green- or red-only cultivars that would be
indistinguishable. Therefore, a model focusing on color only will not generalize well.

In this paper, we explore how to build a model using more stable descriptors following
an expert approach by presenting a preliminary study based on transfer learning for a
limited number of apple cultivars. To achieve this, we provide two main contributions
in this paper: (1) the use of descriptor-based image selection for cultivar recognition and
(2) the introduction of a specific preprocessing step to conserve the aspect ratio in the
original image. Using these techniques, we are able to show a proof of concept for apple
cultivar classification that should be able to scale with more cultivars given an appropriate
number of images per class.

The remainder of the paper is organized as follows. In the next section, we review
and discuss the state of the art. Afterward, we present the methodology we use in this
paper and describe the preprocessing as well as the CNNs under test in detail. Section 4
highlights the results and discussion. Finally, we summarize our findings and highlight the
next steps for future work.
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2. Related Work

Genetic analyses have changed the taxonomy of plants and the relationship between
species. However, morphological traits describing how species or cultivars look have been
the major tools of botany and still remain important, e.g., to register new cultivars that
differ from existing ones in one descriptor. The popularity of ML-based computer vision
has introduced a new trend toward morphology or phenology [11,12] since a computer
vision model based on convolutional neural networks (CNNs) depends on what it can see
in the image that is similar to a classical trait analysis by experts. As a result, the approach
to analyze image-based data is extended for different surveillance options [12] to monitor
plants and animals.

Several ML-based tools exist for the classification of plant species (e.g., [13–15]) or
other cognitive tasks such as bird call identification [16,17]. However, these approaches
target species and not cultivars of one species, making the task somewhat easier, while at the
same time showing the potential of ML-based approaches. The work on FloraIncognita [15]
shows different challenges on how to enable a robust classification, which requires different
views, of plant organs at different times of the day throughout the year. This applies to
fruit cultivars as well, since we feature different weather conditions, different geographical
and in-tree locations as well as ripeness degrees throughout one season. Therefore, the
collected dataset needs to cover these aspects in order to allow a ML model to abstract from
this kind of natural variance.

Approaches to classify cultivars have been presented recently. These include apples,
tomatoes, cherries and grapes. Often, these approaches target other organs such as leaves
(e.g., in [18]) rather than the actual fruit. Regarding apple differentiation, several approaches
have been presented focusing on fruit or leaves in order to perform the classification. In [19],
the authors present a study that is able to distinguish a limited amount of apples based on
skin color. For this, the authors chose red and green variants. As a result, the classification
is quite good, but it only learns two easy-to-distinguish features. Therefore, this study
neglects the variance of different cultivars and does not generalize well.

The authors of [10,20,21] use a different approach. Depending on the fruit at hand,
they selected a descriptive view of the cultivar and used that for their classification. In the
case of apples [10], the longitudinal cut sections of apples were incorporated, in addition to
texture from the outside. In the case of cherries [20] and tomatoes [21], images of the seed
were used. The basic approach is the same for all three tasks. Images are prepared using a
flatbed scanner and texture is extracted from the resulting images and used as a feature for
different ML approaches, achieving results between 60 and 100% accuracy on the datasets.
As such, the actual image is not used in the approach for classification. Furthermore, using
a flatbed scanner for image acquisition is rather impractical for in-field assessments.

Other studies show promising approaches when using the leaves for
classification [22,23]. Leaf images were used from different cultivars and were pho-
tographed from different angles. As such, individual leaves are represented several times
in the datasets. This might lead to overfitting. However, both works give an impression on
how many images are needed for similar cultivar discrimination. This and the study in [24]
on apple quality assessment show that a limited amount of images can lead to good results.

In order to detect objects, other models can be used as well. In the case of fruit detection
(FrD) [25] or flower detection (FlD) [26–28], special models are designed to identify and
locate objects. While this involves classification, the models are not specifically designed
for this task. However, these models are built to handle images from natural environments
and thus provide an additional aspect needed toward a robust system for field work.

Table 1 summarizes the state-of-the-art comparison, showing that the area of cultivar
classification (CC) and other ML-based questions such as various forms of quality assess-
ments (QA) have gained high attention in the last years. When focusing on classification,
typically digital cameras (DC) in studio environments (e.g., using a lightbox and tripod) [29],
flatbed scanners (FS) are used for image capture to gain high-resolution images. For field
work however, this is not feasible, and images captured by mobile phones (MP) would be
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preferable, as shown by [27] for flowers in the natural environment. Others used public
datasets (PD) or a web search to collect their data. Especially, using web-search-based data
lacks proof of ground truth. This is however crucial for robust classification of the cultivar
in order to use the system in conservation work later on. Related to this is the fact that there
are a potentially large number of cultivars that require generalization capabilities of the
model, if the model is to be extended for more cultivars over time. For this, we believe that
it is important to use images that are descriptive regarding the characteristics of the apples
identified by experts. What is missing are robust models that target cultivar classification,
that are robust to the natural environment and that incorporate the expert approach as, e.g.,
described in [8], at least for a subset of plant organs. Our study is a step toward this.

Table 1. Literature comparison.

Paper Year Task Object ML Tools Capture Images Cultivars Plant Organ Fruit Views Expert
Appr.

[19] 2012 CC Apple SVM Web 90 2 Fruit Outside no

[14] 2018 SC Plants CNN MP Multiple yes

[30] 2019 CC Apple LDA FS 25 Seeds no

[18] 2020 CC Grape CNN PD 300 5 Fruit Outside yes

[22] 2020 CC Apple CNN DC 12,400 14 Leaf no

[25] 2020 FrD Tomato YOLO DC 966 Fruit Outside no

[26] 2020 FlD Apple YOLO DC 2230 3 Flower no

[31] 2021 CC Apple SVM PD 13,000 6 Fruit Outside no

[10] 2021 CC Apple CNN FS 3 Fruit Outside, Cuts no

[20] 2021 CC Sour Cherry CNN FS 800 4 Seeds no

[23] 2021 CC Leaf CNN PD Leaf no

[32] 2022 CC Apple Custom DL DC 14,400 30 Leaf no

[29] 2022 CC Apple CNN DC 9 Fruit Outside no

[33] 2022 QA Mango SVM 13,400 3 Fruit Outside no

[28] 2022 FlD Kiwi YOLO DC Flower no

[34] 2022 QA Plants CNN 14,000 Fruit Outside no

[21] 2022 CC Tomato CNN FS 200 5 Seeds no

[27] 2023 FlD Apple YOLO MP 3005 Flower no

[35] 2023 CC Apple CNN 8538 13 Fruit Outside no

[36] 2023 QA Apple Custom DL DC 9852 1 Fruit Outside no

ours 2023 CC Apple CNN MP 600 5 Fruit Inside yes

In this paper, we will try to combine the approaches of [13,15] with state-of-the-art
CNN models for image classification and focus on images acquired by mobile phones in
the field using images of the apples. This approach follows a traditional expert assessment.

3. Method
3.1. Dataset Collection and Preparation

In order to evaluate the possibility to use machine learning models for apple cultivar
classification, a suitable dataset is needed. Due to the high number of features that are
visible in the longitudinal cut section of an apple (cf. [8]), we chose this view for our
evaluation. Since there is no public dataset available featuring corresponding images,
we had to collect our own. Unlike the authors of [10], we do not use apples from the
supermarket but rather from trees in the surrounding areas. An expert classified each
cultivar before using the images. All images of apples in this paper were captured by the



AgriEngineering 2023, 5 818

authors using mobile phone cameras to emphasize the later use of the model as part of a
smartphone-based app.

The apples were collected and images acquired during the apple season 2020 from five
different cultivars (“White Transparent”, “Red Astrachan”, “James Grieve”, “Carola” and
“Pinova”) at different locations. In total, we collected over 100 apples per cultivar, but due
to quality issues with the camera or damaged fruit, we obtained only 85 images per cultivar
and 81 for “Carola” to use for the classification. This number is low, but should suffice for
an initial proof. Figure 1 shows an example image from each class also highlighting the
similarity of the apple cultivars form this view.

(a) (b) (c) (d) (e)
Figure 1. Example images from each class: (a) White Transparent; (b) Red Astrachan; (c) James
Grieve; (d) Carola; (e) Pinova.

Figure 2 shows selected images from one class only that highlight the intra-class
variability as well as small defects (brown patches) on the apples. Both figures highlight the
challenges very well, and the difficulty is expected to increase with the number of cultivars
included in the study.

Figure 2. Example images from “Red Astrachan” class showing intra-class variability.

The images were taken with the built-in camera of different mobile phones by placing
the apple in the center of the image and ensuring that it fills the screen well. While this
results in different distances between the camera and object, it maximizes the number of
pixels per apple. We chose this over a fixed setup with constant distance since we assume
that size is a rather variable descriptor of the apple and thus is not the most important
classification feature. We use the default resolution of each mobile phone, which results
again in different resolutions for the base images. In order to derive the final square pixel
image according to Table 2 as input to the models, we add classical image pre-processing
to the dataset preparation. The following pre-processing steps are applied for each image
in the dataset:

1. Apple detection and segmentation;
2. Derive bounding box around the apple;
3. Crop to square image based on the bounding box;
4. Rescale cropped image to final resolution.

The important point in this chain is to crop the image to a square bounding box, which
preserves the original proportions in the image. While size is a highly variable feature
of apples, shape is not. This not only applies to the apple itself but also to its organs.
Therefore, we chose to buffer the image with white pixels at the edges in order to have
a square image with good proportions, rather than a somewhat distorted version of it, if
the rectangular bounding box becomes rescaled into a squared image. Figure 3 shows the
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difference between the two options. We added this step after initial evaluations with VGG
that showed a bad performance of 20 to 50%. Due to this pre-processing step, we limited
the model choice to traditional classifiers in this study. Other models, such as the YOLO
family, which focus on detection and classification, would remove the need for detection
and segmentation, but the resulting bounding box would only be a square shape if the
object is perfectly square. As a result, we would expect similar problems with distorted
shape features in the YOLO classification and thus did not consider these models at this
stage. However, we plan to evaluate YOLO for detection and segmentation in the future.

Table 2. Model setup.

Model Image Size Weights Memory Parameters Depth
(px, px) (MByte)

VGG16 224, 224 154.2 138.4 M 16
Resnet50 224, 224 90.2 25.6 M 107
Inception 299, 299 83.9 23.9 M 189
InceptionResnetV3 299, 299 214.9 55.9 M 449
Xception 299, 299 81.8 22.9 M 81
EfficientNetB3 300, 300 47.6 12.3 M 210

(a) (b) (c)
Figure 3. Difference between proportion conserving cropping and rectangular bounding box rescale:
(a) original image; (b) square image based on bounding box; (c) square crop with buffer to preserve
apple proportion.

After preprocessing, the 85 images were split into 50 for training, 20 for validation, and
15 for testing. We chose two versions of building the dataset. The first one was handcrafted,
where we made sure to have all combinations (ripeness state, damages, different origin)
represented in each class. We chose this approach to cover as much of the variability in
the dataset (see [13] for problems with variability) in order to allow the model to cover
these aspects. The second variant features a classical 80–20 percent split for training and
validation with k-fold random selection of the images in each set, still reserving 15 images
for testing not used in the training process. In addition to this dataset, we used another
extended version that provides more images per class. This dataset is used to verify what
happens if more images are available.

3.2. Machine Learning Models

Several CNN models have been developed over the last 10 years and have been
applied to the ImageNet dataset [37] for benchmarking. Since the focus of this study is to
evaluate how these models perform for apple cultivar recognition as a proof of concept,
we used existing models and transfer learning rather than designing a model from scratch.
As a base, we used keras [38] with tensorflow backend [39]. This setup provides several
popular CNN models with pre-trained weights from the ImageNet dataset. Among those,
we selected the following models and will give a brief introduction to each one.

VGG [40] was one of the first deep convolutional models. It is known to generalize
well on new datasets and is therefore a good choice for transfer learning cases. However,
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VGG is a rather large model with 138.4 M parameters and thus requires a lot of memory.
We used VGG16 with 16 convolutional layers in this study.

ResNet [41] enhanced the architecture of CNNs by introducing residual connections.
This allows for easier training of deeper models with more layers. As a result of increased
depth, the models show improved performance. Several variants of the ResNet architecture
exist. We chose ResNet50 as the smallest variant, with a future mobile implementation in
mind. The other variants are deeper and provide better performance but at the cost of high
memory requirements.

The next model under test is InceptionV3 [42]. Inception introduces factorized con-
volutions and regularization to use the available resources more efficiently. The model is
again deeper but has a lower number of parameters compared to ResNet and VGG.

Inception-ResNetV2 [43] combines both previous architectures. The main design
goal was to speed up the training process with comparable results to Inception. This
architecture is the deepest under test and shows a bigger size than the base models but
is lower than VGG. We included Inception-ResNet to evaluate whether the speedup and
slight performance gains are worth the additional cost in terms of memory in our case.

Xception [44] features a similar approach as Inception but replaces the inception block
with depthwise separable convolutions. It has the same number of parameters as Inception
but is less deep. Performance-wise, Xception is reported to slightly outperform Inception.

Finally, we consider the EfficientNet family[45] as a candidate. This architecture is
newer and was built with efficiency in mind. As a result, the models are smaller, but
they give good performance and have the potential to outperform ResNet and MobileNet,
another model targeting mobile deployments. EfficentNet models are specifically scaled
to the inputs, so that different variants exist with different input sizes and the resulting
number of parameters. To stay comparable to the other models under test, we chose
EfficientNetB3 with a similar input size. It is the smallest model in our study and shows
similar results as Inception-ResNet.

Further models are available. This includes MobileNet, with a target on mobile
applications and very low memory requirement. However, this model shows a lower
performance on ImageNet and thus has been omitted as a test candidate here, since we
expect the task to be rather challenging. Another option would be newer models such as
Vision Transformers (ViTs). However, such models require a large amount of images for the
training, which is not given in this case and will be generated only over time. Therefore, we
limit our choice to the described models for now but plan to reevaluate the model selection
as the dataset grows and the models become suitable for smaller datasets.

The described models focus on classification of images. Furthermore, there are models
that perform object detection and classification at the same time. The YOLO family of
models [46] is a popular example for this, with the original model described in [47]. Since
we focus on a proof that classifying apple cultivars mimicking the expert approach is
possible, we did not use these models for now. The main reason is to be able to control
the detection and preprocessing to avoid errors. In addition, the YOLO family is focused
on video detection, and only the tiny [48] or nano [49] models are suitable for use with
mobile devices. The performance reported in [50] indicates that these models have a lower
accuracy than their bigger counterparts. These model variants should however be included
in future comparisons.

3.3. Model Setup

All models we considered in this study are loaded with pre-trained weights but
without the original top layer. Instead, we defined a custom classifier for the given cultivars
and initially trained the new classification layers before fine tuning the base network. This
is the classical transfer learning approach.

We built the classifier using an AveragePooling Layer after the CNN followed by a
dense layer with Relu activation with 1024 neurons, a dropout layer and the final dense
layer with softMax activation as the classifier. This classifier was used for all models.
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Each model uses its default image size as denoted in Table 2. The table also indicates
the size of the weights and the depth and the number of parameters of the corresponding
models. Depth and parameter values where taken from the Keras website (https://keras.
io/api/applications, accessed on 26 March 2023).

According to this, EfficientNet shows the lowest memory requirement, while Incep-
tionResnet and VGG show the biggest. This is relevant for future implementation within a
mobile device that should be able to run the trained model for inference.

Each model is trained for up to 60 epochs with early stopping and data augmentation
to mitigate the limited amount of images. We used Adam optimizer and optimize the
accuracy. A checkpoint callback was used during training to save the weights of the best
model variant. Later, we used the best model per training run for evaluation with the
unseen test dataset.

During the training, we used data augmentation to increase the available data. Due to
the importance of the apple shape, we chose only those options that preserve the aspect
ratio, e.g., rotation, zooming, and shifting. To perform these augmentation steps, we
used the default API provided by keras. Further augmentation options such as feature
standardization or shearing are available, but they were not used in this study, to stay close
to the original object. The resulting variations keep the nature of the cultivar class and are
thus good options to enhance data availability.

Using our small dataset (<100 images per class) provides an additional challenge
to the training process. However, collecting sufficiently large amounts of images is time
consuming and might take years, especially for rather rare cultivars where only few trees
are known as ground truth. Handling 100 apples is however something that is possible in
one season and thus would help to extend the dataset faster and study the impact of more
images over time. A similar minimum number of images is used for some cultivars in [29].
Therefore, one aspect of our study is to evaluate if it is possible to obtain initial results with
such a low number of images.

3.4. Experiments

In order to evaluate if the models are able to correctly classify the apple cultivars and
to explore the difficulty of the problem, we performed the following experiments:

1. Performance comparison of models. Finally, we evaluate the performance of the
models and analyze differences in the predictions.

2. Impact of more images in the dataset. We performed this step to evaluate whether
additional data are beneficial to the task.

3. Impact of manually constructed vs. random (k-fold validation) dataset preparation.
We performed this step to investigate whether a manually constructed dataset cover-
ing all sources of variance is worth the effort.

For each experiment, we repeated the required training process five times and aver-
aged the results. This also applied to the k-fold validation variants.

4. Results and Discussion

Regarding experiment one, Figure 4 shows the comparison of the trained CNN archi-
tectures. The boxplot is based on the best variant of the five training runs for each model
on the smallest 85 image dataset. All models are able to achieve a classification accuracy of
70 % and above. This is promising for the transfer learning case, given the dataset similarity
using only the longitudinal section of the apple.

https://keras.io/api/applications
https://keras.io/api/applications
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Figure 4. Statistics of the accuracy score over five training runs per model under test on the unseen
test data.

Table 3 lists the top accuracy of all five runs as well as the training and evaluation time
for the models. The training was performed on an Lenovo T14s notebook equipped with a
NVIDIA T500 GPU. Tensorflow and keras were configured to use the GPU.

Table 3. Model performance.

Model Test Train Top Test Performance

(s/epoch) (ms/step) (s/epoch) (ms/step) Loss Accuracy

EfficientNetB3 7 48 7 715 0.3179 0.9062
ResNet 21 204 4 456 0.3757 0.8542
VGG 28 250 24 2000 1.4768 0.8333
Inception-ResNet 60 371 7 736 0.5154 0.8125
Xception 9 77 7 623 0.6351 0.8125
Inception 6 47 5 552 0.5592 0.7917

When analyzing the results in detail, the choice of VGG16 as a model for transfer learn-
ing can be confirmed, as expected. However, it comes at the highest cost in terms of memory
usage and is the slowest model under test, resulting from the high number of calculations.
The high variability of Xception results makes the transferability of performance reported
in ImageNet to new tasks somewhat questionable. This came somewhat as a surprise, as it
still outperforms Inception but fails to outperform ResNet or Inception-ResNet. Regrading
Inception-ResNet, the improved speedup for training does not pay off in this study since
the result does not outperform the other variants except for Inception and Xception, while
having a high cost in terms of memory usage. According to Table 3, ResNet shows the best
top result of the traditional CNNs. When observing the box plot for ResNet in Figure 4,
this value is however far away from the average score of all training runs and thus has to
be considered as an outlier.

The best overall performance is provided by EfficientNetB3. It shows an increased
accuracy of on average 88% compared to the other models under test, for all five runs.
This is important because with a future mobile application running the inference at the
device, this model also has the lowest memory footprint and is among the faster models
for evaluation. Furthermore, all runs show a good convergence, as can been seen for one
example run in Figure 5. As a result, we chose EfficientNetB3 as the CNN architecture for
the remaining experiments. In the future, we plan to compare this choice to YOLO-based
variants to assess if it outperforms the combination of classical image segmentation, manual
preprocessing and a relatively small EfficentNet classifier. This will involve a test of whether
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the described contribution to add a shape-preserving preprocessing when preparing the
images as input will be needed in that case and how this could be integrated into the YOLO
architecture. For this, we plan to consider a case similar to [51], where YOLO is used for
detection and segmentation only. In that setup, the resulting image can be buffered, as
described here, and fed into another classifier.
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Figure 5. Example training results for EfficientNetB3 over 60 epochs.

One would expect that additional images per class render a better accuracy of the
model. We attempted to verify this by adding new images from 2021 to our original
85-image dataset. However, the number of available images per class was different, and
especially for the Red Astrachan, we had only a few additional images. Thus, the increase
in the number of images led to a somewhat imbalanced dataset. Experiments two and three
were conducted using different variants of this base amount of images. Table 4 lists the
different variants and images for training, testing and validation. The per class numbers in
the table represent the target. Due to imbalances, the mentioned number can be lower. This
is especially true for the Red Astrachan.

Table 4. Datasets evaluating the impact of more images per class.

Variant Number of Images

Overall Per Class

Total Train Valid Test Train Valid Test

Original 85 Constructed 650 250 75 96 50 15 20
Constructed Increased Train and Test 745 554 75 116 >100 15 25
Constructed Increased Train, Valid
and Test 745 529 100 116 >100 20 25

Random k-fold 744 542 135 67 >100 >26 >17

When initially increasing the number of images, we randomly selected a few images
for the test data and put all other images in the training data to enhance the training process.
However, the result was not as expected. Instead of an improved performance, the accuracy
dropped by 2% to 86%. When looking at the resulting predictions, it became obvious that
the imbalance and the increased intra-class variability caused this, as long as the validation
set is untouched. Adding a subset of the new images from training to validation, the
average accuracy stayed at 88%. However, the variance in the results between the five runs
remains high. This variant shows the overall best model with an accuracy of 92% but also a
rather low accuracy variant with 84.5%.
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To evaluate this effect further, we performed a classical five-fold validation, where
20% of the images for training from each class are used for validation. The respective
20% were shifted five times. The test images were the same and were kept constant as
unseen images. As a result, the accuracy dropped again and even down to 84%, which is
lower than the constructed case without the increased validation set. Figure 6 shows the
corresponding statistics.

Figure 6. EfficientNetB3 performance on different dataset variants.

The random split data show worse performance compared to the constructed dataset.
This shows that for the limited amount of data in this study, it is crucial to cover the
complete variation within the data in all three parts of the dataset. In this case, this results
in different origins of the apples, different ripeness states and especially the quality of the
cut apple sections. Images where the crucial features are not visible, e.g., due to a unfocused
lens or a cut that is somewhat off, are more difficult to classify, as expected.

The confusion matrix in Figure 7 for the best model highlights this. Out of the
116 images in the unseen test data, only 10 were misclassified. The most difficult classes
are Carola and James Grieve, accounting over 50% of the errors. When looking at the
corresponding images, it becomes clear that these are somewhat extreme cases of the
respective class closer to the other classes. Thus here, we observe the impact of low
inter-class separation.
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Figure 7. Confusion matrix of the best EfficientNetB3 model under test.
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Figure 8 highlights this with examples of classification errors for Carola. When
compared to the typical images in Figure 1, the similarity to the other classes is obvious.
This is also the major challenge for apple recognition that has been the focus of research
thus far. Especially toward generalizability and the addition of further classes, the observed
similarity has to be handled properly. Our results show as well that models are able to
obtain good prediction results even with very few images available. Toward a robust
system, the goal should however be to extend the dataset with more images per cultivar.

(a) (b) (c) (d) (e)
Figure 8. Misclassified Carola images. Images (a) to (c) were classified as James Grieve, image (d) as
Red Astrachan and image (e) as Pinova

As a result, if only a limited tiny dataset is available, the system should be built with
good-quality images whenever possible. Image preparation is also crucial in this case
because cropping images without keeping the aspect ratio of the depicted object leads
to decreased classification accuracy. This results from added variability since suddenly
atypical shapes are possible, and thus, the classes become less separable.

To further increase accuracy using the given model, one could think about a majority
voting where the predictions for more than one apple are combined to a final score. This
would be closer to the approach of human experts. In addition, this study focused on the
longitudinal cut of an apple only. While this cut shows many features of an apple, there are
a number of additional features only visible from the outside of the apple [8]. Therefore,
we plan to add two additional views (calxy and stem side) to the dataset to enhance the
accuracy further.

Regarding the generalizability of the presented approach to classify apple cultivars,
it is important to have enough good-quality images that cover the whole spectrum of
expected inputs. If this is fulfilled, the approach should scale well to additional apple
cultivars. This is an enhancement compared to the work of, e.g., [10,19], where the choice
of image limits the generalizablilty.

5. Conclusions and Future Work

In this paper, we compared a number of well-known CNN architectures to classify
apple cultivars. We used images from the longitudinal section of a cut apple only to
highlight the challenges of distinguishing very similar classes with a high intra-class
variability. In order to do that, we had to add a manually preprocessing step, which
ensured the aspect ratio of the given apple image to preserve the crucial shape of the apple.
Otherwise, the intra-class variability increases, and the task becomes unnecessarily difficult.
Using the resulting images, EfficentNetB3 showed the best performance and is the smallest
model under test. It is therefore a promising choice to build a mobile application for the
task to classify apples in the field.

However, when extending the dataset, the results dropped somewhat due to new
variability within a class and increased similarity between classes. Only the constructed
datasets were able to perform well under these conditions. This shows the need to carefully
construct the datasets, especially with few images per class. This is especially important for
the collection and establishment of datasets for rare cultivars and can provide a guideline
of, first, how many apples need to be collected and what properties to include and, second,
how to build the corresponding datasets for maximum performance.
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Despite the need to build a carefully constructed dataset, our findings provide promis-
ing preliminary results toward an app-based apple classification system. We were able to
show that longitudinal cuts, as used by the experts, perform well even on tiny datasets
and that including images according to expert knowledge is beneficial for the system.
Therefore, we plan to extend the current work by evaluating how to integrate images of
further apple descriptors and by studying the impact of additional cultivars as a next
step. Further analyses will include YOLO for segmentation and YOLO as a benchmark
for the current model. Finally, the goal is to actually provide a classification system to the
conservation workers.
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