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Abstract: Drought has been known to be a natural hazard reflecting geographic and climatic char-
acteristics. Satellite technology advancements have benefited drought assessment and monitoring
to formulate plans for dealing with this slow-onset disaster. However, combining satellite remote
sensing (RS) and meteorological data for drought monitoring is lacking in the literature. This study
uses satellite RS and meteorological-based drought indicators to assess drought risk in the Ilocos
Norte, Philippines. Data analysis included the retrieval of vegetation conditions using Sentinel-1 and
Sentinel-2 data. The standardized precipitation index (SPI) and Keetch–Byram drought index (KBDI)
were calculated to account for climatic variabilities. Results revealed that the Sentinel-1 backscatter
coefficient decreased by−2 dB in the cropland area, indicating crop growth irregularities compared to
grassland areas. These irregularities were supported by Sentinel-2 normalized difference vegetation
index (NDVI) strong fluctuations during the two-year observation period. A significant coefficient of
determination (R2 > 0.60) between the Sentinel-1 backscatter coefficient and Sentinel-2 NDVI was
observed for the study area. On the one hand, only KBDI significantly correlated (R2 > 0.60) with the
cropland area’s RS data-derived drought indicators. These results revealed RS data variability for
drought risk management but are still valuable for developing an early warning system.
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1. Introduction

Drought is a natural hazard that reflects the region’s exposure to various geographic
and climatic characteristics. Due to its widespread impacts over a large area in a certain
period, it is considered more potent than other natural disasters, especially in areas that
heavily rely on agricultural-based occupations [1]. Mainly attributed to low precipitation for
an extended period, drought provides negative implications regarding economic and social
functions. The consequences of such drought-related outcomes have severely inhibited
the proper functioning of the community regarding water supply, productivity, and food
security [2]. Hence, the evaluation of probable drought-risk areas must be addressed and
mitigated through data-based assessments.

Drought indicators represent data to quantify or measure drought severity in a par-
ticular area. It uses information on rainfall, streamflow, soil moisture, and other hydro-
meteorological evidence to monitor vegetation conditions. With this, various indices can be
used to establish the amount of precipitation for a certain period and accordingly compare
its deviation from established standards. Some of the widely used meteorological-based
indices include the standardized precipitation index (SPI) [3–8], standardized precipitation
and evapotranspiration index (SPEI) [3,5–7,9,10], multivariate standardized precipitation
index (MSPI) [11,12], rainfall anomaly index (RAI) [13,14], and Palmer drought sever-
ity index (PDSI) [8,15,16]. However, the scarcity and high spatiotemporal variability of
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meteorological stations across different regions limit the successful utilization of these
meteorological-based indices for drought assessment and monitoring [17].

The application of remote sensing (RS) In drought studies lies in its capability to
observe changes in a geographic environment [18]. It can monitor a particular area’s
condition before, during, and after a disaster strikes. Similarly, a geographic information
system (GIS) creates a centralized mechanism for the RS data through mapping and spatial
analysis for a particular disaster scope. Likewise, advancements in satellite technology
have been beneficial in drought assessment and monitoring, which help formulate plans to
deal with this slow-onset disaster [19,20]. Satellite observations have provided significantly
contributed to accurately visualizing surface parameters in the possible occurrence and
severity of drought for a certain period [21–24]. Specifically, Sentinel-2 and Landsat optical
satellite-derived indices are widely used to evaluate drought on a regional scale [25–33]. The
most commonly used optical RS data-derived drought indicators include the normalized
difference vegetation index (NDVI), normalized difference water index (NDWI), vegetation
condition index (VCI), and enhanced vegetation index (EVI). However, optical satellite
data are highly affected by unpredicted atmospheric conditions (i.e., cloud contamination),
limiting the collection and utilization of quality optical satellite imageries despite being
acquired at shorter time windows with zero costs.

On the other hand, synthetic aperture radar (SAR) data complement optical satellite
data in regions with considerable cloud cover density in investigating drought. SAR is
an active radar imaging technology that works in all weather conditions, day and night.
For example, the fleet of twin Sentinel-1 satellites has provided free accessible archived
medium-resolution SAR data, which the scientific community utilizes for various earth
observation and geohazard applications such as floods [34,35], volcano eruptions [36,37],
earthquakes [38,39], landslides [40–42], and land subsidence [43–45]. However, limited
studies have utilized Sentinel-1 SAR data for drought analysis [46–48]. Specifically combin-
ing freely available optical satellite data (i.e., Sentinel-2 and Landsat-8) and space-borne
SAR data (i.e., Sentinel-1) for drought monitoring is rarely reported in the literature [49–51].
Statistical analysis proving the relationship among drought indicators derived across RS
and hydrological data is also lacking in the literature.

Amid all the innovations and advancements of RS and GIS technologies occurring
worldwide, the Philippines is still evidently lacking. Despite the frequent severe weather
and climatic events that affect the country each year, mitigation and improvement of
conditions are challenging to achieve even up to now because of the scarcity of available
and freely accessible data and research in the Philippines. Specifically, the Philippines’
monitoring drought system is weak, resulting in multiple adverse drought impacts and
emergency events. The World Health Organization (WHO) Collaborating Centre for
Research on the Epidemiology of Disasters (CRED) recorded eight droughts that occurred
in the country affecting 6.5 million people and causing 64.4 million dollars in damage
to livelihoods and properties [52]. This record emphasizes the need for the country to
improve its technologies concerning the analysis of weather events aside from the numerous
typhoons entering the country each year. Mainly, the Ilocos Norte Region in the Philippines
has been one of the worst-hit areas as more than 2000 ha of high-value crops, such as rice
and corn, were reported to be dried out and destroyed due to water shortage and warmer
temperatures, as well as the intensifying El Niño conditions [53]. Damages to livestock and
the environment have also been evident as a significant population in Ilocos Norte depends
on the agricultural industry.

This study’s overall objective is to promote the application of RS data in the Philippines’
drought risk management plan. Specifically, the study assesses Sentinel-1′s backscatter
coefficient and Sentinel-2′s NDVI for drought investigation. The study also aims to quan-
titatively test the correlations between satellite and meteorological data-derived indices
through statistical analysis. Lastly, the study aims to provide a drought early warning
system (EWS) using different drought indicators.
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2. Study Area

Ilocos Norte Province is located in the northwest part of the Philippines and geo-
graphically between N 17◦48′ and N 18◦29′ latitude and E 120◦58′ and E 120◦58′ longitude
(Figure 1). The province has a total land area of 362,291 ha, more than 33% of which is
dedicated to agriculture and forestry [54]. Ilocos Norte is a central crop-producing area in
the Philippines, allowing the region to be a key area for rice production and a significant
rice supplier [55].
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Figure 1. The map shows the regional boundary of the Ilocos Norte region in the Philippines and the
cloud-free Sentinel-2 optical images of the cropland and grassland areas investigated in the study.

For this study, data gathering was focused on Ilocos Norte’s capital, Laoag City.
The city is located in the west-central part of the province. According to the Philippine
Atmospheric, Geophysical and Astronomical Services Administration (PAGASA), the
temperature in Laoag can go as high as 41.8 ◦C during the dry season and as low as 11 ◦C
during the rainy season (PAGASA, 2018). The majority of croplands in Ilocos Norte are
rainfall-dependent or in rained conditions. The climate experienced in the province is
classified as Type I, which is indicated by a distinct dry and wet season. During the wet
season, from May to October, the rice-farming activity highly depends on rainfall.

On the other hand, farmers use groundwater for supplemental irrigation during the
dry season, which happens from November to April [56]. The average annual rainfall of
Ilocos Norte is 2000 mm, and more than 90% of it happens during the wet season. However,
the province has been experiencing way below average rainfall, resulting in damaged crops
in recent years [57].
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3. Materials and Methods

In this study, drought assessment was performed based on remote sensing data and
meteorological data. The remote sensing data derived from Sentinel-1 and Sentinel-2
satellite missions were used to identify vegetation conditions. SPI and the Keetch–Byram
drought index (KBDI) were calculated from precipitation and temperature to account for
climatic variabilities in the region.

3.1. Sentinel-1 SAR Data

Sentinel-1 conveys a single C-band wavelength operating at a center frequency of
5.405 GHz. It comprises two satellites, Sentinel-1A and Sentinel-1B, launched in April
2014 and April 2016, respectively. Equipped with SAR, these satellites can operate at
wavelengths not impeded by cloud cover or illumination, allowing data acquisition under
any time and weather conditions. The 12-day repeat orbit cycle of each Sentinel-1 satellite
and ancillary orbital baselines permit SAR data to provide coherent change detection
applications useful for assessing land surface conditions.

Sentinel-1 SAR data were retrieved from the European Space Agency (ESA) via the
Alaska Satellite Facility (ASF) database. The C-band Sentinel-1 analysis was carried out
using 24 monthly scenes between 1 January 2019, and 31 December 2020, covering the
dry and wet seasons from 2019 to 2020 (Table 1). Each scene contained two layers of
the backscattering coefficient, σ◦, in vertical–vertical (VV) and vertical–horizontal (VH)
polarizations which were converted into decibels units (dB).

Table 1. Sentinel-1 synthetic aperture radar (SAR) dataset used in the study.

No. Acquisition Date Pass No. Acquisition Date Pass

1 28 January 2019 Ascending 13 23 January 2020 Ascending
2 21 February 2019 Ascending 14 28 February 2020 Ascending
3 17 March 2019 Ascending 15 23 March 2020 Ascending
4 27 April 2019 Ascending 16 28 April 2020 Ascending
5 28 May 2019 Ascending 17 22 May 2020 Ascending
6 21 June 2019 Ascending 18 27 June 2020 Ascending
7 27 July 2019 Ascending 19 21 July 2020 Ascending
8 20 August 2019 Ascending 20 16 August 2020 Ascending
9 25 September 2019 Ascending 21 19 September 2020 Ascending
10 31 October 2019 Ascending 22 25 October 2020 Ascending
11 24 November 2019 Ascending 23 30 November 2020 Ascending
12 30 December 2019 Ascending 24 24 December 2020 Ascending

Sentinel-1 SAR data were processed using the Sentinel Application Platform (SNAP).
Each extracted satellite image was primarily subjected to a series of standard corrections
to reduce error propagation in succeeding processes. Then, a time series analysis of the
Sentinel-1 SAR data at VV and VH polarization was generated to analyze the variation of
backscatter intensity of surfaces as a function of their vegetation characteristics.

3.2. Sentinel-2 Optical Data

Sentinel-2 was launched on 23 June 2015, focusing on providing visual information
that can be applied to agriculture, land ecosystems monitoring, forest management, inland
and coastal water quality monitoring, disaster mapping, and civil security. The satellite
allows a 290 km field of view to collect a 100 × 100 km2 tile with various spatial resolutions,
ranging from 10 m, 20 m, and 60 m.

Sentinel-2 optical data were obtained from ESA’s Copernicus Open Access Hub. The
data obtained were between 1 January 2019 and 31 December 2020 (Table 2). Once data had
been retrieved, the files were extracted to obtain the spectral bands, clipped to the chosen
location for the cropland and grassland areas. These optical data were obtained in Level
1C (L1C) and Level 2A (L2A). L1C is obtained from the top-of-atmosphere reflectance,
which still includes the atmospheric cover, which requires dark object subtract 1 (DOS1)
atmospheric correction from QGIS and other sentinel-based applications. L2A is obtained
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from the bottom-of-atmosphere, which automatically removes the atmospheric cover,
allowing for more immediate and accurate results without any correction.

Table 2. Sentinel-2 optical data used in the study.

No. Acquisition Date No. Acquisition Date No. Acquisition Date

1 31 January 2019 9 13 September 2019 17 5 May 2020
2 25 February 2019 10 28 October 2019 18 29 June 2020
3 27 March 2019 11 22 November 2019 19 19 July 2020
4 26 April 2019 12 22 December 2019 20 18 August 2020
5 1 May 2019 13 31 January 2020 21 17 September 2020
6 20 June 2019 14 20 February 2020 22 2 October 2020
7 5 July 2019 15 21 March 2020 23 21 November 2020
8 29 August 2019 16 20 April 2020 24 11 December 2020

Sentinel-2 optical data were processed using the quantum geographic information
system (QGIS) software, an open-source, cross-platform application. If the data is obtained
in L1C, the whole file is placed into the DOS1 atmospheric correction procedure before
applying it to the raster calculator function, which estimates the NDVI value per pixel,
generating an NDVI map.

3.3. SPI Calculation

Meteorological data from three automatic weather stations in the Ilocos Norte Region
from 2018 to 2020 were obtained. The data included daily precipitation, monthly precipita-
tion, and daily average temperature. All meteorological observation data were acquired
through PAGASA.

The calculation of the SPI was achieved through the use of Microsoft Excel software,
where the precipitation data were programmed to the formula developed by [58]. As such,
it was computed using Equations (1) and (2):

SPI = (Pi − P)/S (1)

S =
√

∑ (Pi − P)2/n (2)

where Pi is the rainfall of the given period, S is the standard deviation, P is the average of
the period of the rainfall, and n is the number of data in a single period.

This study used a 1-month time scale to present precipitation anomalies and detect
dryness or wetness in 2019 and 2020. This time scale reflected moisture conditions and
seasonal estimation of precipitation. Positive SPI values obtained from monthly rainfall
denote more significant precipitation than median precipitation, whereas negative SPI
values indicate less than medium precipitation. Specifically, it was further classified to
account for drought-related rainfall deviations (Table 3).

Table 3. SPI categories.

Anomaly Range of SPI Values Precipitation Regimes

Positive
2 < SPI ≤Max
1.5 < SPI ≤ 2
1 < SPI ≤ 1.5

Extremely wet
Very wet

Moderately wet

None −1 < SPI ≤ 1 Normal precipitation

Negative
−1.5 < SPI ≤ −1
−2 < SPI ≤ −1.5
Min < SPI ≤ −2

Moderately dry
Very dry

Extremely dry



AgriEngineering 2023, 5 725

3.4. KBDI Calculation

The measurements needed for this drought index were the 24-h precipitation, the
daily maximum air temperature, and the long-term mean annual precipitation. All these
data were obtained from the climatological division of PAGASA. Three years’ worth of
data (2018 to 2020) was requested from the PAGASA and was utilized in this study. The
measurements from 2018 were only used to initialize the KBDI value to be used on the
first day of 2019. The previous day’s drought index was needed to calculate the current
day’s drought index. This index cannot simply be set to zero since a KBDI equal to zero
would mean that the soil is saturated. Thus, this assumption cannot be made at any given
time. Therefore, an initialization procedure was required. First, the week of maximum
precipitation from the first year of data (2018) was determined. The KBDI for that week
was set to zero. This week was established as the initial point and served as the basis for
the next day’s KBDI. At this point, the calculated KBDI values were considered stabilized,
and the initialization was completed. The KBDI on the last day of 2018 was then used to
calculate the KBDI on the first day of 2019, and so forth until the end of 2020.

3.5. Correlation Analysis

Data analysis of various drought-related parameters was conducted using multiple
time series graphs, which involved the different indices and data used in this study to
observe and present data patterns as months passed from 2019 to 2020. Time graphs were
performed monthly to show trends and correlations between different indices.

3.5.1. Relationship between Sentinel-1 Backscatter Coefficient and Sentinel-2 NDVI

Pearson’s correlation analysis was used to investigate the relationship between the
backscattering coefficients of VV and VH polarization from Sentinel-1 SAR data and NDVI
values from Sentinel-2 optical data for the dry and wet seasons. This statistical parameter
was applied to measure the strength of the association of SAR data with NDVI to estimate
vegetation variations. Equation (3) describes the relationship between the two remote
sensing data:

y = b0 + b1x (3)

where y is the backscattering intensity value, b0 and b1 are the coefficients of the linear
regression modeling, and x is the NDVI value.

3.5.2. Relationship of Remotely Sensed Data with Meteorological Data

This study plotted a time series analysis using SAR and optical data for the dry and wet
seasons. After this, the outcomes of such information for the cropland and grassland areas
were correlated to various meteorological-based data (precipitation and temperature) to
understand the relationship between different drought indicators. As such, the relationship
and correlation between the following were determined—(a) SAR data and SPI, (b) SAR
data and KBDI, (c) NDVI and SPI, (d) NDVI and KBDI, and (e) SPI and KBDI.

3.6. Drought Risk Management Plan

Six steps were considered in producing a drought risk management plan (Figure 2).
Primarily, drought hazard was determined through previous events. These included any
evidence of droughts in an area, such as the devastation of crops due to dry soil or lack
of precipitation, allowing the most prone to drought risks to be identified. Next, the
drought risks in an area were identified through different parameters and indices used in
this study. Once these were known, drought forecasting was done, and an early warning
system was formulated. Lastly, drought risk assessment and monitoring help provide
recommendations and action plans to manage drought occurrences.



AgriEngineering 2023, 5 726

AgriEngineering 2023, 5, FOR PEER REVIEW  7 
 

3.6. Drought Risk Management Plan 
Six steps were considered in producing a drought risk management plan (Figure 2). 

Primarily, drought hazard was determined through previous events. These included any 
evidence of droughts in an area, such as the devastation of crops due to dry soil or lack of 
precipitation, allowing the most prone to drought risks to be identified. Next, the drought 
risks in an area were identified through different parameters and indices used in this 
study. Once these were known, drought forecasting was done, and an early warning sys-
tem was formulated. Lastly, drought risk assessment and monitoring help provide rec-
ommendations and action plans to manage drought occurrences. 

 
Figure 2. Drought risk management plan. 

4. Results and Discussion 
4.1. Comparison of VV and VH Channels 

The study investigated the backscattering intensity values in VV and VH polariza-
tions in the regions of interest of the study area for two years, as shown in Figure 3. As 
observed in Figure 3, the cross-polarized (VH) channel provides a lower backscatter value 
and more noticeable fluctuations than the co-polarized (VV) channel. Conversely, the sig-
nals of croplands in VV polarization were higher than the VH. These conditions exist due 
to VH channels having a more pronounced pattern for the vegetation conditions, which 
is known to be an effect of volume scattering [59]. Furthermore, a cross-polarized channel 
provides a lower backscattering value since only a proportion of polarized waves (vertical 
turning into horizontal) return as a signal to the sensor. A study on estimating winter crop 
fields and grasslands in France and Tunisia indicated that the VH radar backscattered sig-
nal is lower than the VV channel as it is more sensitive when characterizing vegetation 
cover [60]. Therefore, although the cross-polarized channel provides a lower backscatter 
signal than the co-polarized channel, the former provides better analysis and interpreta-
tion of land vegetation conditions. 

Figure 2. Drought risk management plan.

4. Results and Discussion
4.1. Comparison of VV and VH Channels

The study investigated the backscattering intensity values in VV and VH polarizations
in the regions of interest of the study area for two years, as shown in Figure 3. As observed
in Figure 3, the cross-polarized (VH) channel provides a lower backscatter value and more
noticeable fluctuations than the co-polarized (VV) channel. Conversely, the signals of
croplands in VV polarization were higher than the VH. These conditions exist due to VH
channels having a more pronounced pattern for the vegetation conditions, which is known
to be an effect of volume scattering [59]. Furthermore, a cross-polarized channel provides a
lower backscattering value since only a proportion of polarized waves (vertical turning
into horizontal) return as a signal to the sensor. A study on estimating winter crop fields
and grasslands in France and Tunisia indicated that the VH radar backscattered signal is
lower than the VV channel as it is more sensitive when characterizing vegetation cover [60].
Therefore, although the cross-polarized channel provides a lower backscatter signal than
the co-polarized channel, the former provides better analysis and interpretation of land
vegetation conditions.
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Figure 3. Time series of Sentinel-1 backscatter intensity coefficient (σ◦) for the vertical–vertical (VV)
and vertical–horizontal (VH) polarizations over cropland, mountainside grassland, and low-lying
grassland in Ilocos Norte region, Philippines.

4.2. Temporal Analysis of Backscatter Intensity
4.2.1. Cropland Areas

Crop development is classified into three main phases: vegetative, reproductive, and
maturation, as shown in Figure 4. First, the vegetation phase characterizes the crop’s initial
development of tillers. Since this phase features the gradual increase in plant height, the
backscattering signal σ◦ starts from a low value as the crop fields are initially dry. Several
irregularities may be found in the vegetative phase in the backscatter intensity time series.
Although there was a decrease in backscatter (from −16 dB to −17 dB in VH and −8 dB
to −9 dB in VV) during the wet season, the intensity value at the end of the vegetative
phase is still higher from its germination stage, indicating that the area is still experiencing
a typical growth pattern. On the other hand, during the dry season, it is found that there
is a general decrease in backscatter intensity (from −17 dB to −19 dB in VH and from
−9 dB to −11 dB), which may show that rice crops are affected and do not conform with
the conventional rice crop pattern.
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Figure 4. Time series of Sentinel-1 σ◦ for the vertical–vertical (VV) and vertical–horizontal (VH)
polarizations over cropland areas in Ilocos Norte region, Philippines, indicating the three crop
development phases—vegetative, reproductive, and maturation.

Secondly, the reproductive phase indicates that plant growth continues until it reaches
its maximum height. From the start of this stage, the backscattering intensity decreases
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as it approaches the end of the phase since the water content for crops is reduced upon
completing the growing phase. However, a slight increase in the transmitted radar signal
can be observed due to the vertical expansion of vegetation and, ultimately, an increase
in the height and volume of rice crops. This pattern shows that the rise in the volume of
vegetation causes an increase in the proportion of emitted signals. During the wet season,
the backscatter intensity values for the reproductive phase characterize the typical rice crop
growth as there was a decrease in radar signal from the start of this phase. It also revealed
that a slight increase in backscatter intensity during August 2019 might be found, which
indicates that this month is when the height of the rice crop is at its maximum.

On the other hand, an anomaly of the usual rice crop pattern is established during
the dry season. A continuously decreasing trend shows that water content in the rice
fields is lowered without the presence of a significant volume of vegetation. Furthermore,
backscattering values for January to March 2020 are significantly lower than the vegetative
phase (from −17 dB to −19 dB in VH and −9 dB to −11 dB in VV).

Lastly, the ripening or maturation phase is commonly identified with a continuous
drying of leaves and stems. Unlike the previous crop growth stages, this phase reveals a
constant decrease in σ◦ for both polarizations. From the study area, both the wet and dry
seasons exhibited a decreasing backscattering intensity value. It must be noted that rice
crops are normally harvested during the wet season, which indicates decreased vegetation
volume and stems moisture content. On the other hand, during the dry season, radar
signal in the maturation phase indicates low production during the harvesting period as
the backscatter intensity at the end of the crop cycle (−18 in VH and −11 in VV) is lower
compared to the end of the wet season (−17 dB in VH and −10 dB in VV).

4.2.2. Grassland Areas

Throughout the wet and dry seasons, both grassland areas exhibited a consistent
medium to high backscatter coefficient, as shown in Figure 5. Radar signal for the moun-
tainside grasslands ranges from −13 dB to −14 dB for VH and −7 dB to −8 dB for VV,
whereas the low-lying grasslands were found at −12 dB to −13 dB for VH and −7 dB to
−8 dB for VV. Since there are no significant fluctuations in radar signal throughout the
entire time series, the backscattering signal for the grasslands reveals that the said regions
of interest provided an almost uniform vegetation condition over time.
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Furthermore, since both grassland areas have low proximity to residential and agricul-
tural loci, the regions of interest are barely affected, allowing less air pollution and creating
an environment with improved air quality and unhindered soil nutrient content. Therefore,
withstanding precipitation variabilities and being away from human intervention, the veg-
etation in the mountainside and low-lying grasslands does not exhibit significant drought
risk throughout the two years.

4.3. Temporal Analysis of Sentinel-2 NDVI

In the analysis of NDVI, cropland areas varied significantly compared to both grass-
land areas. In the two years of analysis, its rise in value coincides with the start–peak–end
period of rice planting in the Ilocos Norte region. As the area has also experienced dif-
ferences in rainfall and temperature in the two years, despite the difference in value, the
months where the NDVI has increased are still the same in both years, as shown in Figure 6.
Cropland is easily more affected by factors in its surrounding, which may cause land
degradation in an area, causing fewer values in its NDVI in a 10 × 10 m spatial resolution.
In a single pixel, it cannot be avoided that other objects such as the soil, houses, water, and
other objects surrounding the plants are included in a single pixel, which may cause a drop
in NDVI value, leading to a need to be used with other drought indicators.
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Figure 6. Monthly time series of Sentinel-2 normalized difference vegetation index (NDVI) over the
cropland, mountainside grassland, and low-lying grassland areas in Ilocos Norte region, Philippines,
for two years (2019 and 2020).

4.4. Temporal Analysis of SPI

Ilocos Norte has relatively average precipitation for the entire year (from 2019 to 2020)
based on SPI, as shown in Figure 7. However, according to [58], drought is considered to be
starting as SPI reaches a value of 0. The month of August peaked in the positive anomaly,
followed by July for both years, which means that these were the months the location
received the most amount of rainfall. Typhoons significantly impact these findings as,
according to PAGASA, the peak typhoon season in the Philippines is from July to October.
On the other hand, the months from October to June received minimal to no precipitation
resulting in decreased soil moisture. These findings coincided with the reported drought
events in the study location.
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Figure 7. Standardized Precipitation Index (SPI) of the Ilocos Norte province in the Philippines for
two years (2019 and 2020).

4.5. Temporal Analysis of KBDI

Results of the KBDI analysis show that the drought index is significantly high from
December to May, which coincides with the province’s dry season, as shown in Figure 8.
However, for June to November, the index trend is inconsistent, especially for the year 2020,
where there was a noticeable spike in KBDI in June and from late July to early December.
Natural phenomena can explain the erratic behavior of the drought index during the wet
season, such as reported droughts and typhoons. Meanwhile, unlike the figure generated
using the daily KBDI values, the trend of the average monthly KBDI is more consistent and
aligns with the regular wet and dry seasons in Laoag City, which could explain the usual
lapses in drought response in the region (Figure 9).

AgriEngineering 2023, 5, FOR PEER REVIEW  11 
 

 
Figure 7. Standardized Precipitation Index (SPI) of the Ilocos Norte province in the Philippines for 
two years (2019 and 2020). 

4.5. Temporal Analysis of KBDI 
Results of the KBDI analysis show that the drought index is significantly high from 

December to May, which coincides with the province’s dry season, as shown in Figure 8. 
However, for June to November, the index trend is inconsistent, especially for the year 
2020, where there was a noticeable spike in KBDI in June and from late July to early De-
cember. Natural phenomena can explain the erratic behavior of the drought index during 
the wet season, such as reported droughts and typhoons. Meanwhile, unlike the figure 
generated using the daily KBDI values, the trend of the average monthly KBDI is more 
consistent and aligns with the regular wet and dry seasons in Laoag City, which could 
explain the usual lapses in drought response in the region (Figure 9). 

 
Figure 8. Daily Keetch–Byram drought index (KBDI) analysis results in Laoag City, Ilocos Norte 
province in the Philippines for 2019 and 2020. 

Figure 8. Daily Keetch–Byram drought index (KBDI) analysis results in Laoag City, Ilocos Norte
province in the Philippines for 2019 and 2020.



AgriEngineering 2023, 5 731AgriEngineering 2023, 5, FOR PEER REVIEW  12 
 

 
Figure 9. Average monthly KBDI analysis results in Laoag City, Ilocos Norte province in the Philip-
pines for two years (2019 and 2020). 

4.6. Correlation Analysis of Remote Sensing and Meteorological Drought Indicators 
The study also investigated the potential of Sentinel-1 SAR data and Sentinel-2 opti-

cal data for drought monitoring, as shown in Figure A1 and Table 4. In investigating the 
potential of using remote sensing data for land monitoring and drought detection, the 
correlation analyses suggest that cross-polarized from backscattering coefficients ap-
peared to be higher than co-polarized with NDVI. Consequently, it can be seen that the 
correlation results varied from 0.6 to 0.7. This statistical framework is also similar to the 
study of [61], which statistically quantified the relation between NDVI and backscatter 
intensity for sugarcane monitoring. The authors of [61] pointed out that the discrepancies 
from the perfect line fit can be traced to the slight difference in temporal resolution be-
tween the Sentinel-1 SAR data and Sentinel-2 optical data. It is known that the revisit time 
for Sentinel-1 and Sentinel-2 satellites is once every 12 and 10 days, respectively. Due to 
this, a comparison between the two remote sensing data would allow a slight difference 
in the observed scenarios and vegetation density for each pair of image acquisitions. 

Table 4. Correlation results for SAR and optical data-derived drought indicators. 

Area of Interest 
R2 

VV Polarization VH Polarization 
Croplands 0.6414 0.7170 

Mountainside grasslands 0.6123 0.7336 
Low-lying grasslands 0.6224 0.6806 

One of the objectives of this study is to determine if there is any significant correlation 
between remote sensing-based and meteorological-based drought indices, as summarized 
in Table 5. Various correlational analyses in this study reveal a generally low correlation 
between remote sensing data and meteorological-based data in grassland areas, as seen in 
the analysis between SPI and KBDI with the remote sensing-based indices backscatter in-
tensity and NDVI. Meanwhile, a significant correlation could be observed between the 
data regarding croplands. The correlation difference is assumed to be caused by the var-
ying slopes, elevations, and soil infiltration capacities in these two areas. Because of some 

Figure 9. Average monthly KBDI analysis results in Laoag City, Ilocos Norte province in the Philip-
pines for two years (2019 and 2020).

4.6. Correlation Analysis of Remote Sensing and Meteorological Drought Indicators

The study also investigated the potential of Sentinel-1 SAR data and Sentinel-2 optical
data for drought monitoring, as shown in Figure A1 and Table 4. In investigating the
potential of using remote sensing data for land monitoring and drought detection, the
correlation analyses suggest that cross-polarized from backscattering coefficients appeared
to be higher than co-polarized with NDVI. Consequently, it can be seen that the correlation
results varied from 0.6 to 0.7. This statistical framework is also similar to the study of [61],
which statistically quantified the relation between NDVI and backscatter intensity for
sugarcane monitoring. The authors of [61] pointed out that the discrepancies from the
perfect line fit can be traced to the slight difference in temporal resolution between the
Sentinel-1 SAR data and Sentinel-2 optical data. It is known that the revisit time for
Sentinel-1 and Sentinel-2 satellites is once every 12 and 10 days, respectively. Due to this, a
comparison between the two remote sensing data would allow a slight difference in the
observed scenarios and vegetation density for each pair of image acquisitions.

Table 4. Correlation results for SAR and optical data-derived drought indicators.

Area of Interest
R2

VV Polarization VH Polarization

Croplands 0.6414 0.7170
Mountainside grasslands 0.6123 0.7336

Low-lying grasslands 0.6224 0.6806

One of the objectives of this study is to determine if there is any significant correlation
between remote sensing-based and meteorological-based drought indices, as summarized
in Table 5. Various correlational analyses in this study reveal a generally low correlation
between remote sensing data and meteorological-based data in grassland areas, as seen
in the analysis between SPI and KBDI with the remote sensing-based indices backscatter
intensity and NDVI. Meanwhile, a significant correlation could be observed between
the data regarding croplands. The correlation difference is assumed to be caused by the
varying slopes, elevations, and soil infiltration capacities in these two areas. Because
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of some parameters, such as the type of crops and the distance between these crops or
plants, it is assumed that croplands allow water to infiltrate the soil faster than grasslands.
Precipitation in mountainside grasslands most likely ends up as runoff as well. Hence,
the on-site condition in grasslands reflected by the satellite, which is used for remote
sensing, cannot be accurately represented by meteorological data such as temperature and
precipitation. The distance of ground equipment such as rain gauges and thermometers
could be a factor as to why there is a correlation difference. The chosen cropland area
for this study is closer to the automatic weather stations of PAGASA compared to the
chosen grasslands. Despite this, it can still be concluded that there is an inverse relationship
between KBDI and the remote sensing-based indices since an increase in KBDI signifies the
occurrence of drought while a decrease in backscatter intensity and NDVI indicates less
water on the surface and worsening of vegetation health, respectively.

Table 5. Summary of correlation results for remote sensing data and meteorological-based drought indices.

Drought Indices Correlation Area of Interest
R2

VV VH

Backscatter intensity vs. SPI
Croplands 0.5160 0.3162

Mountainside grasslands 0.0006 0.0006
Low-lying grasslands 0.0024 0.0004

Backscatter intensity vs. KBDI
Croplands 0.6301 0.5600

Mountainside grasslands 0.0012 0.0025
Low-lying grasslands 0.305 0.0105

SPI vs. NDVI
Croplands 0.4701

Mountainside grasslands 0.0006
Low-lying grasslands 0.0053

KBDI vs. NDVI
Croplands 0.7066

Mountainside grasslands 0.0105
Low-lying grasslands 0.0035

SPI vs. KBDI - 0.5542

4.7. Proposed EWS for Drought Risk Management

An EWS for drought occurrence is proposed in this study, seeing the significant results
obtained from the four drought indices used in this study, as shown in Figure 10. This
proactive mechanism allows stakeholders to utilize evidence-based and statistical decisions
for drought assessment. Having been able to adapt the categories based on the National
Drought Plan of the Philippines, the drought indices used in this study were provided with
their corresponding threshold values that can assess monitoring, forecasting, and coping
with the impacts of drought based on vegetation conditions and climatic characteristics.

Based on the specified threshold values from the study’s drought indicators, the EWS
is divided into four classifications to detect climate variabilities and identify vegetation
and surface conditions. The first two decision ruling criteria are based on meteorological
deficiency classified from SPI and KBDI. Since meteorological drought is the primary factor
that affects crop growth, these parameters have been the first to be assessed. In this manner,
the lack of rainfall and extreme temperatures may be a factor in drought risk. Consequently,
the third and fourth assessments were based on the backscatter intensity and NDVI, which
characterized the actual surface and vegetation conditions and provided better drought
identification concerning crop vegetation health.
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4.8. Implications

Drought is a natural phenomenon in the Philippines, especially in the Ilocos Norte
region, where water shortage, warmer temperatures, and intensifying El Niño conditions
negatively impact crop production. Meanwhile, RS and GIS are emerging data processing
platforms with minimal applications in Southeast Asian countries. Considering this, the
main objective of this study was to investigate the potential of RS and meteorological data
in identifying the drought hazards in the cropland and grassland areas in Ilocos Norte.
It also establishes the relationships between satellite SAR, optical, and meteorological-
based drought indices, such as SPI and KBDI, for better drought risk assessment and crop
monitoring.

This study analyzed the co-polarized (VV) and cross-polarized (VH) channels for the
croplands, mountainside grasslands, and low-lying grassland areas in the Ilocos Norte
region. The Sentinel-1 SAR data backscatter intensity results reveal the VH channel pro-
duces a lower return signal for all areas of interest than the VV channel. However, the
former provides more observable variations in backscatter values during the two-year
analysis period. This result was obtained as the VH channel presents a lower proportion
of polarized waves returning to the satellite than the VV channel. Furthermore, due to its
sensitivity in detecting structural changes in plants brought by volume scattering, the cross-
polarized channel imparts a more excellent interpretation for characterizing vegetation
cover. Thereby, the results of this investigation revealed the potential of multi-temporal
analysis of Sentinel-1 SAR data for monitoring changes in vegetation conditions in the
areas of interest.

Sentinel-1 backscatter analysis of the croplands area revealed the phenological rice crop
phases. For both the dry and wet seasons, rice crop growth irregularities in the vegetative
and reproductive stages were observed because of lower water content which, in turn,
provided less than the usual amount of healthy vegetation. On the other hand, Sentinel-1
backscatter intensity values for the mountainside and low-lying grassland areas have also
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been investigated in this study for drought. It was shown that there are no significant
fluctuations of the Sentinel-1 backscatter coefficients for both VH and VV polarizations.
Radar signals also reflect a consistent medium to high backscatter coefficient, indicating
an almost uniform vegetation condition over the two-year analysis period. Furthermore,
the elevation difference between the two grassland areas did not account for radar signal
variability as the regions of interest have almost similar backscattering intensity values.
Hence, as human activities do not impede the areas, mountainside and low-lying grasslands
did not exhibit profound drought risk during 2019 and 2020.

Sentinel-2 NDVI is also analyzed in croplands, mountainside grasslands, and low-
lying grasslands. Sentinel-2 NDVI data can immediately reveal all locations of interest,
but the satellite optical data requires little to no cloud cover. The analysis of NDVI values
reveals that NDVI is greatly affected by activities in nearby locations, despite having
good crop health in an area. If the site is near roads and unvegetated lands, NDVI can
significantly decrease its value. This situation can cause NDVI to need more confidence
when dealing with drought and increase its reliance on other drought indicators presented
in the study. However, it can still impart important, valuable information for agricultural
purposes, such as peak months and vegetation health. When compared to the crop planting
periods, the index can show a significant relation to the calendar, which is beneficial for
identifying crop health per month.

As it is known that there was a drought in the early months of 2019, the NDVI values
are identical when compared to the values in 2020. This finding created a pattern that
farmers can use to identify when best to prepare for lower crop yields due to various factors
related to environmental and climatic variabilities. As NDVI values are greatly affected by
human activities, natural occurrences, such as typhoons, increased temperature, and other
uncontrollable circumstances, including drought, will also affect its values as NDVI relies
on a per-pixel visual representation than a direct analysis of a location. Like Sentinel-1
backscatter intensity values, NDVI can be used at any elevation and location if an available
satellite optical image can be obtained from the RS database. These various reasons allow
NDVI to be used as an index for different agricultural uses with some limitations due to its
capacity to be affected by external factors.

The relationship between the two RS data was provided in the study to show the
potential of Sentinel-1 and Sentinel-2 data in monitoring vegetation conditions. Correlation
between backscattering intensity, in both VH and VV polarization, and NDVI values reveals
a good correlation for the croplands, mountainside grasslands, and low-lying grasslands.
This statistical data analysis also shows that the correspondence of NDVI with VH polar-
ization was higher than the VV polarization, as the former provides more pronounced
radar signals for vegetation conditions [46]. Hence, an increase in backscattering value
corresponds to a greater NDVI, and at the same time, both agree to monitor vegetation
conditions.

The results of SPI on a 1-month scale show that drought was present in the study
location for 2019 and 2020. There is no standard index set as a threshold indicator for
drought. Instead, researchers can fix it if the SPI value is less than 0. With that, even if the
calculated index fell under the normal precipitation category, the study’s results indicate
that consecutive months of negative SPI value means that drought in terms of deficit in
soil moisture is already starting. However, SPI only accounts for precipitation deficiency.
SPI was correlated to another meteorological index, KBDI, and RS indices derived from
Sentinel-1 and Sentinel-2 data to analyze its accuracy in drought indication further. SPI
had a fair correlation with other indices with R2 > 0.50 for cropland areas. However, there
was no correlation for the grassland areas. This result suggests that the reliability of SPI in
monitoring drought from the study’s location is only limited to cropland areas. Despite that,
sites with more ground equipment for collecting precipitation data may lead to different
findings as to the effectiveness of SPI in monitoring drought in grassland areas.

Moreover, the KBDI accurately represented the weather conditions in the regions of
interest through this study. This observation can be explained by natural phenomena, such
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as tropical cyclones and drought occurrences in the province of Ilocos Norte. A significant
correlation exists between KBDI and other indices, specifically in croplands. However,
the correlation is significantly low for mountainside and low-lying grasslands. Therefore,
using KBDI to determine the condition of plants in these areas is not recommended. It
would be better to rely on NDVI as it represents vegetation health. For better utilization of
meteorological indices such as KBDI and SPI, it is recommended to install more ground
equipment. Ilocos Norte currently has only three automatic weather stations, which needs
to be improved for the whole province. Installing rain gauges and weather thermometers
in farmlands is advisable for more accurate monitoring. These installations will increase
the reliability of KBDI and SPI, thus creating a simple yet effective system to observe and
detect possible drought occurrences in these areas.

5. Outlook

Some studies have investigated the potential of seasonal and climatic forecasting for
drought assessment. Still, studies have yet to explore the integration of such probabilistic
outputs with observational satellite RS and meteorological data. This study analyzed the
Sentinel-1 SAR data VV and VH channels for the cropland, mountainside grassland, and
low-lying grassland areas in the Ilocos Norte region in the Philippines. The Sentinel-1
backscatter intensity results reveal that the VH channel produces a lower return signal for all
regions of interest than the VV channel. However, the Sentinel-1 backscattering coefficient
from the VH channel provides a better correlation, with R2 > 0.60, with the Sentinel-2 NDVI
in all regions of interest. Moreover, the Sentinel-1 backscattering coefficient and Sentinel-2
NDVI showed substantial irregularities in cropland areas compared to grassland areas.
These results indicate that croplands are more affected by drought than grassland areas.
A significant correlation exists between RS- and meteorological-based drought indicators,
specifically KBDI, with backscattering coefficient and NDVI. On the contrary, SPI and
KBDI show a poor correlation with the backscattering coefficient and NDVI, specifically in
grassland areas of the Ilocos Norte region.

Nevertheless, the study contributes to the general understanding of climate-induced
variations in crop production by characterizing climatic and vegetation variability for the
cropland and grassland areas. Through quantifying vegetation conditions and precipitation
deficiencies, this study highlights the feasibility of crop condition monitoring on a broader
scale of environmental conditions. Thus, the overall outcome of the study presents that
drought risk can be assessed appropriately by applying both RS data and meteorological-
based drought indicators, allowing for a more outstanding establishment of drought risk
management plans and early warning systems.
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